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Abstract: The weighted K-means clustering algorithm is widely recognized for its ability
to assign varying importance to features in clustering tasks. This paper introduces an
enhanced version of the algorithm, incorporating a bi-partitioning strategy to segregate fea-
ture sets, thus improving its adaptability to high-dimensional and heterogeneous datasets.
The proposed bi-partition weighted K-means (BPW K-means) clustering approach is tai-
lored to address challenges in identifying patterns within datasets with distinct feature
subspaces, such as those in insurance claim fraud detection. Experimental evaluations
on real-world insurance datasets highlight significant improvements in both clustering
accuracy and interpretability compared to the classical K-means, achieving an accuracy of
approximately 91%, representing an improvement of about 38% over the classical K-means
algorithm. Moreover, the method’s ability to uncover meaningful fraud-related clusters
underscores its potential as a robust tool for fraud detection. Beyond insurance, the pro-
posed framework applies to diverse domains where data heterogeneity demands refined
clustering solutions. The application of the BPW K-means method to multiple real-world
datasets highlights its clear superiority over the classical K-means algorithm.

Keywords: K-means clustering; machine Learning; feature selection; insurance fraud
detection

MSC: 62H20; 62J12; 62P05

1. Introduction
The Royal Canadian Mounted Police (RCMP) has emphasized that tackling scams

requires a collaborative effort involving consumers, institutions, researchers, and stakehold-
ers. The rapid expansion of digital landscapes has intensified the need to combat fraudulent
activities. Alarming statistics from the Canadian Anti-Fraud Center reveal a significant
issue: reported fraud cases in 2022 soared to USD 530 million, marking a 40% increase from
2021 [1]. This highlights the urgent need for innovative solutions and proactive measures in
detecting fraudulent claims. Specifically, the surge in fraudulent activities in auto insurance
claims poses a significant threat to the stability and fairness of insurance systems. Moreover,
when fraudulent claims go undetected, insurers bear the financial burden, leading to an
increase in insurance premiums for all policyholders. This ripple effect fosters distrust
and financial strain. All of the above factors have motivated our work to enhance existing
clustering methods for detecting insurance fraud claim patterns.

Mathematics 2025, 13, 434 https://doi.org/10.3390/math13030434

https://doi.org/10.3390/math13030434
https://doi.org/10.3390/math13030434
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0002-5977-6906
https://orcid.org/0000-0002-9533-2096
https://orcid.org/0000-0002-2984-0877
https://doi.org/10.3390/math13030434
https://www.mdpi.com/article/10.3390/math13030434?type=check_update&version=2


Mathematics 2025, 13, 434 2 of 47

In recent years, advanced data mining techniques—such as regression, association,
sequential patterns, classification, clustering, and others—have emerged as significant
contributors to insurance analysis [2,3]. These techniques have enabled the insurance
industry to better predict fraudulent insurance claims and premiums tailored to individual
clients. Additionally, they play a vital role in the initial screening process for evaluating
claims, thereby reducing reliance on manual evaluations and mitigating financial losses
over time [4]. To minimize fraudulent activities further, it is essential to enhance fraud
detection capabilities by improving existing algorithms like K-means clustering [5–7].

It is crucial to distinguish between identifying fraud claim clusters and classifying
claims as fraudulent or non-fraudulent. Fraud claim clustering focuses on grouping claims
based on shared characteristics without prior knowledge of their fraudulent nature. This
method uncovers patterns in the data, flagging clusters that deviate from the norm for
further investigation. It identifies potential anomalies but does not explicitly label claims
as fraudulent or non-fraudulent. In contrast, classifying claims as fraudulent or non-
fraudulent involves training a model on labeled data to categorize individual claims as
either fraudulent or non-fraudulent.

This paper contributes to the field of fraud detection by enhancing the identification of
fraudulent claim clusters through the development of a novel unsupervised algorithm. The
proposed bi-partition weighted K-means (BPW K-means) algorithm introduces a significant
advancement in clustering methodologies. This algorithm contributes to addressing critical
challenges and improves the capabilities of traditional K-means clustering algorithms. The
BPW K-means algorithm stands out due to its flexibility, achieved through the introduc-
tion of weight parameters and feature bi-partitions, as shown in Figure 1. These weight
parameters enable the algorithm to adapt to specific feature characteristics within a dataset,
enhancing its robustness across various datasets and making it suitable for diverse appli-
cations. Additionally, the method incorporates feature ranking using existing algorithms,
such as random forest [8], adding a new dimension to its functionality. By leveraging the
efficiency of feature ranking methods, the BPW K-means algorithm improves both the
interpretability and quality of its clustering compared to traditional K-means approaches.
In summary, the novel BPW K-means algorithm advances traditional clustering techniques,
paving the way for further investigation and refinement of unsupervised learning methods.

Order of Feature importance:

→

Apply 
predictive 
model on the 
unranked data

Legend

Ranked Column Features

D2 = β|| −𝑈[1:2]||
2+ (1 − β)|| −𝑈[3:6]||

2

With partition position number = 2. The first 
two most important features is used.

The other remaining  4 ranked 
columns or features are used here

β is takes values between (0,1), but in this case β =0.7

Figure 1. Illustration of the basic idea of weighted K-means under bi-partition. Example with
parameters: colBiPartitionNum (i.e., bi-partition number) = 2, and β = 0.7.

The remaining sections of this paper are organized as follows. In Section 2, we
review the existing methods and research studies related to fraud detection and improving
clustering performance. Section 3 describes the classical K-means algorithm and introduces
the bi-partition weighted K-means (BPW K-means) algorithm. Additionally, it discusses
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clustering performance metrics, the Rand index (RI), the adjusted Rand index (ARI), and
algorithms for measuring and validating clustering quality metrics. An exploratory analysis
of insurance claims data from the United States, focusing on fraudulent and non-fraudulent
cases obtained from Kaggle [9], is presented in Section 4. Additionally, the significance
of key features in the Vehicle Fraud Insurance dataset is analyzed by using two feature
selection methods: random forest and Relief. In Section 5, we discuss the applications of
the BPW K-means algorithm to insurance fraud claim detection and compare the clustering
performance of the BPW K-means algorithm with the classical K-means across different
clustering groupings. Section 6 discusses the practical implications of the research results
presented in Sections 4 and 5. In Section 7, the performance of the proposed BPW K-means
method is evaluated using three publicly available datasets from the Machine Learning
Repository at the University of California, Irvine (UCI) [10]: the Iris dataset, the Sirtuin6
dataset, and the Wholesale Customers dataset. Lastly, in Section 8, we conclude our study
and provide additional remarks regarding potential directions for future research.

2. Related Works
As previously stated, fraud detection has emerged as a critical area of study. Re-

searchers have employed various methods and techniques rooted in data analytics, ma-
chine learning, and artificial intelligence to identify and mitigate fraudulent activities.
The study by Nian et al. in Ref. [11] introduced a spectral ranking-based method for
detecting fraudulent activities in auto insurance claims. This approach combines spectral
optimization with the analysis of a Laplacian matrix to rank suspicious cases, thereby
identifying fraud without labeled data. Their method effectively captures the strength of
the interdependencies among feature variables, making it suitable for both global and local
anomaly detection. However, the authors tested their method only on artificial datasets
generated by software, and its performance on real-world datasets remains uncertain.
Similarly, Yang et al. in Ref. [12] proposed a multimodal learning framework that combines
structured data, text, and images to detect fraud. They utilized advanced deep learning
models like BERT (bidirectional encoder representations from transformers) and ResNet
(residual neural network), which improved accuracy by capturing subtle fraud indicators.
Other studies in Ref. [13–15] introduced hybrid models based on convolutional neural
networks (CNNs) and long short-term memory (LSTM) networks. These models enhance
feature extraction by identifying key patterns in data for fraud detection. Despite their im-
proved performance, CNNs and LSTMs, like other deep learning models, are often referred
to as “black-box” systems, offering limited transparency about how individual features
contribute to the final classification. This poses challenges in fraud detection, as auditors
and regulatory bodies require clear justifications for classifying claims as fraudulent. In
contrast, Ref. [16] combined blockchain technology, gradient-boosting decision trees, and
graph neural networks (GNNs) for fraud detection in financial transactions. Their method
outperformed CNN-based approaches but the authors acknowledged potential biases and
errors due to data limitations or overreliance on specific types of fraudulent behavior.

The authors of Ref. [17] reviewed the regulatory efforts and fraud scandals, empha-
sizing the importance of policy integration; however, this study lacks technical details on
machine learning applications. Meanwhile, [18] conducted an extensive review of over
50 studies on auto fraud detection and prevention, highlighting the scarcity of publicly
available datasets, as noted in Ref. [15]. A regional case study on Ontario’s auto insur-
ance anti-fraud initiative, Ref. [19], demonstrated the effectiveness of government and
regulatory collaborations in curbing fraud.

The authors of Ref. [20] investigated the integration of explainable AI (XAI) techniques
in banking fraud detection, emphasizing the need for transparency and interpretability
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to balance performance with regulatory compliance. Similarly, ref. [21] compared several
machine learning algorithms—logistic regression, extreme gradient boosting (XGB), deci-
sion tree, KNN, and random forest—for detecting fraudulent claims. Logistic regression
achieved an F1 score of 83; however, when tested with new datasets, random forest deliv-
ered the best performance. These models were implemented by using Python’s PySpark
MLlib module. The authors noted challenges related to data quality in some datasets,
which negatively impacted prediction performance, and suggested refining models for
different fraud cases to adapt to evolving fraud patterns. A follow-up study, ref. [22],
extended the work presented in Ref. [21] by incorporating linear discriminant analysis
(LDA), which achieved a superior F1 score of 87, concluding that LDA outperforms other
methods. Additionally, ref. [23] explored the use of clustering algorithms for automating
fraud detection in group life insurance claims during audits. Their research focused on
anomaly identification through cluster analysis, flagging clusters characterized by large
beneficiary payments or long delays between claim submission and payment for further in-
vestigation. They employed the K-means clustering algorithm using open-source software
like WEKA (i.e., Waikato Environment for Knowledge Analysis, Ref. [23]). In their paper,
the authors formed eight clusters based on two attributes when clustering their dataset;
however, they did not explain the rationale behind this specific choice. Furthermore, their
acknowledgment that cluster analysis serves as a preliminary step toward integrating
technology into auditing, suggests a need for future research to develop new methods and
improve upon existing ones, aligning with the objectives of this study.

Other unsupervised methods such as principal component analysis (PCA), introduced
in Refs. [24,25], are foundational techniques for dimensionality reduction. PCA transforms
data into uncorrelated components by identifying the directions (principal components)
along which the data vary the most. This process decomposes the data into orthogonal
components and it preserves the most important features in the data. However, its linear
nature limits its ability to capture complex relationships. Independent component analysis
(ICA), introduced by Comon in Ref. [26], aims to find statistically independent components
and excels in tasks like blind source separation, which is a technique in signal processing
that is used to recover original source signals from a set of observed mixed signals, without
prior knowledge about the sources. However, ICA’s performance can be compromised
when the assumptions of independent and non-Gaussian sources are violated, Ref. [27].
The Laplacian score (LS), proposed by He et al. in Ref. [28], evaluates feature importance by
assessing locality-preserving power. It measures the variance of each feature within the local
neighborhood of the data, selecting features that best conform to the intrinsic geometry of
the data distribution. LS has been effective in applications where preserving local structures
is important, such as clustering and manifold learning. The mutual information score (MIS)
rooted in information theory, evaluates variable dependencies, making it versatile for
feature selection, but can be computationally demanding and data-intensive, Ref. [29]. In
contrast, random forest, introduced by Breiman (2001), not only excels in classification and
regression but also provides feature importance scores based on decision tree impurity
reduction, enhancing interpretability, Ref. [8,30]. The ReliefF algorithm, an extension of
the original Relief algorithm from Ref. [31], and later improved on in Ref. [32], excels at
identifying key features by comparing data samples or observations with their nearest
neighbors. One of the strengths of ReliefF is its ability to handle noisy and incomplete data,
as well as its capacity to capture feature interactions. However, its performance depends
heavily on parameter choices, particularly the number of nearest neighbors, and struggles
with high-dimensional datasets [33].
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3. Methods
In this section, the classical K-means method and its mathematical formulation will

first be briefly presented. Next, the proposed bi-partition weighted K-means algorithm
(BPW K-means) will be described. Additionally, some label-based clustering performance
measures will be introduced.

