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Abstract: Corn steep liquor is a waste product from the process of treating corn grain for starch
extraction. It is used as a substrate in anaerobic digestion with simultaneous hydrogen and methane
production in a cascade of two anaerobic bioreactors. For process research and optimisation, adequate
mathematical models are required. So, the authors aim to present a high-quality model of the corn
steep liquor process for the sequential production of H2 and CH4. This paper proposes a technique
for identifying the best mathematical model of the process using the metaheuristics crow search
algorithm (CSA). The CSA was applied for the first time to mathematical modelling of the considered
two-stage anaerobic digestion process, using real experimental data. Based on the analysis of the
numerical data from the model parameter identification procedures, the influence of the main CSA
parameters—the flight length, fl, and the awareness probability, AP—was investigated. Applying
classical statistical tests and an innovative approach, InterCriteria Analysis, recommendations about
the optimal CSA parameter tuning were proposed. The best CSA algorithm performance was
achieved for the AP = 0.05, fl = 3.0, followed by AP = 0.10, fl = 2.5, and AP = 0.15, fl = 3.0. The optimal
tuning of the CSA parameters resulted in a 29% improvement in solution accuracy. As a result, a
mathematical model of the considered two-stage anaerobic digestion process with a high degree of
accuracy was developed.

Keywords: crow search algorithm; modelling; two-stage anaerobic digestion; parameter influence;
ANOVA; InterCriteria Analysis

MSC: 68W01; 78M50; 90C27; 93B30; 93B40

1. Introduction

The use of two-stage anaerobic digestion (TSAD), consisting of a hydrogen process
followed by a methanogenic process, is becoming increasingly important, with the aim of
good absorption of the substrate and increasing the energy obtained from the process [1].
Modelling is an important step in understanding the anaerobic digestion process as models
can be used to optimise and control the process [2,3]. Two-stage models are of particular
interest in the modelling of biotechnological processes because they are sufficiently complex
to capture the dynamics of the process [4]. TSAD is a highly sensitive and substrate-
dependent process whose patterns are highly nonlinear and have multiple parameters that
are difficult to determine.

Over the past four decades, fundamental models of varying complexity describing the
TSAD process have been developed. Many models describe separately the fermentative H2
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and CH4 production [5–7]. Recently, there have also been works involving models of two-
step processes [8,9]. In [10], machine learning models were developed to predict the COD
of wastewater. A modified model was proposed in [11] by incorporating experimentally
realised online parameter identification and feedback control synthesis. An experimental
setup was performed for a two-stage process in an automated bioreactor. Robust feedback
control was implemented for each stage. In [12], machine learning models were constructed
to predict TSAD efficiency.

It has to be concluded that decision-making with the help of machine learning is an
emerging approach. Various machine learning models and algorithms can be applied to
predict and optimise the TSAD [13]. With their help, the instability of the process can be
reduced. Machine learning has some limitations. As far as the concept of machine learning
is concerned with identifying useful data, the result will be incorrect if a reliable large
amount of quality data are not provided. So machine learning greatly depends on the
data and their quality. Machines require large and expensive resources and high-quality
expertise to create the necessary infrastructure. To avoid these drawbacks, structural math-
ematical models can be applied, and further research and application of novel optimisation
algorithms are needed for practical application.

As a scientific endeavour, machine learning grew out of the quest for artificial intelli-
gence (AI). In the field of AI, the concept of metaheuristics plays a key role in process mod-
elling and optimisation. Metaheuristic algorithms have shown a promising performance
on such complicated tasks as highly nonlinear dynamics and multiple parameters [14]. The
challenging identification procedures for such models are usually handled by metaheuristic
techniques as effective alternatives to classical optimisation methods relying on the fact
that they lead to a near-optimal solution for a tolerable amount of time [15–17].

Several metaheuristic algorithms, such as the genetic algorithm (GA) [18], coyote
optimisation algorithm [19], artificial bee colony [20], etc., have been effectively employed
to identify parameters in bioprocess models [21–23]. These algorithms can handle the
considered complex problems. As a result of their application, models with high accuracy
are obtained.

Among the existing metaheuristic algorithms, the crow search algorithm (CSA) [24]
is a promising algorithm widely adopted in various fields because of its simplicity and
ease of use. The CSA is a metaheuristic algorithm based on bird swarm intelligence in
searching for and hiding food. In the review [25], it is noted that although the existing
works proposed a CSA with enhanced performance from various aspects, there is still room
for further improvement. Some of the latest applications of the CSA proposed various
modifications and hybridisations of the algorithm. In [26] a variable step crow search
algorithm is proposed that uses the cosine function. As a result, both the solution quality
of the population and the convergence speed are improved. The searchability of the CSA
is balanced and the accuracy is improved by applying the cross-pollination strategy with
Cauchy mutation from the flower pollination algorithm [27]. In [28] an adaptive hierarchical
learning technique was used in the CSA to improve the diversity of the population. The
multi-strategy search for the CSA has been proposed to enrich the search facilities and
provide algorithm diversity [29]. Promising results are presented in [30], where the CSA
employs a pattern search as a local search algorithm.

The known investigations proposed a modified CSA that led to an overall improve-
ment of the algorithm performance and declared that the algorithms outperformed other
representative algorithms in terms of accuracy but did not discuss the resulting algorithm
complexity. In many cases, a significant increase in the complexity of the modified al-
gorithm was observed. On the other hand, effective parameter tuning can significantly
impact the accuracy, efficiency, and effectiveness of the algorithm. Parameter tuning was
the most crucial factor, which was responsible for the efficiency of any metaheuristic al-
gorithm [31,32]. In an extensive review of the CSA, about 135 papers have been collected
and summarised [33]. The analysis shows that despite the success and popularity of the
CSA, many areas and challenges need to be addressed in the future. One of them is that
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there is no work in the literature that studies the tuning parameters of the CSA. So, in this
paper, proper tuning of CSA parameters is investigated to ensure convergence to the global
position more swiftly, further improvements of the algorithm efficiency, and a successful
application for modelling of a TSAD process.

The CSA has fewer parameters (flight length, fl, and the awareness probability, AP)
that should be empirically determined, which is better since the proper tuning means a
large number of experiments, i.e., a complex and time-consuming task.

Different approaches are utilised for parameter adjustment of metaheuristic algorithms:
control parameters [34], value calibration method [35], regression analysis [36], full factorial
design of experiments [37–39], data envelopment analysis method and response surface
methodology [40], racing and case-based reasoning [41], etc. Various tuning strategies of
metaheuristics are presented in [42], and a comprehensive survey of automatic parameter
tuning methods for metaheuristics is performed in [43].

For large systems with many variables (more than 50) and a few interactions between
variables, random design is usually used. When it is used properly (in a large system),
random design produces an experimental design that is desired. However, random design
works poorly for systems with a small number of variables. Among the methods, the
Taguchi method is best used when there is an intermediate number of variables (from 4 to
50) [44,45]. Also, since orthogonal arrays do not test all variable combinations, which is
essential in this work, the Taguchi method is also inappropriate in the present investigation.
The factorial design becomes increasingly complex with an increase in the number of
variables, but for scenarios with a small number of parameters and levels (one to three), it
can work well [46,47].

The idea in this study was to examine ten levels of factor one (fl) and seven levels of
factor two (AP) since the experimental designs discussed above were unsuitable. Therefore,
a full combination of the two factors with ten and seven levels was elaborated. To investi-
gate the algorithm performance influence of the fl and AP parameters a total number of
70 combinations (differently tuned CSAs) were designed. All CSAs were applied to the
parameter identification of a corn steep liquor TSAD process model.

Corn steep liquor is a waste product from the process of treating corn grain for
starch extraction [48]. It is used as a substrate in the process of anaerobic digestion with
simultaneous hydrogen and methane production. The process is performed in a cascade of
two anaerobic bioreactors, and the process dynamics is represented by a set of five ordinary
differential equations and two algebraic equations with nine unknown model parameters.

The main contributions of this study are as follows:

(1) The CSA was applied for the first time to the mathematical modelling of the TSAD
process, based on real experimental data.

(2) The influence of the main CSA parameters, fl and AP, was investigated based on
the analysis of numerical data from the model parameter identification procedures
with 70 differently tuned CSA. With the optimal tuning of the CSA parameters, a 29%
improvement in solution accuracy was achieved.

(3) Recommendations about the optimal CSA parameter tuning were provided based
on the performed classical statistical tests and an innovative approach, InterCriteria
Analysis. Moreover, it was found that the parameter AP was more sensitive than the
parameter fl and influenced to a greater extent the CSA performance in terms of the
solution accuracy and convergence time.

(4) The mathematical models of the TSAD process with a high degree of accuracy
were developed.

The rest of the paper is organised in the following manner. The mathematical model
of the two-stage anaerobic digestion process is described in Section 2. The CSA, algorithm
tuning procedure, and applied analysis are presented in Section 3. The obtained numerical
results and analysis are presented and discussed in Section 4. A summary of the results
and further work directions are given in Section 5.
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2. Mathematical Model of the Two-Stage Anaerobic Digestion Process

All the experiments were performed at the Stephan Angeloff Institute of Microbiology,
Bulgarian Academy of Sciences, Bulgaria. The TSAD process of corn steep liquor for
sequential production of H2 and CH4 was carried out in two separate bioreactors [48].
During the first stage, relatively fast-growing acidogenic microorganisms engaged in the
production of volatile fatty acids and H2 were cultivated in the hydrogenic bioreactor (BR1).
Slow-growing acetogenic and methanogenic bacteria were developed during the second
stage in the methanogenic bioreactor (BR2). The volatile fatty acids were later transformed
into CH4 and CO2 in BR2. The daily yields of biohydrogen in the first bioreactor of the
cascade were in the range of 0.7 to 1.0 L of biogas from a 1 dm3 working volume of the
bioreactor. The daily yields of biomethane in the second bioreactor of the cascade varied in
the range of 0.4 to 0.85 L of biogas from a 1 dm3 working volume of the bioreactor.