3.1. Classical K-Means

The classical K-means algorithm [34–37] iteratively updates cluster centroids and
reassigns data points to the nearest centroid until convergence is achieved. Convergence
is typically determined by checking whether the cluster assignments and centroids no
longer change significantly between iterations or when the maximum number of iterations
is reached. A key characteristic of the classical K-means algorithm is its assumption that
all features of a dataset contribute equally. The method uses the Euclidean distance ∥·∥ as
its metric.

Consider an input dataset X = {xi}m
i=1 where xi ∈ Rn, m represents the number of

rows (i.e., the number of observations), and n represents the number of columns (i.e., the
number of features). Let k ∈ Z+\{1} be the number of clusters, and let C = {C1, C2 . . . , Ck}
be the disjoint grouping of data X into k subsets, such that each Cj has a corresponding
centroid µj, where j = 1, 2, . . . , k. Following the formulation in Ref. [34], and using the K-
means clustering method to cluster points (observations) in a dataset involves minimizing
the following objective function:

argmin
C

k

∑
j=1

∑
x∈Cj

∥∥∥x − µj

∥∥∥2
, (1)

in which the within-cluster sum of squares is minimized for a given number of clusters (k).
The K-means method is straightforward in its approach to iteratively minimize the

objective function in Equation (1). It is fast and computationally efficient, especially for
large datasets but it is sensitive to outliers. Since the method attempts to minimize the
sum of squared distances, a single large outlier can significantly distort the centroid of a
cluster, leading to incorrect assignment of data points to clusters. Additionally, the K-means
algorithm is sensitive to the initial choice of centroids, and poor initialization can result in
suboptimal clustering quality.

3.2. Distinguishing BPW K-Means from Fuzzy Clustering: Principles, Performance, and Applications

We aim to clearly differentiate the proposed algorithm from the fuzzy clustering
method. The BPW K-means algorithm and fuzzy clustering algorithm operate on distinct
principles and yield different results. In the BPW K-means algorithm, each data point
is assigned to one specific cluster based on its distance to the centroids, meaning the
clustering is a hard-clustering type, and each point belongs to only one and only one cluster.
In contrast, fuzzy C-means (FCM) allows each data point to belong to multiple clusters with
varying degrees of membership, meaning a point can be partially associated with several
clusters, reflecting uncertainty in the data [38]. Additionally, the centroids generated by
the proposed method are recalculated as the mean of all data points assigned to each
cluster, leading to clear and distinct cluster boundaries. In fuzzy clustering, centroids are
calculated based on membership values, which consider the degree to which each point
belongs to multiple clusters. As a result, the BPW K-means produces outputs that are
easier to interpret with each data point belonging to a specific cluster, providing a clear
categorization of the data. In contrast, fuzzy clustering may be harder to interpret due to
overlapping memberships.
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Theoretically, since the BPW K-means is a variant of K-means, it has lower compu-
tational complexity and can be faster for large datasets, as it only needs to compute the
closest centroid for each point. In contrast, the fuzzy clustering algorithm generally has
higher computational complexity due to the need to calculate membership values for each
point across all its clusters, making it slower, particularly for large datasets.

In this paper, “Feature Bi-Partition Ranked” refers to ordering the features of a dataset
according to their importance using a predictive model, while “Feature Bi-Partition Un-
ranked” leaves the features in their original order, without altering the positions of the data
columns. In this study, we observed that the BPW K-means performed slightly better with
ranked datasets compared to unranked datasets.

Also, under the BPW K-means method, the distance metric used is the Euclidean
distance ∥·∥ metric. Users must provide the following inputs: the dataset, the desired
number of clusters (k), a bi-partition number to indicate the position (point) to split the
dataset columns, and a weight value β between 0 and 1 to be applied to one of the resulting
bi-partitions. Note in this study, we tested β values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9,
thus, starting from a β value of 0.1 and incrementing it by 0.1, up to a β value of 0.9. Also,
we tested column bi-partition numbers starting from 1 and going up to the column size
of the dataset. The β value and bi-partition number pair that yielded the highest accuracy
was selected as the optimal parameter set.

3.3. Bi-Partition Weighted K-Means

In this section, we introduce the primary contributions of this paper. We begin with
an example, illustrated in Figure 1, to demonstrate how our method works. Next, we delve
into a more formal mathematical formulation of our method and present the pseudocode
for the algorithm.

The example in Figure 1 uses a dataset with eight rows and six columns. A bi-partition
number of 2 is chosen because the user suspects that the first two columns are the most
important features, while the remaining four features are less important. A weight value
β is set to 0.7. The legend in the figure uses a color gradient, with blue representing the
most important features and red representing the least important, transitioning through
four other colors in descending order of importance. A predictive model is applied to the
dataset to rank its features, as shown by the color-coded illustration. The first two most
important (blue) features are selected along with their corresponding centroids (U[1:2]).
Note that for the dimensional agreement, the first two most important features and their
corresponding centroids still retain the same dimensions as the given dataset. The entries
of the remaining less important features (in this case, four features) and their corresponding
centroids are set to zero . The Euclidean distances between these selected features and
their corresponding centroids are computed, and the weight value β = 0.7 is applied to
the calculated distances. Similarly, the remaining four less important features and their
corresponding centroids (U[3:6]) are selected. These four features and their corresponding
centroids also retain the same dimensions as the given dataset, while the entries of the first
two important features and their centroid parts are set to zero. The Euclidean distances for
this second portion are then calculated, and a weight of 1 − β is applied. The final distance,
denoted by D, is the sum of these two weighted distances, and the clustering of the data
observations is performed using this weighted distance metric. After presenting the main
points of the introduced algorithm in this example, we proceed to its formal description.

Let us assume datasets A, Ad1 ∈ Rm×n, where m is the number of rows (observations)
and n is the number of columns (features). Let p ∈ Z+, such that 1 ≤ p ≤ n, be the
data column bi-partition number. This number refers to the column-wise position where
a split (partition) occurs within the dataset features. Let U, Ud1 ∈ Rk×n denote some k
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centroids. The index d1 indicates that the matrices have been partitioned at column p. Then,
a bi-partition of A and U at their respective column p is defined as follows:

Ad1
ij =

Aij if 1 ≤ j ≤ p

0 if p < j ≤ n,
∀ 1 ≤ i ≤ m, (2)

Aij − Ad1
ij =

0 if 1 ≤ j ≤ p

Aij if p < j ≤ n,
∀ 1 ≤ i ≤ m, (3)

and,

Ud1
sj =

Usj if 1 ≤ j ≤ p

0 if p < j ≤ n,
∀ 1 ≤ i ≤ m, (4)

Usj − Ud1
sj =

0 if 1 ≤ j ≤ p

Usj if p < j ≤ n,
∀ 1 ≤ i ≤ m, (5)

The key difference between the BPW K-means and the classical K-means is that the
Euclidean distances between the features (column dimensions) of an observation and its
corresponding centroid are bi-partitioned, with different weights applied to each partition.
In the proposed method, the features are divided into two parts, resulting in a weighted
distance calculation. Our method seeks to group the m observations into distinct k clusters
(set C), where (k ≤ m) and C = {C1, C2, . . . , Ck}, with the most minimal overall weighted
sum of squared distance. The objective function of the proposed method is given as follows:

D2 =
m

∑
i=1

(
min

s∈{1,2,...,k}

n

∑
j=1

[
β
∥∥∥Ad1

ij − Ud1
sj

∥∥∥2
+ (1 − β)

∥∥∥(Aij − Ad1
ij )− (Usj − Ud1

sj )
∥∥∥2
])

, (6)

subjected to 0 ≤ β ≤ 1, where k is the number of required clusters; i is the index of
observations in a dataset; s is the index of centroids; j is the index of column features
in a dataset; min stands for minimum; n is the number of features; m is the number of
observations; || · || is the Euclidean distance; β is the weight between 0 and 1, to be applied
to the bi-partition distances; and D is the final weighted distance.

The proposed method is designed to optimize clustering results by applying a pre-
dictive model to rank the features of a given dataset based on their importance. This
ensembling step is known to improve clustering accuracy, as the contributions of each
feature determine the strength of similarity within clusters, as stated in Refs. [39,40]. The
steps of the proposed algorithm are detailed in Algorithm 1. The algorithm begins with
empty centroids and distance vectors. After the initialization step, it computes the distances
to the nearest centroids (Step 5). Within this step, when given a specific β value and feature
bi-partition position number, the algorithm splits the dataset according to the bi-partition
number. As described in the example above, the weighted distance is then calculated, such
that β is applied to the first part of the bi-partition and simultaneously 1 − β is applied to
the second part of the bi-partition. The overall within-cluster weighted sum of squares is
then assigned to the left-hand side. Each observation is then assigned to its nearest centroid,
thereby creating k clusters in Step 6. In Step 7, the BPW K-means updates the centroids by
calculating the mean of each cluster. This process is repeated until the desired number of
iterations is achieved, finally returning the updated centroids and clusters.
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Algorithm 1. The bi-partition weighted K-means algorithm for clustering

Input: Data (scaled) A ∈ Rm×n, number of clusters k ∈ Z+, k ≤ m; data column bi-partition
number p ∈ Z+ , p ≤ n; a weight parameter β ∈ (0, 1); Niter ∈ N is the maximum number
of iterations; convergence threshold ϵ > 0.
Output: Clusters and Centroids.

Data Feature Importance Ranking:
Using any preferred feature selection algorithm or predictive model:

i: Apply model = Train a predictive model on (Data A)
ii: Feature importance = Use the model to rank the features based on their importance
iii: Select the top-ranked (Data A) features based on feature importance above
iv: Set New A = ranked and ordered features of A

then continue:
1: Initialize U = Centroids , and D = distances as empty vectors, t = 0.
2: While not converged and t < Niter do
3: for i = 1 : m do
4: Compute distances from the nearest centroid

5: Di =
√

β ∑
p
q=1 ∑k

j=1 ||Aiq − Ujq||2 + (1 − β)∑n
q=p+1 ∑k

j=1 ||Aiq − Ujq||2

6: Assign each data point Ai to the closest centroid (Min Di)
7: Set Ut = U, Ut stores old centroid.

8: Update Uj =
∑k

j=1 Aj

|Aj |
, the mean of each cluster j.

9: Check for convergence
10: If ||Uj − Ut||2 < ϵ ∀j then
11: converged = true
12: t = t + 1, increase iteration counter
13: Repeat the process from line 3 to line 10 till Niter iterations or convergence
14: Return { (Clusters j, Uj)| j = 1, . . . , k }, the final cluster assignments and their

corresponding centroids.

The algorithm excels in cases where feature importance plays a crucial role in deter-
mining cluster assignments and it provides valuable clustering solutions for datasets with
complex structures. The algorithm’s ability to handle different bi-partition configurations,
positions it as a versatile tool in machine learning.

Additionally, the BPW K-means algorithm introduces a new way of clustering by
combining feature ranking with flexible parameter tuning. This approach helps the BPW
K-means algorithm to prevent features contributing less to the clustering quality from
impacting the overall clustering performance. This adaptability is crucial in real-world
applications, such as the auto insurance industry, where imbalanced datasets are common.
By incorporating the BPW K-means algorithm into our clustering methodologies, we aim
to improve the robustness, reliability, and clustering quality in unsupervised learning.

Having introduced the core methodology of the proposed algorithm, it is essential to
assess its effectiveness in comparison to the existing K-means method. To achieve this, we
will now explore various clustering performance metrics, which will help us quantify and
evaluate the algorithm’s performance.

3.4. Clustering Performance Metrics

In this section, we discuss two widely used clustering performance metrics, which are
the Rand index and the adjusted Rand index. These metrics will be employed to compare
the performance of the proposed algorithm with the classical K-means. The results of this
comparison will be presented in detail in tabular form later in this study.
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3.4.1. Rand Index (RI)

From Refs. [41,42], it is known that the Rand index (RI) is a metric used to measure
the similarity or agreement between two data clusterings or between a clustering result
and a ground truth (i.e., the known labels of data). It calculates the percentage of data
point pairs that are either correctly classified in the same cluster in both clusterings or
correctly classified in different clusters in both clusterings. However, RI does not account
for the possibility of agreement occurring by chance, which may limit its applicability in
some scenarios. Nevertheless, it remains a valuable metric for assessing the quality of
clustering algorithms.

Assume that A and B represent two different clustering results from two different
algorithms, with both having n total points. In this study, A denotes the clustering result
obtained from the BPW K-means algorithm, while B represents the true labels from the
dataset. Let nij denote the number of points that belong to both cluster i in clustering A
and cluster j in clustering B. Let n.i and n.j represent the number of points that belong
only to cluster i in clustering A and cluster j in clustering B, respectively. Assume that c1

is the number of clusters in clustering A and c2 is the number of clusters in clustering B.
Following the formulation of Ref. [41], the similarity between A and B can be calculated
as follows:

RI =
(n

2) + 2 ∑c1
i=1 ∑c2

j=1 (
nij
2 )−

[
∑c1

i=1 (
ni.
2 ) + ∑c2

j=1 (
n.j
2 )
]

(n
2)

. (7)

3.4.2. Adjusted Rand Index (ARI)

As noted in Refs. [41,42], the adjusted Rand index (ARI) is a refinement of the Rand
index, which accounts for chance agreements between two clusterings. Unlike the Rand
index, ARI adjusts for the possibility of random agreement, providing a more accurate
measure of clustering similarity. The higher the ARI value, the closer the two clusterings
are to each other. ARI ranges from −1 to 1, where the value of 1 indicates perfect agree-
ment between the two clusterings, while 0 suggests a random agreement, and −1 implies
complete disagreement between the clusterings.

It has been observed that when the Rand index and its expected value are both low
and closely aligned, the ARI value tends to approach zero, indicating that the clustering
result is similar to a random partition. The ARI modifies the Rand index as follows:

ARI =
RI − Expected(RI)

Max(RI)− Expected(RI)
. (8)

The Rand index and adjusted Rand index are both metrics used to evaluate the
similarity between two data clusterings or partitionings. These metrics are commonly
employed in clustering and unsupervised machine learning to compare the quality of
different algorithms or to assess the performance of a single algorithm across multiple runs.
In this study, we will utilize both RI and ARI to evaluate the clustering performance of
the proposed method. Additionally, we will compare these results with those obtained
from K-means clustering. To ensure a robust evaluation, both algorithms will be executed
200 times, generating samples of metrics. For each iteration, the centroid updates for
clustering will be limited to a maximum of 100 times (within algorithm maximum runs).

3.4.3. Algorithms for Measuring and Validating Clustering Quality Metrics

Algorithm 2 is designed to evaluate the performance of a clustering method by mea-
suring how accurately the predicted clusters align with the true class labels of the given
data points. Let us assume that A is a dataset with true class labels, b, and k denotes the
number of clusters.



Mathematics 2025, 13, 434 10 of 47

In Algorithm 2, the steps begin by initializing vectors x, y, and the integer Result as
placeholders for storing predicted cluster labels, the proportion (accuracy) of correct label
assignments within each cluster, and the final accuracy value, respectively. In steps 3–5
of Algorithm 2, the method applies a clustering method (e.g., BPW K-means) to partition
dataset A into k clusters. The resulting predicted cluster labels are stored in the vector x. At
steps 7–9 of Algorithm 2; the method counts how many of these predicted labels in each
cluster match the true class labels in vector b. Within each cluster, the method identifies the
most dominant class (the true label with the highest count of matches with the predicted
labels) to Nj. Additionally, it computes Ntotj , which represents the total number of data

points within cluster j. The algorithm then computes the proportion yj =
Nj

Ntotj
of correctly

assigned labels in cluster j ∈ {1, . . . , k} by dividing Nj by Ntotj at step 11. After calculating
the proportion yj for each cluster j ∈ {1, . . . , k}, the algorithm computes the mean of the
proportions (accuracies) by adding all values in yj and dividing the sum of the accuracies
(proportions) by the total number of clusters k. This average accuracy is then stored in the
Result at step 12 in Algorithm 2. The metric (average accuracy) evaluates the clustering
quality by measuring how accurately the clustering method has grouped the data relative
to the true class labels. A higher metric value, close to 1, indicates better clustering, while a
value near 0 suggests poorer clustering performance.

Algorithm 2. Accuracy function used for measuring the accuracy of clusters.

Input: Data (scaled) A ∈ Rm×n, label vector b ∈ Rm (true class labels) and a parameter
k ∈ N is the number of clusters.
Output: Result

1: Initialize x and y as empty vectors, and Result as an integer.
2: for any given k, do
3: Perform clustering on A using any clustering method (e.g., BPW K-means)
4: Fit = Clustering Method (A, centers = k)
5: x = fit clusters (assign predicted cluster labels)
6: for j = 1, . . . k do
7: Count all label occurrences in predicted cluster j by comparing it to labels in b
8: Nj = Count of the most frequent true label in predicted cluster j
9: Ntot = total of all label counts in predicted cluster j

10: then compute

11: append yj =
Nj

Ntotj

12: Return Results =
∑k

j=1 yj
k

Algorithm 3 complements methods like Algorithm 2 by validating the robustness,
consistency, and reliability of clustering performance metrics. Let Niter ∈ N be the number
of iterations. Step 1 of Algorithm 3 initializes an empty vector z to store metric values
obtained from iterating a clustering performance metric method. Given a performance
metric of a clustering method (such as the output from Algorithm 2, Rand index, or adjusted
Rand index) and a specified number of iterations Niter, Algorithm 3 operates as follows.

In steps 2–4 of Algorithm 3, each iteration i from 1 to Niter computes the specified
performance metric and assigns the resulting value to zi. This process repeats until all
iterations are completed. After all iterations, step 5 of Algorithm 3 computes and returns
three key statistics: the maximum, mean, and standard deviation of the stored metric values
in z. These statistics provide insights into the clustering method’s effectiveness: the highest
performance achieved, the average performance, and the variability in performance.
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Algorithm 3. Validation method for clustering performance metrics.
Input: Performance metric of a clustering method (for example, using output from
Algorithm 2, the Rand index, or the adjusted Rand index) and Niter ∈ N is the number of
iterations.
Output: Maximum, mean, and standard deviations of a given metric.

1: Initialize z as an empty vector to store Niter metric values.
2: for i = 1, . . . , Niter do
3: append zi = output of Algorithm 2 or performance metric of any clustering method.
4: Repeat the process from line 3 till Niter iterations
5: Return {Maximum of z, Mean of z, Standard Deviation of z}

After discussing the clustering performance metrics, it is essential to evaluate how our
method will perform in real-world datasets. This leads us to the next phase of our study,
where the method is applied to diverse real-world datasets.

4. Exploratory Analysis of Insurance Fraud Claims: Insights and
Feature Rankings

In this section, we conduct an exploratory analysis of insurance claims data from the
United States, focusing on fraudulent and non-fraudulent cases obtained from Kaggle [9].
This analysis leverages various graphical representations to visualize and understand the
distribution of claims data across the northeastern United States. Additionally, we assess
the importance of key features in the Vehicle Fraud Insurance dataset using two feature
selection methods: random forest and Relief.

This exploratory phase serves as a foundational step, providing insights into the dataset’s
structure and feature relevance, which inform the subsequent application of the proposed
BPW K-means and classical K-means clustering methods discussed in later sections.

The analyzed Insurance Claims dataset from the northeastern United States [9] in-
cludes fraudulent and non-fraudulent vehicle insurance claims. The analysis focuses on
the following four data features for fraudulent cases: locations (latitude and longitude
coordinates), relative insurance claim frequencies (the count of reported fraud cases at a
location), average total insurance claim amounts (the mean of total fraud claim amount
at a location), average vehicle insurance claim amounts (the mean of only vehicle fraud
claim amount at a location), average injury insurance claim amounts (the mean of only
injury fraud claim amount at a location) and average property insurance claim amounts
(the mean of only property damage fraud claim amount at a location). The same data
feature characterization applies to non-fraudulent cases: locations (latitude and longitude
coordinates), relative insurance claim frequencies (the count of reported fraud cases at
a location), average total insurance claim amounts (the mean total fraud claim amount
at a location), average vehicle insurance claim amounts (the mean fraud claim amount
for vehicles at a location), average injury insurance claim amounts (the mean fraud claim
amount for injuries at a location), and average property insurance claim amounts (the mean
fraud claim amount for property damage at a location).

To identify regions with a higher prevalence of fraudulent claim cases, we examined the
geographical longitude and latitude coordinates of the claims in the dataset. It was observed
that individual customer addresses had been altered, probably, to protect privacy and security.
Consequently, some addresses could not be geocoded using Google’s tool (Geocoding API
https://developers.google.com/maps/documentation/geocoding/overview (accessed on
1 June 2023)) to convert addresses into latitude and longitude coordinates.

The considered dataset contains 1000 observations spanning seven unique cities
(“Columbus”, “Riverwood”, “Arlington”, “Springfield”, “Hillsdale”, “Northbend”, and

https://developers.google.com/maps/documentation/geocoding/overview


Mathematics 2025, 13, 434 12 of 47

“Northbrook”) and seven unique state shortcodes (“SC”, “VA”, “NY”, “OH”, “WV”, “NC”,
and “PA”). Despite thousands of unique street names, approximately 98 latitude and longi-
tude coordinates were identified as corresponding to these addresses. Four coordinates
were discarded as outliers after visualizing the statistics of the analyzed insurance claim
data features on maps in Figures 2–6.

The maps of Figures 2–6 display, respectively, the following statistics: (Figure 2) Rel-
ative Insurance Claim Frequency; (Figure 3) Average Total Insurance Claim Amounts;
(Figure 4) Average Vehicle Insurance Claim Amounts; (Figure 5) Average Injury Insurance
Claim Amounts; (Figure 6) Average Property Insurance Claim Amounts. On these maps,
the averages calculated for non-fraudulent claims for the considered features are repre-
sented by blue circles, while fraudulent claims are represented by red circles. The size of
each circle corresponds to the magnitude of the average claim values for each respective
feature of the vehicle insurance claim data. This visualization intuitively represents the dif-
ferences in average values between fraudulent and non-fraudulent vehicle insurance claims
across various locations. Note that the map legends use the abbreviations “Fraud” for
fraudulent cases and “No-Fraud” for non-fraudulent cases. For brevity, these abbreviations
are sometimes used in the following analysis.

In Figure 2, we can see that areas such as Arlington, OH, and Northbrook, OH, have
high frequencies of fraudulent reported cases, while Arlington, PA, Hillsdale, OH, and
Northbend, PA, exhibit higher frequencies of non-fraudulent cases. In Figure 3, high
values of average total insurance claim amounts for fraudulent cases are evident in areas
such as Riverwood, SC, Columbus, OH, and Northbrook, NC. Conversely, in Northbend,
OH, significantly higher average values are observed for non-fraudulent total insurance
claim amounts. In Figure 4, we can see that the areas of Riverwood SC, Northbrook, NC,
and Columbus, OH, have higher average values of fraudulent vehicle insurance claim
amounts. In contrast, areas such as Northbend, OH, Hillsdale, OH, and Arlington, OH,
show higher average amounts for non-fraudulent cases. The map in Figure 5 reveals
that areas such as Columbus, OH, Northbrook, OH, and Columbus, PA, have higher
average values of fraudulent injury insurance claim amounts. Meanwhile, in Columbus,
PA, Hillsdale, OH, and Columbus, NC, higher average values of non-fraudulent injury
insurance claim amounts are observed. Finally, Figure 6 indicates that, in general, the
average values of property insurance claim amounts for fraudulent and non-fraudulent
claims are similar across different locations. However, notable exceptions include (1)
Northbrook, WV, Springfield, SC, and Riverwood, SC, where the average values are higher
for fraudulent claims, and (2) Hillsdale, PA, where the average value is high for non-
fraudulent claims.

Figure 7a,b presents the analysis of feature rankings in the Vehicle Fraud Insurance
dataset using two feature selection methods: random forest and Relief. Both methods
produced similar feature rankings, with the primary difference being the reversed positions
of the ‘average property claim’ and ‘average injury claim’ features. Notably, both methods
identified the relative frequency of fraud as the most important feature, while Longitude
and Latitude were deemed the least significant. Given the minimal differences in rankings,
random forest was selected as the feature selection method for this study.
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Figure 2. Relative insurance claim frequency of non-fraudulent (blue circles) and fraudulent (red
circles) records in the northeast USA were calculated using the insurance dataset from Kaggle [9].
The size of each circle plot provides visual insight into the magnitudes of the respective claims.
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Figure 3. Average total insurance claim amounts of non-fraudulent (blue circles) and fraudulent (red
circles) records in the northeast USA were calculated using the insurance dataset from Kaggle [9].
The size of each circle plot provides visual insight into the magnitudes of the respective claims.
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Figure 4. Average vehicle insurance claim amounts of non-fraudulent (blue circles) and fraudulent
(red circles) records in the northeast USA were calculated using the insurance dataset from Kaggle [9].
The size of each circle plot provides visual insight into the magnitudes of the respective claims.
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Figure 5. Average injury insurance claim amounts of non-fraudulent (blue circles) and fraudulent
(red circles) records in the northeast USA were calculated using the insurance dataset from Kaggle [9].
The size of each circle plot provides visual insight into the magnitudes of the respective claims.
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Figure 6. Average property insurance claim amounts of non-fraudulent (blue circles) and fraudulent
(red circles) records in the northeast USA were calculated using the insurance dataset from Kaggle [9].
The size of each circle plot provides visual insight into the magnitudes of the respective claims.
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Figure 7. Cont.
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(b) Relief Method

Figure 7. Feature rankings of the Vehicle Fraud Insurance dataset (Kaggle [9]) obtained using random
forest (a) and Relief (b) feature selection methods. The height of each bar represents the relative
importance and contribution strength of each feature.

5. Clustering Performance of BPW K-Means vs. Classical K-Means on the
Insurance Fraud Claims Dataset: Ranked vs. Unranked Features

In this section, we evaluate the performance of the proposed BPW K-means method
by applying it to the Insurance Claims dataset from the northeastern United States [9].
We begin with an empirical search for the optimal β and bi-partition pair, introducing the
principle for empirically selecting the best β value used in this study. Next, we perform
clustering on the Insurance Claims dataset using the classical K-means and BPW K-means
methods and compare their clustering performance. The section concludes with two
specific analyses: (1) clustering performance with the bi-partition number fixed at 1, and (2)
clustering performance with the β value fixed at 0.9.

5.1. Empirical Analysis of Optimal β and Bi-Partition Number Pairing

In this section, we empirically search for the optimal β and bi-partition pair and
introduce the principle for empirically selecting the best β value used in this study. We will
apply this principle in other examples considered in this paper.

Starting with the ranked Insurance Fraud Claims dataset, we evaluate the performance
of the BPW K-means using various pairs of β values and bi-partition numbers. As shown
in Figure 8, the two perpendicular red line segments in the plots intersect to highlight
the optimal pairs of β values and bi-partition numbers, along with their corresponding
potential accuracies. In this study, we selected the β value and bi-partition number based
on the following empirical principle: we began with the minimum pair values (e.g., β = 0.1
and bi-partition number = 1) and incrementally increased one parameter while holding the
other constant. This systematic approach yielded effective results and serves as a practical
guideline for selecting β values when analyzing other datasets.
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From Figure 8g–l, it is evident that Figure 8g presents the optimal β = 0.1 and bi-
partition number 1 pair, where the proposed algorithm achieved an accuracy of 91%. As
such, we identified β of 0.8 or 0.9 paired with bi-partition number 1 as the overall optimal
parameter choices under the ranked dataset type. For the unranked Insurance Fraud Claims
dataset, as shown in Figure 8a–c, the BPW K-means algorithm achieved higher accuracies
of 91%, 93%, and 93%, respectively. These results were obtained with the following optimal
parameter pairs: β = 0.8 or 0.9 with bi-partition number 1, β = 0.9 with bi-partition number
2, and β = 0.9 with bi-partition number 3. In contrast, Figure 8d–f recorded lower accuracies
of 85%, 78%, and 62%, respectively. Based on these observations, we selected a β value of
0.9 paired with either bi-partition number 2 or 3 as the overall optimal parameter choices for
the unranked dataset type. In the next step, we conducted further analysis using additional
statistical metrics to gain deeper insights into the algorithm’s performance based on these
parameter settings.

In Output 1 (in the main body) and Output A1 (in Appendix A), the BPW K-means
algorithm achieved an F1 score—a metric ranging from 0 to 1, with 1 representing the
best possible score—of 91.67% on the Insurance Fraud Claims dataset. The corresponding
accuracy of 91.49% further validates the results shown in Figure 8a,g. Additionally, Outputs
A2 and A3 in Appendix A recorded F1 scores of 92.63% and 92.78%, respectively, while
achieving the same approximate accuracy of 93%.

In contrast, Output A4 in Appendix A presents the statistical performance metrics of
the classical K-means algorithm, which recorded consistently lower F1 scores and accuracies
for both ranked and unranked Insurance Fraud Claims datasets. Specifically, it achieved an
F1 score of 17.54% and an accuracy of 50%, demonstrating a significant underperformance
when compared to the BPW K-means algorithm.
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Figure 8. Plots of accuracies for the optimal β and bi-partition pair search under the BPW K-means
algorithm. Six bi-partition numbers are plotted against β values in the range (0, 1). The left column
represents Unranked features, and the right column represents Ranked features, using the Insurance
Fraud Claims dataset from Kaggle [9].

Output 1 :
Clus ter ing Performance of the BPW K−Means Algorithm on

the Insurance Fraud Claims Dataset −−−Ranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 9 , Bi − P a r t i t i o n Number = 1

Fraudulent Non−Fraudulent
1 44 3
2 5 42

Overal l S t a t i s t i c s

Accuracy : 0 .9149
95% CI : ( 0 . 8 3 9 2 , 0 . 9 6 2 5 )

No Information Rate : 0 .5213
P−Value [ Acc > NIR ] : <2e −16
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Kappa : 0 .8298

McNemar ’ s Test P−Value : 0 .7237

S e n s i t i v i t y : 0 .8980
S p e c i f i c i t y : 0 .9333

Pos Pred Value : 0 .9362
Neg Pred Value : 0 .8936

P r e c i s i o n : 0 .9362
R e c a l l : 0 .8980

F1 : 0 .9167
Prevalence : 0 .5213

Detect ion Rate : 0 .4681
Detect ion Prevalence : 0 .5000

Balanced Accuracy : 0 .9156

Notice that, in what follows, we will use the following numbering convention for
outputs: numbers with the capital letter “A” refer to outputs in Appendix A, while numbers
without it refer to outputs in the main body of the paper.

5.2. Classical K-Means and BPW K-Means Clustering of Insurance Claims

We compare different groups of clusters in the Insurance Fraud dataset using three key
features: average total claim amount, average property claim, and average vehicle claim.
These features are illustrated in Figure 9. These three features were specifically chosen to
ensure visualization clarity and readability. The objective of the analysis was to maximize
the correct clustering of members within each cluster group. Figure 9 demonstrates that
the BPW K-means algorithm consistently excelled at achieving this goal compared to
the classical K-means model. This trend is evident in Figure 9b,d,f, showing how the
clustering performance of each model evolves as the number of clusters increases. The
visual comparisons of different cluster groupings in the Insurance Fraud dataset confirm
that the BPW K-means model outperforms the classical K-means model.
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Figure 9. Classical K-means (left column) and BPW K-means (right column) cluster plots of two
features (first row), three features (second row), four features (third row) of fraudulent (red dots),
non-fraudulent (blue dots) cases in the northeast United States calculated from the Vehicle Fraud
Insurance dataset obtained from Kaggle [9].

The performance of the BPW K-means algorithm with respect to different β values
(i.e., values between 0 and 1) and different bi-partition numbers (i.e., numbers from 1
to 6) is presented in Tables 1–4. The average accuracy (µ) (which is the mean of the
accuracies achieved by the algorithm in multiple iterations) and standard deviation (σ)
(being the square root of the sum of the squared deviations from the mean accuracies,
divided by the total number of observed accuracies in iterations minus one) of the BPW
K-means algorithm illustrate variations of clustering performance with different β values
and bi-partition numbers.

We compared the BPW K-means clustering performance against the classical K-means
algorithm. Notably, some experiments were conducted using a variant of K-means known
as K-means++. However, the clustering results of K-means++ were not significantly dif-
ferent from those of the classical K-means when applied to the Insurance Claims and the
Iris (to be discussed later) datasets. Consequently, we chose not to repeat the tables and
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results for K-means++ and instead focused on the classical K-means algorithm in all the
considered cases in this study.

Table 1 provides a summary of the mean (µ) and standard deviation (σ) of accuracies
computed by the BPW K-means algorithm for the unranked feature bi-partition type. We
observed that when β is between 0 and 0.5, the mean and standard deviation remain
relatively consistent across bi-partitions 1 through 6. However, when β is between 0.5
and 1, a significant increase in accuracies and their corresponding standard deviations
was observed. Specifically, β = 0.9 with a bi-partition number of 1 recorded the highest
average accuracy of 89%, followed by β = 0.8 with an average accuracy of 83%. This
trend continued to decline as β decreased further toward 0. Additionally, it was noted
that average accuracies decreased as the bi-partition number increased to 6. Based on
these findings, the optimal parameter choice for unranked feature types is β = 0.9 and a
bi-partition number of 1. In contrast, the classical K-means algorithm underperformed,
achieving an average accuracy of only 50%.

Table 1. Average clustering accuracy for insurance claim data under bi-partition of unranked features.

Data Column Bi-Partition Number: BPW K-Means
Feature Bi-Partition Unranked

Average Accuracy

1 2 3 4 5 6

β µ σ µ σ µ σ µ σ µ σ µ σ

0.1 0.50 0.00 0.50 0.00 0.50 0.00 0.53 0.01 0.52 0.01 0.54 0.02
0.2 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00 0.52 0.01 0.51 0.00
0.3 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00 0.52 0.01 0.50 0.00
0.4 0.50 0.00 0.50 0.00 0.50 0.00 0.58 0.05 0.58 0.05 0.58 0.05
0.5 0.58 0.05 0.58 0.05 0.57 0.05 0.58 0.05 0.58 0.05 0.58 0.05
0.6 0.63 0.12 0.62 0.10 0.61 0.09 0.60 0.08 0.57 0.05 0.57 0.05
0.7 0.77 0.17 0.68 0.16 0.60 0.14 0.63 0.09 0.58 0.05 0.58 0.05
0.8 0.83 0.17 0.63 0.28 0.59 0.16 0.64 0.13 0.62 0.09 0.57 0.06
0.9 0.89 0.05 0.70 0.29 0.60 0.19 0.63 0.14 0.64 0.09 0.56 0.06

Classical K-Mean Result

Mean µ = 0.50, Standard Deviation σ = 0.00

Table 2 summarizes the mean (µ) and standard deviation (σ) of accuracies calculated
by the BPW K-means algorithm for ranked feature types. Notably, the optimal average
accuracy occurred at β = 0.8 and β = 0.9 with bi-partition numbers 1 and 2, achieving an
average accuracy of 91%. This represents a significant improvement compared to the classi-
cal K-means algorithm, which recorded an average accuracy of 50%. This improvement
is attributed to the dimensionality reduction techniques employed and the application of
weights to distances associated with the dataset’s features.

We also observed that the accuracy remains consistently high for β ≥ 0.5. Addition-
ally, the algorithm demonstrates a low and stable standard deviation across different β

values, indicating reliable performance. Feature bi-partition (as shown in columns 1 to 6 of
Tables 1–4), whether applied to ranked or unranked data features, does not significantly
affect the average accuracies and standard deviations. These findings highlight that the
BPW K-means performs consistently and robustly across variations in feature bi-partitions
compared to the classical K-means algorithm.
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Table 2. Average clustering accuracy for insurance claim data under bi-partition of ranked features.

Data Column Bi-Partition Number: BPW K-Means
Feature Bi-Partition Unranked

Average Accuracy

1 2 3 4 5 6

β µ σ µ σ µ σ µ σ µ σ µ σ

0.1 0.50 0.00 0.50 0.00 0.60 0.00 0.50 0.00 0.50 0.00 0.51 0.00
0.2 0.50 0.00 0.50 0.00 0.61 0.00 0.62 0.00 0.50 0.00 0.54 0.00
0.3 0.50 0.00 0.50 0.00 0.59 0.00 0.62 0.00 0.62 0.00 0.61 0.00
0.4 0.50 0.00 0.50 0.00 0.61 0.00 0.62 0.00 0.62 0.00 0.61 0.00
0.5 0.61 0.00 0.61 0.00 0.61 0.00 0.61 0.00 0.61 0.00 0.61 0.00
0.6 0.78 0.00 0.23 0.00 0.61 0.00 0.61 0.00 0.61 0.00 0.61 0.00
0.7 0.85 0.00 0.80 0.00 0.77 0.00 0.60 0.00 0.50 0.00 0.61 0.00
0.8 0.91 0.00 0.85 0.00 0.78 0.00 0.76 0.00 0.50 0.00 0.61 0.00
0.9 0.91 0.00 0.87 0.00 0.78 0.00 0.73 0.00 0.50 0.00 0.61 0.00

Classical K-Mean Result

Mean µ = 0.50, Standard Deviation σ = 0.00

Table 3 summarizes the average Rand index and average adjusted Rand index obtained
by both the BPW K-means and K-means algorithms for unranked feature types. The results
indicate that, for β values between 0 and 0.5, both the average Rand index and average
adjusted Rand index remain consistent across bi-partitions 1 through 6. However, when β

values range between 0.5 and 1, there is a notable performance improvement. Specifically,
the highest average Rand index, 86%, was achieved at β = 0.9 and bi-partition numbers of 2
and 3, followed by an average Rand index of 84% at β = 0.8. Similarly, the average adjusted
Rand index recorded 72%, which also occurred at β = 0.9 and the bi-partition numbers
of 2 and 3. In comparison, the classical K-means algorithm demonstrated significantly
poorer performance, achieving an average Rand index of 52% and an average adjusted
Rand index of 5%. These results validate the improved clustering quality of the BPW
K-means, particularly because the adjusted Rand index accounts for chance agreement
when measuring clustering accuracy.

Table 3. Average Rand and adjusted Rand index for unranked features.

Data Column Bi-Partition Number: BPW K-Means
Feature Bi-Partition Unranked

Average Rand Index Average Adjusted Rand Index

β 1 2 3 4 5 6 1 2 3 4 5 6

0.1 0.49 0.49 0.49 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.49 0.49 0.49 0.49 0.50 0.49 0.00 0.00 0.00 0.00 0.00 0.00
0.3 0.49 0.49 0.49 0.49 0.50 0.49 0.00 0.00 0.00 0.00 0.00 0.00
0.4 0.49 0.49 0.49 0.52 0.52 0.52 0.00 0.00 0.00 0.04 0.04 0.04
0.5 0.52 0.52 0.52 0.52 0.52 0.52 0.04 0.04 0.04 0.04 0.04 0.04
0.6 0.65 0.65 0.64 0.64 0.52 0.52 0.30 0.30 0.28 0.28 0.04 0.04
0.7 0.74 0.76 0.73 0.65 0.52 0.52 0.49 0.52 0.46 0.30 0.05 0.05
0.8 0.84 0.84 0.84 0.73 0.60 0.52 0.69 0.69 0.69 0.46 0.19 0.05
0.9 0.84 0.86 0.86 0.74 0.65 0.52 0.69 0.72 0.72 0.49 0.30 0.05

Classical K-Mean Result

RI = 0.52 ARI = 0.05
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Table 4 presents the output of the average Rand index and average adjusted Rand
index achieved by the BPW K-means and classical K-means algorithms for ranked feature
bi-partition types. As with previous results, the findings show that for β values between
0 and 0.6, both the average Rand index and the average adjusted Rand index remain
relatively constant across bi-partitions 1 through 6. In contrast, a significant performance
improvement is observed when β values range from 0.6 to 1. Specifically, the highest
average Rand index, 85%, was achieved at β = 0.9 with bi-partition number = 1, followed
by 79% at β = 0.8. Similarly, the highest average adjusted Rand index, 69%, was achieved
at β = 0.9 with bi-partition number = 1. In comparison, the classical K-means algorithm
showed a less significant performance, with an average Rand index of 49% and an aver-
age adjusted Rand index of only 0.4%, highlighting the superiority of the proposed BPW
K-mean algorithm. Collectively, these findings from Table 1 through Table 4 confirm that
the BPW K-means algorithm significantly outperforms the traditional K-means algorithm
in terms of clustering performance.

Table 4. Rand and adjusted Rand index for the ranked features.

Data Column Bi-Partition Number: BPW K-Means
Feature Bi-Partition Unranked

Average Rand Index Average Adjusted Rand Index

β 1 2 3 4 5 6 1 2 3 4 5 6

0.1 0.49 0.49 0.50 0.50 0.49 0.49 0.00 0.00 0.01 0.01 0.01 0.01
0.2 0.49 0.49 0.50 0.50 0.50 0.50 0.00 0.00 0.01 0.01 0.01 0.00
0.3 0.49 0.49 0.50 0.50 0.50 0.51 0.00 0.00 0.01 0.01 0.01 0.02
0.4 0.49 0.49 0.51 0.51 0.51 0.51 0.00 0.00 0.02 0.03 0.03 0.02
0.5 0.51 0.51 0.51 0.51 0.51 0.51 0.03 0.03 0.03 0.03 0.03 0.03
0.6 0.56 0.55 0.51 0.51 0.51 0.51 0.12 0.11 0.03 0.03 0.03 0.03
0.7 0.69 0.60 0.58 0.51 0.49 0.51 0.37 0.21 0.17 0.02 0.00 0.03
0.8 0.79 0.70 0.60 0.55 0.50 0.51 0.58 0.40 0.19 0.11 0.01 0.03
0.9 0.85 0.75 0.59 0.56 0.49 0.51 0.69 0.51 0.19 0.12 0.00 0.03

Classical K-Mean Result

RI = 0.49 ARI = 0.004

5.3. Comparative Evaluation of Clustering Performance: BPW K-Means vs. Classical K-Means
Across Different Cluster Groupings

Further analysis of accuracy performance was conducted to investigate and compare
the clustering performance of the proposed algorithm against the classical K-means across
different cluster groupings (set of clusters). We examined groupings ranging from 2 clusters
to 11 clusters. As shown in Figure 10, the BPW K-means algorithm, with β values ranging
from 0.1 to 0.9 and feature bi-partition numbers from 1 to 6, exhibits varying performance
trajectories in terms of average accuracy across different cluster groupings compared to
the classical K-means algorithm. In the following two subsections, we fix our method
parameters to a β = 0.9 and a bi-partition number of 1—one of the optimal pairs identified
in Section 5.1—for the analysis of sub-cluster groupings.
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Figure 10. (a) Plots of average accuracies for the trajectories of BPW K-means for different β values
across various cluster splits, while keeping the bi-partition number equal to 1. (b) Plots of average
accuracies for the trajectories of the BPW K-means for different bi-partition numbers across various
cluster splits, while keeping the β value equal to 0.9.

5.3.1. Analysis of Clustering Performance with Bi-Partition Number Fixed at 1

With the bi-partition number fixed at 1, and starting with two clusters, as shown in
Figure 10a, the BPW K-means algorithm demonstrated superior performance over the
K-means algorithm, achieving average accuracies of 92.25%, 79.9%, 81.35%, 60.9%, and
58.35% corresponding, respectively, to β = 0.9, β = 0.8, β = 0.7, β = 0.6, and β = 0.5, while
the classical K-means and the BPW K-means algorithm with β = 0.1, β = 0.2, β = 0.3 and
β = 0.4 achieved 50%.

Furthermore, in Figure 10a, we can see that by increasing the number of clusters to
three, the BPW K-means algorithm continued to perform better than the classical K-means
with average accuracies of 89.65%, 83%, 79.75%, and 76.45% corresponding, respectively, to
β = 0.9, β = 0.8, β = 0.7, β = 0.6, surpassing the classical K-means of 73%. However, the BPW
K-means algorithm with β = 0.1, β = 0.2, β = 0.3, β = 0.4, and β = 0.5 had average accuracies
ranging from 55.7% to 66.7%, which were below the K-means performance. This trend
continued as the number of clusters increased from four and five up to eleven. We observed
that four weight values of the BPW K-means algorithm, namely β = 0.9, β = 0.8, β = 0.7,
and β = 0.6 consistently outperformed the classical K-means algorithm across all cluster
groupings, ranging from 2 to 11 clusters.

In contrast, the BPW K-means algorithm with β = 0.1 and β = 0.2 never surpassed
the classical K-means performance across all 10 different cluster types. This comparison
provides a deeper understanding of the performance and behavior of the BPW K-means
algorithm in diverse scenarios. It highlights the impact of distinct β values on the Insurance
Claim dataset. For this specific dataset, the BPW K-means algorithm with β = 0.9 emerges
as the optimal weight choice, as it consistently achieved high accuracy and effectively
handled the dataset’s features across all cluster numbers. This demonstrates its robustness
and advantages over other weight settings.

5.3.2. Analysis of Clustering Performance with β Value Fixed at 0.9

Fixing the choice of the β-value at 0.9, we conducted a similar analysis by varying
the feature bi-partitions. The BPW K-means method was applied to the seven features
of the Insurance Fraud Claims dataset previously mentioned. The partitioning of these
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features was determined by the bi-partition number. For example, a bi-partition number of
3 implies that the first three feature columns form one group, while the remaining fourth
to seventh feature columns form another group. Analyzing the clustering performance
of the proposed algorithm with bi-partition numbers ranging from 1 to 6 revealed varied
performance across different cluster groupings.

From Figure 10b, we observed that the clustering performance under the bi-partition
number 1 matched the previously observed blue trajectory in Figure 10a. In the 2 clus-
ter groupings in Figure 10b, the BPW K-means algorithm achieved average accuracy of
92.25%, 82.25%, 60.45%, 68.7%, 68.7%, and 56.4% for bi-partition numbers 1, 2, 3, 4, 5 and
6, respectively. In contrast, the classical K-means method achieved an average accuracy
of 50%, which was lower than all corresponding BPW K-means results. This comparison
reinforces the consistently high accuracy and stability of the BPW K-means across different
bi-partition numbers.

Analyzing the performance of the BPW K-means algorithm for 3-cluster groupings
in Figure 10b, we observed that bi-partition numbers 1 and 2 outperformed the classical
K-means, with average accuracies of 89.65% and 85.8%, respectively. In contrast, the
classical K-means method yielded an average accuracy of 73%. Bi-partition numbers 3 and
4 showed only minimal improvement compared to the classical K-means performance,
while bi-partition numbers 5 and 6 performed below the classical K-means, achieving an
average accuracy of around 63%, which was lower than the classical K-means performance.

From Figure 10b, it is evident that for cluster groupings ranging from 4 to 11 clusters,
the BPW K-means algorithm consistently outperformed the classical K-means across all
bi-partition numbers. These results highlight the reliability, consistency, and superior
clustering capabilities of the BPW K-means algorithm. Additionally, the BPW K-means
demonstrated its ability to effectively adapt to varying cluster groupings and bi-partition
numbers, a capability that the traditional K-means method lacked.

In the next section, we discuss the implications of our findings for BPW K-means,
particularly its potential applications for insurance companies to better understand and
manage claims.

6. Practical Implications and Applications of the BPW K-Means Algorithm
The results of our analysis demonstrate that the BPW K-means algorithm offers signifi-

cant improvements over traditional K-means, particularly when β values of 0.7, 0.8, and 0.9,
and bi-partition numbers 1, 2, and 3, are used. The trajectories of the BPW K-means and
K-means performances are illustrated in Figure 10a, b. These configurations consistently
achieved higher clustering accuracies, highlighting the importance of certain features in
enhancing overall clustering performance. Specifically, claim frequencies, latitude, and lon-
gitude emerged as key features significantly influencing clustering outcomes. In contrast,
features such as average total claim amount, average injury claim amount, average property
claim amount, and average vehicle claim amount contributed marginally less to clustering
performance. This indicates that insurance companies can leverage customer claim frequen-
cies and claim locations as reliable indicators for detecting clusters of fraudulent claims. By
identifying these clusters, insurers can respond more effectively by enhancing monitoring
processes, reducing claim approval rates, and adjusting premiums for customers within
these clusters.

Additionally, insurers can allocate resources more efficiently by focusing on geographi-
cal features (latitude and longitude) to target regions with higher fraud prevalence or fraud
hotspots. This approach can improve overall risk management and ensure fairer premium
structures for customers.
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The flexibility of the BPW K-means method enables insurers to fine-tune its parameters
to prioritize the most relevant features when analyzing complex datasets. Beyond insurance
fraud detections, the BPW K-means algorithm demonstrates applicability in other industries
such as finance and marketing, which also require clustering large datasets. For example,
financial institutions could utilize this method to identify fraudulent transactions more
effectively, while marketers could analyze customer data to identify patterns and tailor
marketing strategies to specific customer segments. Moreover, the enhanced clustering
quality achieved through bi-partitioning establishes the BPW K-means algorithm as a
valuable tool in unsupervised machine learning and data analysis.

7. Application of Clustering Methods to Other Datasets
In this section, we evaluate the performance of the proposed BPW K-means method

using three publicly available datasets from the Machine Learning Repository at the Univer-
sity of California, Irvine (UCI) [10]. The analysis is structured as follows: the performance
of the BPW K-means method is examined on the Iris dataset in Section 7.1, the Sirtuin6
dataset in Section 7.2, and the Wholesale Customers dataset in Section 7.3. The results
demonstrate that the BPW K-means method delivers strong performance across all the
considered datasets. The method’s effectiveness is evaluated using established statistical
benchmarks, and its performance is systematically compared to that of classical K-means.
Furthermore, the findings presented in this section are complemented by additional results
provided in Appendix A.

7.1. Clustering Performance of BPW K-Means vs. Classical K-Means on the Iris Dataset: Ranked
vs. Unranked Features

In this section, we analyze the performance of the BPW K-means method by applying
it to the well−known Iris dataset. The Iris dataset consists of 150 observations with
four features: petal width, petal length, sepal length, and sepal width. These features
belong to three distinct flower species namely: setosa, versicolor, and virginica. Two
experiments were conducted on the Iris dataset: one with rank features and the other with
unranked features.

In Figure 11a, the first row in the left column presents the unranked data type with a
β value of 0.1, and bi-partition number 1, where the BPW K-means achieved a potential
optimal accuracy of 93%. In comparison, the ranked data type in Figure 11d achieved an
accuracy of 96%, using the same bi-partition number of 1 but with a β value of 0.9.

In the second row, Figure 11b shows the unranked dataset with a β value of 0.1, while
Figure 11e depicts the ranked data type with a β of 0.9. In both cases, the BPW K-means
achieved a potential accuracy of 95% with the same bi-partition number of 2.

In the last row, Figure 11c illustrates the unranked data type, where the two perpen-
dicular line segments intersect at the pair β = 0.1 and bi-partition number 3, achieving a
potential accuracy of 96%. Similarly, the ranked data type in Figure 11f achieved a potential
optimal accuracy of 89% using the pair β value of 0.5 and bi-partition number 3.

For the ranked data type, we selected the optimal pair β = 0.9 with a bi-partition
number 1, and for the unranked data type, we chose the pair β = 0.1 with a bi-partition
number 1. Next, we performed clustering on the Iris dataset using both BPW K-means and
classical K-means and reported their statistical performance under these parameter settings.

The performance statistics in Output 2 show that the BPW K-means algorithm, with
β = 0.9 and a bi-partition number of 1 achieved an accuracy of 96%, with a 95% confidence
interval ranging from 92% to 98.5%, compared to the classical K-means performance
statistics in Output A7, which recorded an accuracy of 89.33%, with a 95% confidence
interval ranging from 83.26% to 93.8%. Clearly, the BPW K-means algorithm outperforms
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the classical K-means in most statistical measures. The Kappa statistic, which measures
agreement beyond chance, for the proposed method was 94% compared to the classical
K-means of 84%, a difference of 10%, indicating greater performance. Overall, the BPW K-
means algorithm performed exceptionally well, with misclassifications primarily occurring
in Class 2 and Class 3. Specifically, four virginica flowers were incorrectly classified as
versicolor, and two versicolor flowers were misclassified as virginica. In contrast, the
classical K-means misclassified 16 flowers: 14 virginica and 2 versicolor. In Output A5,
when the bi-partition number of the Iris dataset was increased to 2 while keeping β = 0.9,
the BPW K-means algorithm achieved a slightly lower accuracy, than its earlier performance,
with an accuracy of 94.67%. Eight virginica flowers were misclassified, but the BPW K-
means algorithm still outperformed the classical K-means in most statistical measures, as
shown in Output A5. In Output A6, with a bi-partition number of 3 and β = 0.9, both
algorithms achieved equal performance.

The performance statistics using the classical K-means algorithm on the unranked
Iris dataset were consistent with those on the ranked dataset. By setting β = 0.1 and the
bi-partition number to 1, and comparing the results from Output A7 with Output A8,
the BPW K-means algorithm achieved an accuracy of 93.33% and a Kappa value of 90%.
The proposed method misclassified 10 virginica flowers as versicolor. In Output A9, the
performance of the BPW K-means algorithm under unranked settings is similar to the
statistics reported in Output A5 (under the ranked feature settings), where an accuracy of
94.67% was recorded. Similarly, Output A10 shows performance statistics comparable to
the ranked feature setting results displayed in Output 2.

In Outputs 2 and A10, the F1 scores were recorded as 1, 0.94, and 0.94 for the three
classes (setosa, versicolor, and virginica) in the Iris dataset. These results demonstrate that
the BPW K-means achieved an excellent balance between precision and recall. Similar
trends were observed in Outputs A5 and A9, with F1 scores of 1, 0.93, and 0.91. Output
A6 also achieved F1 scores of 1, 0.93, and 0.91, while Output A8 recorded slightly lower F1
scores of 1, 0.91, and 0.89. In comparison, Output A7 showed that the classical K-means
algorithm achieved overall lower F1 scores of 1, 0.86, and 0.82 for the setosa, versicolor, and
virginica classes, respectively.
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Figure 11. Plots of accuracies for optimal β and bi-partition number search under the BPW K-means
algorithm. The first row shows bi-partition number 1 against β ∈ (0, 1), the second row shows
bi-partition number 2 against β ∈ (0, 1), and the third row shows bi-partition number 3 against
β ∈ (0, 1). The left column represents the unranked Iris dataset, while the right column represents
the ranked Iris dataset, both obtained from UCI [43].

Output 2 : Clus ter ing Performance of the BPW K−Means Algorithm on
the I r i s Dataset −−−Ranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 9 , Bi − P a r t i t i o n Number = 1

s e t o s a v e r s i c o l o r v i r g i n i c a
1 50 0 0
2 0 48 2
3 0 4 46
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Overal l S t a t i s t i c s

Accuracy : 0 . 9 6
95% CI : ( 0 . 9 1 5 , 0 . 9 8 5 2 )

No Information Rate : 0 .3467
P−Value [ Acc > NIR ] : < 2 . 2 e −16

Kappa : 0 . 9 4

McNemar ’ s Test P−Value : NA

S t a t i s t i c s by Class :

Class : 1 Class : 2 Class : 3
S e n s i t i v i t y 1 .0000 0 .9231 0 .9583
S p e c i f i c i t y 1 .0000 0 .9796 0 .9608
Pos Pred Value 1 .0000 0 .9600 0 .9200
Neg Pred Value 1 .0000 0 .9600 0 .9800
P r e c i s i o n 1 .0000 0 .9600 0 .9200
R e c a l l 1 .0000 0 .9231 0 .9583
F1 1 .0000 0 .9412 0 .9388
Prevalence 0 .3333 0 .3467 0 .3200
Detect ion Rate 0 .3333 0 .3200 0 .3067
Detect ion Prevalence 0 .3333 0 .3333 0 .3333
Balanced Accuracy 1 .0000 0 .9513 0 .9596

The superior clustering performance demonstrated by the BPW K-means, compared
to the traditional K-means on both ranked and unranked feature types of the Iris dataset,
highlights the proposed algorithm’s versatility and effectiveness. This performance under-
scores the BPW K-means algorithm capability to handle diverse datasets and confirms that
its applicability extends beyond insurance fraud claim datasets.

7.2. Clustering Performance of the BPW K-Means vs. Classical K-Means on the Sirtuin6 Dataset:
Ranked vs. Unranked Features

In this section, we once again demonstrate the capabilities of the BPW K-means algo-
rithm and describe the process of selecting β values and bi-partition numbers. The dataset
used for this analysis is the Sirtuin6 dataset [44], a biological classification dataset contain-
ing 100 observations and 6 features that describe small protein molecules. The dataset was
obtained from the University of California Irvine (UCI) database [10]. The features include
SC-5, SP-6, SHBd, minHaaCH, maxwHBa, and FMF. The dataset is classified into two
classes: low- and high-binding free energies (BFEs), to cluster proteins into these categories.
From Figure 12, the first column group (Figure 12a–e) represents the unranked data type,
while the second column group (Figure 12f–j) corresponds to the ranked data type. The
rows in this figure display the following information:

• First row: In Figure 12a, the BPW K-means achieved an optimal accuracy of 79% with
the pair β = 0.8 and bi-partition number = 1 for the unranked data type (left column).
Similarly, in Figure 12f, the ranked data type (right column) achieved the highest
accuracies with β values of 0.2 and 0.3, paired with the same bi-partition number 1.
These pairs achieved a potential optimal accuracy of 81%.

• Second row: In Figure 12b, the unranked data type achieved an optimal pair with
β = 0.1 and bi-partition number = 2, leading to a potential accuracy of 82%. Likewise,
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in Figure 12g, the ranked data type achieved optimal accuracies of 81% using β values
of 0.2 and 0.3 paired with bi-partition number = 2.

• Third row: In Figure 12c, the unranked data type achieved a potential optimal accuracy
of 82% with the pair β = 0.1 and bi-partition number = 3. Similarly, the ranked data
type in Figure 12h achieved the same potential optimal accuracy of 82% with β = 0.1
and bi-partition number = 3.

• Fourth row: In Figure 12d, the BPW K-means achieved a potential optimal accuracy of
82% for the unranked data type with the pair β = 0.1 and bi-partition number = 4. For
the ranked data type (Figure 12i), β values of 0.2, 0.3, and 0.4 paired with bi-partition
number = 4 achieved a slightly lower accuracy of 81%.

• Fifth row: Figure 12e,j exhibit similar patterns, where the BPW K-means algorithm
achieved potential optimal accuracies of 79% and 78%, respectively, using β = 0.1 and
bi-partition number = 5 for both ranked and unranked data types.

Based on the analysis above, for the ranked Sirtuin6 dataset [44], the optimal pair
is β = 0.1 and bi-partition number = 3, as this pair achieved the best accuracy compared
to others. For the unranked data type, β = 0.1 consistently performed well, achieving
optimal solutions when paired with bi-partition numbers 2, 3, and 4. Using these optimal
parameter choices, we conducted further analysis employing statistical measures for deeper
insights. The results are presented in Outputs 3, A11, and A12. In Outputs 3 and A11,
BPW K-means achieved an F1 score of 0.82 on the Sirtuin6 dataset. In contrast, the classical
K-means algorithm (Output A12) recorded a lower F1 score of 0.79, further highlighting
the superiority of the BPW K-means algorithm.
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Figure 12. Plots of accuracies for optimal β and bi-partition number pair searches under the BPW
K-means algorithm. The first row shows bi-partition number 1 against β ∈ (0, 1), the second row
shows bi-partition number 2 against β ∈ (0, 1), the third row shows bi-partition number 3 against
β ∈ (0, 1), the fourth row shows bi-partition number 4 against β ∈ (0, 1), and the fifth row shows
bi-partition number 5 against β ∈ (0, 1). The left column represents the unranked Sirtuin6 dataset,
while the right column represents the ranked Sirtuin6 dataset, both obtained from UCI [44].

Output 3 : Clus ter ing Performance of the BPW K−Means Algorithm on
the S i r t u i n 6 Dataset −−−Ranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 1 , Bi − P a r t i t i o n Number = 3

Low BFE High BFE
1 41 9
2 9 41

Overal l S t a t i s t i c s

Accuracy : 0 . 8 2
95% CI : ( 0 . 7 3 0 5 , 0 . 8 8 9 7 )

No Information Rate : 0 . 5
P−Value [ Acc > NIR ] : 3 .074 e −11

Kappa : 0 . 6 4

McNemar ’ s Test P−Value : 1

S e n s i t i v i t y : 0 . 8 2
S p e c i f i c i t y : 0 . 8 2

Pos Pred Value : 0 . 8 2
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Neg Pred Value : 0 . 8 2
P r e c i s i o n : 0 . 8 2

R e c a l l : 0 . 8 2
F1 : 0 . 8 2

Prevalence : 0 . 5 0
Detect ion Rate : 0 . 4 1

Detect ion Prevalence : 0 . 5 0
Balanced Accuracy : 0 . 8 2

7.3. Clustering Performance of the BPW K-Means vs. Classical K-Means on the Wholesale
Customers Dataset: Ranked vs. Unranked Features

In this section, we further demonstrate the capabilities of the BPW K-means algorithm
and once again outline the process for selecting β values and bi-partition numbers using the
Wholesale Customers dataset from UCI [10]. This dataset represents clients of a wholesale
distributor, comprising 440 observations and six features: fresh, milk, grocery, frozen, detergent
paper, and delicatessen. The dataset has two categorical target variables: Channel and Region.
The channel variable has two classes—“Horeca” (hotel/restaurant/café) and “Retail”—while
the region variable includes three categories: Lisbon, Oporto, and Other. For this study, we
used ‘Channel’ as the dependent variable and clustered the customers into two groups: Horeca
and Retail. Figure 13 illustrates the results, with the first column (Figure 13a–e) representing
the unranked data type and the second column (Figure 13f–j) representing the ranked data
type. The rows of this figure display the following information.

• First row: From Figure 13a,f, the unranked dataset achieved a potential optimal accuracy
of 85% with the pair (β = 0.6, bi-partition number = 1), while the ranked dataset achieved
a potential accuracy of 82% with the pair (β = 0.9, bi-partition number = 1).

• Second row: In Figure 13b,g, the BPW K-means achieved an accuracy of 83% for both the
unranked and ranked datasets, with the optimal pair (β = 0.7, bi-partition number = 2)
for the unranked dataset and (β = 0.3, bi-partition number = 2) for the ranked dataset.

• Third row: In this row, the BPW K-means achieved a potential accuracy of 82% for the
unranked dataset in Figure 13c with the pair (β = 0.1, bi-partition number = 3). For
the ranked dataset in Figure 13h, the optimal pair (β = 0.4, bi-partition number = 3)
achieved a potential accuracy of 85%.

• Fourth row: Figure 13d shows that the unranked dataset achieved an accuracy of
81% with the pair (β = 0.3, bi-partition number = 4). In Figure 13i, the ranked dataset
achieved a potential accuracy of 85% with the pair (β = 0.4, bi-partition number = 4).

• Fifth row: Figure 13e demonstrates that the unranked Wholesale Customers dataset
achieved a potential accuracy of 80% with the pair (β = 0.4, bi-partition number = 5).
Similarly, Figure 13j shows that the ranked dataset achieved the same accuracy with the
same pair.

Based on the above analysis, for the ranked Wholesale Customers dataset, the overall
optimal pairs were identified as (β = 0.4, bi-partition number = 3) and (β = 0.4, bi-partition
number = 4), as these combinations achieved the highest accuracy of 85% under the
ranked settings. For the unranked dataset, the optimal pair was (β = 0.6, bi-partition
number = 2), which achieved an accuracy of 83%. With these parameter choices, further
statistical analysis was conducted to gain deeper insights. From Output 4, the BPW K-
means algorithm achieved an approximate F1 score of 0.90 on the Wholesale Customers
dataset. Similarly, Output A13 recorded an F1 score of 0.88. In contrast, the classical
K-means algorithm recorded a significantly lower F1 score of 0.73 in Output A14. These
results highlight the reliability and superiority of the BPW K-means algorithm compared to
the classical K-means approach.
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Figure 13. Plots of accuracies for optimal β and bi-partition number pair searches under the BPW
K-means algorithm. The first row shows bi-partition number 1 against β ∈ (0, 1), the second row shows
bi-partition number 2 against β ∈ (0, 1), the third row shows bi-partition number 3 against β ∈ (0, 1), the
fourth row shows bi-partition number 4 against β ∈ (0, 1), and the fifth row shows bi-partition number
5 against β ∈ (0, 1). The left column represents the unranked Wholesale Customers dataset, while the
right column represents the ranked Wholesale Customers dataset, both obtained from UCI [45].
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Output 4 : Clus ter ing Performance of the BPW K−Means Algorithm on
the Wholesale Customers Dataset −−−Ranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 4 , Bi − P a r t i t i o n Number = 3

Horeca R e t a i l
1 288 10
2 56 86

Overal l S t a t i s t i c s

Accuracy : 0 . 8 5
95% CI : ( 0 . 8 1 3 2 , 0 . 8 8 2 1 )

No Information Rate : 0 .7818
P−Value [ Acc > NIR ] : 0 .0001987

Kappa : 0 .6251

McNemar ’ s Test P−Value : 3 . 0 4 e −08

S e n s i t i v i t y : 0 .8372
S p e c i f i c i t y : 0 .8958

Pos Pred Value : 0 .9664
Neg Pred Value : 0 .6056

P r e c i s i o n : 0 .9664
R e c a l l : 0 .8372

F1 : 0 .8972
Prevalence : 0 .7818

Detect ion Rate : 0 .6545
Detect ion Prevalence : 0 .6773

Balanced Accuracy : 0 .8665

Note: The clustering performance of bi-partition numbers 3 and 4 was identical for
the ranked features on the Wholesale Customers dataset. Therefore, we provide only one
output of the optimal pair solutions.

8. Conclusions and Future Work
In this study, we introduced a novel clustering algorithm called BPW K-means, which

enhances the classical K-means method. We derived and presented the mathematical
objective function for the BPW K-means algorithm and evaluated its performance on a
vehicle Insurance Fraud Claims dataset using various metrics and visualizations. The
proposed method demonstrated superior clustering performance compared to the classical
K-means, particularly in terms of average accuracy. Furthermore, we found that the
selection of appropriate weight values (β values) and feature bi-partitioning are crucial
parameters for achieving optimal performance with the BPW K-means algorithm. Moreover,
we applied and evaluated the clustering performance of the BPW K-means algorithm on
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three additional datasets obtained from the Machine Learning Repository at the University
of California, Irvine (UCI) [10]. The proposed algorithm consistently demonstrated superior
clustering performance compared to the classical K-means algorithm, delivering promising
results across these datasets.

The success of the BPW K-means algorithm has potentially transformative implications
across multiple domains. By effectively addressing the challenge of fraudulent activities
using this advanced clustering approach, the method can substantially mitigate financial
losses and save considerable resources for both insurance companies and policyholders.

Future research could explore the applicability of the bi-partition weighted K-means
(BPW K-means) method to other clustering algorithms, such as hierarchical clustering.
Additionally, given the improved clustering quality achieved with bi-partitioning, the
method could be extended to support multi-feature partitioning, broadening its usability
for more complex datasets.
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Appendix A

Output A1 : Clus ter ing Performance of the BPW K−Means Algorithm on
the Insurance Fraud Claims Dataset −−−Unranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 9 , Bi − P a r t i t i o n Number = 1

Fraudulent Non−Fraudulent
1 44 3
2 5 42

Overal l S t a t i s t i c s

Accuracy : 0 .9149
95% CI : ( 0 . 8 3 9 2 , 0 . 9 6 2 5 )

No Information Rate : 0 .5213

https://archive.ics.uci.edu/datasets
https://www.kaggle.com/code/arpan129/eda-on-insurance-claim-fraud-detection/input
https://www.kaggle.com/code/arpan129/eda-on-insurance-claim-fraud-detection/input
https://www.kaggle.com/datasets/aashishjhamtani/automobile-insurance/data
https://www.kaggle.com/datasets/aashishjhamtani/automobile-insurance/data
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P−Value [ Acc > NIR ] : <2e −16

Kappa : 0 .8298

McNemar ’ s Test P−Value : 0 .7237

S e n s i t i v i t y : 0 .8980
S p e c i f i c i t y : 0 .9333

Pos Pred Value : 0 .9362
Neg Pred Value : 0 .8936

P r e c i s i o n : 0 .9362
R e c a l l : 0 .8980

F1 : 0 .9167
Prevalence : 0 .5213

Detect ion Rate : 0 .4681
Detect ion Prevalence : 0 .5000

Balanced Accuracy : 0 .9156

Output A2 : Clus ter ing Performance of the BPW K−Means Algorithm on
the Insurance Fraud Claims Dataset −−−Unranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 9 , Bi − P a r t i t i o n Number = 2

Fraudulent Non−Fraudulent
1 44 3
2 4 43

Overal l S t a t i s t i c s

Accuracy : 0 .9255
95% CI : ( 0 . 8 5 2 6 , 0 . 9 6 9 5 )

No Information Rate : 0 .5106
P−Value [ Acc > NIR ] : <2e −16

Kappa : 0 .8511

McNemar ’ s Test P−Value : 1

S e n s i t i v i t y : 0 .9167
S p e c i f i c i t y : 0 .9348

Pos Pred Value : 0 .9362
Neg Pred Value : 0 .9149

P r e c i s i o n : 0 .9362
R e c a l l : 0 .9167

F1 : 0 .9263
Prevalence : 0 .5106

Detect ion Rate : 0 .4681
Detect ion Prevalence : 0 .5000
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Balanced Accuracy : 0 .9257

Output A3 : Clus ter ing Performance of the BPW K−Means Algorithm on
the Insurance Fraud Claims Dataset −−−Unranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 9 , Bi − P a r t i t i o n Number = 3

Fraudulent Non−Fraudulent
1 45 2
2 5 42

Overal l S t a t i s t i c s

Accuracy : 0 .9255
95% CI : ( 0 . 8 5 2 6 , 0 . 9 6 9 5 )

No Information Rate : 0 .5319
P−Value [ Acc > NIR ] : <2e −16

Kappa : 0 .8511

McNemar ’ s Test P−Value : 0 .4497

S e n s i t i v i t y : 0 .9000
S p e c i f i c i t y : 0 .9545

Pos Pred Value : 0 .9574
Neg Pred Value : 0 .8936

P r e c i s i o n : 0 .9574
R e c a l l : 0 .9000

F1 : 0 .9278
Prevalence : 0 .5319

Detect ion Rate : 0 .4787
Detect ion Prevalence : 0 .5000

Balanced Accuracy : 0 .9273

Output A4 : Clus ter ing Performance of the C l a s s i c a l K−Means
Algorithm on the Insurance Fraud Claims Dataset −−−Ranked
Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = NA, Bi − P a r t i t i o n Number = NA

Fraudulent Non−Fraudulent
1 5 42
2 5 42
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Overal l S t a t i s t i c s

Accuracy : 0 . 5
95% CI : ( 0 . 3 9 5 1 , 0 . 6 0 4 9 )

No Information Rate : 0 .8936
P−Value [ Acc > NIR ] : 1

Kappa : 0

McNemar ’ s Test P−Value : 1 .512 e −07

S e n s i t i v i t y : 0 .50000
S p e c i f i c i t y : 0 .50000

Pos Pred Value : 0 .10638
Neg Pred Value : 0 .89362

P r e c i s i o n : 0 .10638
R e c a l l : 0 .50000

F1 : 0 .17544
Prevalence : 0 .10638

Detect ion Rate : 0 .05319
Detect ion Prevalence : 0 .50000

Balanced Accuracy : 0 .50000

Note: The clustering performance of the classical K-means algorithm was identical for
both ranked and unranked features on the Insurance Fraud Claims dataset. Therefore, we
provide the output solely for the ranked features.

Output A5 : Clus ter ing Performance of the BPW K−Means Algorithm
on the I r i s Dataset −−−Ranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 9 , Bi − P a r t i t i o n Number = 2

s e t o s a v e r s i c o l o r v i r g i n i c a
1 50 0 0
2 0 50 0
3 0 8 42

Overal l S t a t i s t i c s

Accuracy : 0 .9467
95% CI : ( 0 . 8 9 7 6 , 0 . 9 7 6 7 )

No Information Rate : 0 .3867
P−Value [ Acc > NIR ] : < 2 . 2 e −16

Kappa : 0 . 9 2

McNemar ’ s Test P−Value : NA



Mathematics 2025, 13, 434 39 of 47

S t a t i s t i c s by Class :

Class : 1 Class : 2 Class : 3
S e n s i t i v i t y 1 .0000 0 .8621 1 .0000
S p e c i f i c i t y 1 .0000 1 .0000 0 .9259
Pos Pred Value 1 .0000 1 .0000 0 .8400
Neg Pred Value 1 .0000 0 .9200 1 .0000
P r e c i s i o n 1 .0000 1 .0000 0 .8400
R e c a l l 1 .0000 0 .8621 1 .0000
F1 1 .0000 0 .9259 0 .9130
Prevalence 0 .3333 0 .3867 0 .2800
Detect ion Rate 0 .3333 0 .3333 0 .2800
Detect ion Prevalence 0 .3333 0 .3333 0 .3333
Balanced Accuracy 1 .0000 0 .9310 0 .9630

Output A6 : Clus ter ing Performance of the BPW K−Means Algorithm
on the I r i s Dataset −−−Ranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 9 , Bi − P a r t i t i o n Number = 3

s e t o s a v e r s i c o l o r v i r g i n i c a
1 50 0 0
2 0 48 2
3 0 14 36

Overal l S t a t i s t i c s

Accuracy : 0 .8933
95% CI : ( 0 . 8 3 2 6 , 0 . 9 3 7 8 )

No Information Rate : 0 .4133
P−Value [ Acc > NIR ] : < 2 . 2 e −16

Kappa : 0 . 8 4

McNemar ’ s Test P−Value : NA

S t a t i s t i c s by Class :

Class : 1 Class : 2 Class : 3
S e n s i t i v i t y 1 .0000 0 .7742 0 .9474
S p e c i f i c i t y 1 .0000 0 .9773 0 .8750
Pos Pred Value 1 .0000 0 .9600 0 .7200
Neg Pred Value 1 .0000 0 .8600 0 .9800
P r e c i s i o n 1 .0000 0 .9600 0 .7200
R e c a l l 1 .0000 0 .7742 0 .9474
F1 1 .0000 0 .8571 0 .8182
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Prevalence 0 .3333 0 .4133 0 .2533
Detect ion Rate 0 .3333 0 .3200 0 .2400
Detect ion Prevalence 0 .3333 0 .3333 0 .3333
Balanced Accuracy 1 .0000 0 .8757 0 .9112

Output A7 : Clus ter ing Performance of the C l a s s i c a l K−Means
Algorithm on the I r i s Dataset −−−Ranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = NA, Bi − P a r t i t i o n Number = NA

s e t o s a v e r s i c o l o r v i r g i n i c a
1 50 0 0
2 0 48 2
3 0 14 36

Overal l S t a t i s t i c s

Accuracy : 0 .8933
95% CI : ( 0 . 8 3 2 6 , 0 . 9 3 7 8 )

No Information Rate : 0 .4133
P−Value [ Acc > NIR ] : < 2 . 2 e −16

Kappa : 0 . 8 4

McNemar ’ s Test P−Value : NA

S t a t i s t i c s by Class :

Class : 1 Class : 2 Class : 3
S e n s i t i v i t y 1 .0000 0 .7742 0 .9474
S p e c i f i c i t y 1 .0000 0 .9773 0 .8750
Pos Pred Value 1 .0000 0 .9600 0 .7200
Neg Pred Value 1 .0000 0 .8600 0 .9800
P r e c i s i o n 1 .0000 0 .9600 0 .7200
R e c a l l 1 .0000 0 .7742 0 .9474
F1 1 .0000 0 .8571 0 .8182
Prevalence 0 .3333 0 .4133 0 .2533
Detect ion Rate 0 .3333 0 .3200 0 .2400
Detect ion Prevalence 0 .3333 0 .3333 0 .3333
Balanced Accuracy 1 .0000 0 .8757 0 .9112

Note: The clustering performance of the classical K-means algorithm was identical for
both ranked and unranked features on the Iris dataset. Therefore, we provide the output
solely for the ranked features.

Output A8 : Clus ter ing Performance of the BPW K−Means Algorithm
on the I r i s Dataset −−−Unranked Features
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Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 1 , Bi − P a r t i t i o n Number = 1

s e t o s a v e r s i c o l o r v i r g i n i c a
1 50 0 0
2 0 50 0
3 0 10 40

Overal l S t a t i s t i c s

Accuracy : 0 .9333
95% CI : ( 0 . 8 8 0 8 , 0 . 9 6 7 6 )

No Information Rate : 0 . 4
P−Value [ Acc > NIR ] : < 2 . 2 e −16

Kappa : 0 . 9

McNemar ’ s Test P−Value : NA

S t a t i s t i c s by Class :

Class : 1 Class : 2 Class : 3
S e n s i t i v i t y 1 .0000 0 .8333 1 .0000
S p e c i f i c i t y 1 .0000 1 .0000 0 .9091
Pos Pred Value 1 .0000 1 .0000 0 .8000
Neg Pred Value 1 .0000 0 .9000 1 .0000
P r e c i s i o n 1 .0000 1 .0000 0 .8000
R e c a l l 1 .0000 0 .8333 1 .0000
F1 1 .0000 0 .9091 0 .8889
Prevalence 0 .3333 0 .4000 0 .2667
Detect ion Rate 0 .3333 0 .3333 0 .2667
Detect ion Prevalence 0 .3333 0 .3333 0 .3333
Balanced Accuracy 1 .0000 0 .9167 0 .9545

Output A9 : Clus ter ing Performance of the BPW K−Means Algorithm
on the I r i s Dataset −−−Unranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 1 , Bi − P a r t i t i o n Number = 2

s e t o s a v e r s i c o l o r v i r g i n i c a
1 50 0 0
2 0 50 0
3 0 8 42
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Overal l S t a t i s t i c s

Accuracy : 0 .9467
95% CI : ( 0 . 8 9 7 6 , 0 . 9 7 6 7 )

No Information Rate : 0 .3867
P−Value [ Acc > NIR ] : < 2 . 2 e −16

Kappa : 0 . 9 2

McNemar ’ s Test P−Value : NA

S t a t i s t i c s by Class :

Class : 1 Class : 2 Class : 3
S e n s i t i v i t y 1 .0000 0 .8621 1 .0000
S p e c i f i c i t y 1 .0000 1 .0000 0 .9259
Pos Pred Value 1 .0000 1 .0000 0 .8400
Neg Pred Value 1 .0000 0 .9200 1 .0000
P r e c i s i o n 1 .0000 1 .0000 0 .8400
R e c a l l 1 .0000 0 .8621 1 .0000
F1 1 .0000 0 .9259 0 .9130
Prevalence 0 .3333 0 .3867 0 .2800
Detect ion Rate 0 .3333 0 .3333 0 .2800
Detect ion Prevalence 0 .3333 0 .3333 0 .3333
Balanced Accuracy 1 .0000 0 .9310 0 .9630

Output A10 : Clus ter ing Performance of the BPW K−Means Algorithm
on the I r i s Dataset −−−Unranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 1 , Bi − P a r t i t i o n Number = 3

s e t o s a v e r s i c o l o r v i r g i n i c a
1 50 0 0
2 0 48 2
3 0 4 46

Overal l S t a t i s t i c s

Accuracy : 0 . 9 6
95% CI : ( 0 . 9 1 5 , 0 . 9 8 5 2 )

No Information Rate : 0 .3467
P−Value [ Acc > NIR ] : < 2 . 2 e −16

Kappa : 0 . 9 4

McNemar ’ s Test P−Value : NA
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S t a t i s t i c s by Class :

Class : 1 Class : 2 Class : 3
S e n s i t i v i t y 1 .0000 0 .9231 0 .9583
S p e c i f i c i t y 1 .0000 0 .9796 0 .9608
Pos Pred Value 1 .0000 0 .9600 0 .9200
Neg Pred Value 1 .0000 0 .9600 0 .9800
P r e c i s i o n 1 .0000 0 .9600 0 .9200
R e c a l l 1 .0000 0 .9231 0 .9583
F1 1 .0000 0 .9412 0 .9388
Prevalence 0 .3333 0 .3467 0 .3200
Detect ion Rate 0 .3333 0 .3200 0 .3067
Detect ion Prevalence 0 .3333 0 .3333 0 .3333
Balanced Accuracy 1 .0000 0 .9513 0 .9596

Output A11 : Clus ter ing Performance of the BPW K−Means Algorithm
on the S i r t u i n 6 Dataset −−−Unranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 1 , Bi − P a r t i t i o n Number = 2

Low BFE High BFE
1 41 9
2 9 41

Overal l S t a t i s t i c s

Accuracy : 0 . 8 2
95% CI : ( 0 . 7 3 0 5 , 0 . 8 8 9 7 )

No Information Rate : 0 . 5
P−Value [ Acc > NIR ] : 3 .07 4 e −11

Kappa : 0 . 6 4

McNemar ’ s Test P−Value : 1

S e n s i t i v i t y : 0 . 8 2
S p e c i f i c i t y : 0 . 8 2

Pos Pred Value : 0 . 8 2
Neg Pred Value : 0 . 8 2

P r e c i s i o n : 0 . 8 2
R e c a l l : 0 . 8 2

F1 : 0 . 8 2
Prevalence : 0 . 5 0

Detect ion Rate : 0 . 4 1
Detect ion Prevalence : 0 . 5 0

Balanced Accuracy : 0 . 8 2
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Note: The clustering performance of bi-partition numbers 2, 3, and 4 was identical for
unranked features on the Sirtuin6 dataset. Therefore, we provide only one output of the
optimal pair of solutions.

Output A12 : Clus ter ing Performance of the C l a s s i c a l K−Means
Algorithm on the S i r t u i n 6 Dataset −−−Ranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = NA, Bi − P a r t i t i o n Number = NA

Low BFE High BFE
1 44 6
2 18 32

Overal l S t a t i s t i c s

Accuracy : 0 . 7 6
95% CI : ( 0 . 6 6 4 3 , 0 . 8 3 9 8 )

No Information Rate : 0 . 6 2
P−Value [ Acc > NIR ] : 0 .002122

Kappa : 0 . 5 2

McNemar ’ s Test P−Value : 0 .024745

S e n s i t i v i t y : 0 .7097
S p e c i f i c i t y : 0 .8421

Pos Pred Value : 0 .8800
Neg Pred Value : 0 .6400

P r e c i s i o n : 0 .8800
R e c a l l : 0 .7097

F1 : 0 .7857
Prevalence : 0 .6200

Detect ion Rate : 0 .4400
Detect ion Prevalence : 0 .5000

Balanced Accuracy : 0 .7759

Note: The clustering performance of the classical K-means algorithm was identical
for both ranked and unranked features on the Sirtuin6 dataset. Therefore, we provide the
output solely for the ranked features.

Output A13 : Clus ter ing Performance of the BPW K−Means Algorithm on
the Wholesale Customers Dataset −−−Unranked Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = 0 . 6 , Bi − P a r t i t i o n Number = 2
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Horeca R e t a i l
1 293 5
2 72 70

Overal l S t a t i s t i c s

Accuracy : 0 .825
95% CI : ( 0 . 7 8 6 2 , 0 . 8 5 9 4 )

No Information Rate : 0 .8295
P−Value [ Acc > NIR ] : 0 .6291

Kappa : 0 .5433

McNemar ’ s Test P−Value : 5 .419 e −14

S e n s i t i v i t y : 0 .8027
S p e c i f i c i t y : 0 .9333

Pos Pred Value : 0 .9832
Neg Pred Value : 0 .4930

P r e c i s i o n : 0 .9832
R e c a l l : 0 .8027

F1 : 0 .8839
Prevalence : 0 .8295

Detect ion Rate : 0 .6659
Detect ion Prevalence : 0 .6773

Balanced Accuracy : 0 .8680

Output A14 : Clus ter ing Performance of the C l a s s i c a l K−Means
Algorithm on the Wholesale Customers Dataset −−−Ranked
Features

Confusion Matrix and S t a t i s t i c s

Parameter Values Used :
Beta = NA, Bi − P a r t i t i o n Number = NA

Horeca R e t a i l
1 247 51
2 128 14

Overal l S t a t i s t i c s

Accuracy : 0 .5932
95% CI : ( 0 . 5 4 5 6 , 0 . 6 3 9 5 )

No Information Rate : 0 .8523
P−Value [ Acc > NIR ] : 1

Kappa : −0.0845
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McNemar ’ s Test P−Value : 1 .343 e −08

S e n s i t i v i t y : 0 .65867
S p e c i f i c i t y : 0 .21538

Pos Pred Value : 0 .82886
Neg Pred Value : 0 .09859

P r e c i s i o n : 0 .82886
R e c a l l : 0 .65867

F1 : 0 .73403
Prevalence : 0 .85227

Detect ion Rate : 0 .56136
Detect ion Prevalence : 0 .67727

Balanced Accuracy : 0 .43703

Note: The clustering performance of the classical K-means algorithm was identical for
both ranked and unranked features on the Wholesale Customers dataset. Therefore, we
provide the output solely for the ranked features.
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