Presented by a set of five ordinary differential equations (ODEs) and two algebraic
equations using mass balance, the process dynamics in the cascade BR1 and BR2 were
as follows:

BR1:
dS1

dt
= −Y1µ1X1 + D1(S1in − S1), (1)

dX1

dt
= µ1X1 − D1X1, (2)

dAc1

dt
= Y2µ1X1 − D1 Ac1, (3)

QH2 = YH2 µ1X1, (4)

µ1 =
µ1maxS1

KS1 + S1
. (5)

BR2:
dX2

dt
= µ2X2 − D2X2, (6)

dAc2

dt
= −Y3µ2X2 + D2(Ac1 − Ac2), (7)

QCH4 = YCH4 µ2X2, (8)

µ2 =
µ2max Ac2

KS2 + Ac2
. (9)

The system (1)–(5) describes the dynamics of the substrate concentration (S1) [g/L], the
microbial biomass concentration (X1) [g/L], and the product (acetate) formation (Ac1) [g/L]
in BR1. The algebraic equation describes the flow rate of the hydrogen (QH2 ) [dm3/L·h] in
the gas phase of BR1. S1in [g/L] is the concentration of the input substrate. Monod-type
kinetics was applied for the specific growth rate µ1 [day−1] of hydrogen-producing mi-
croorganisms. D1 [day−1] is the dilution rate for the first bioreactor BR1; µ1max [day−1] and
KS1 [g/L] are Monod kinetic coefficients; and Y1, Y2, and YH2 are yield coefficients [g/g].

The system (6)–(8) describes a one-step transformation of the inlet acetate Ac1 (coming
from BR1) into methane by methanogenic microorganisms. Monod kinetics was also used
for the specific growth rate of the methanogenic biomass. In the model, X2 is the microbial
biomass concentration in BR2 [g/L], Ac2 is the acetate concentration in BR2 [g/L], QCH4 is
the methane flow rate [dm3/L·day], D2 [day−1] is the dilution rate for the second bioreactor
BR2, µ2 is the specific growth rate (Monod type) of methanogens [day−1], YCH4 and Y3 are
yield coefficients, and µ2max [day−1] and KS2 [g/L] are kinetic coefficients.

The following vector of nine model parameters should be identified: p = [µ1max, µ2max,
KS1 , KS2 , Y1, Y2, Y3, YH2 , YCH4 ], based on experimental data, to predict the real data in the
best possible way.
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The mean square deviation between the modelled and experimental data was used as
an optimisation criterion (cost function):

J = ∥Nmod − Nexp ∥2 → min (10)

where ∥ ∥ is the l2-vector norm; Nmod
de f
=

[
QH2mod QCH4mod

]
are modelled data, and

Nexp
de f
=

[
QH2 exp QCH4 exp

]
are experimental data.

The CSA was applied to identify/estimate the mathematical model parameters µ1max,
µ2max, KS1 , KS2 , Y1, Y2, Y3, YH2 , and YCH4 , the parameters for optimisation.

3. Crow Search Algorithm
3.1. CSA Background

The CSA, introduced by Askarzadeh in 2016 [24], depicts the intelligent behaviour of
the crows. Below, the basics of the CSA are briefly presented.

The CSA employs N crows in the flock. The current position of each crow is presented
as a d-dimensional vector:

crowi =
{

crow1
i , . . . , crowd

i

}
, i ∈ [1; N], (11)

where d is the problem size. In the current research, each crow crowd
i represents one of the

nine model parameters, so the feasible solution of the vector p of the model parameters is
represented by each crow position. Initially, all crows in the flock are positioned randomly.
The best position of the crow yet is stored in its memory, in the hiding place memi.

At a certain point in time, crowi may follow crowj. If crowj is unaware that it is
being followed, it will lead crowi to its hiding place. The current position of crowi is
adjusted accordingly:

crowi = crowi + ri × f light_length ×
(
memj − crowi

)
, (12)

where ri ∈ [0; 1] is a random number with uniform distribution. However, if crowj is
aware of the presence of crowi, to protect its hiding place, it will try to deceive the pursuer
by taking it somewhere random. The position of crowi is then changed to a randomly
generated one. The awareness of a crow is modelled by a random number and compared
with an awareness probability parameter.

Mainly, CSA performance depends on a few parameters: the number of crows in the
flock N, the maximum number of iterations MaxIter, the flight length fl, and the awareness
probability AP. The fl and AP parameters need special attention to evaluate their impacts
on the CSA performance in terms of solution accuracy and total computational time.

3.2. CSA Parameter Influence Investigation Methodology

A population size of 40 crows (N) in each flock was chosen with 60 iterations (MaxIter),
as recommended in [24]. Larger values of N and MaxIter were investigated. Such values led
to an increase in the computational time, and at the same time a significant improvement
in the optimisation criterion value was not observed. A series of numerical experiments
were conducted using different ranges and steps for the values of the main parameters of
the CSA: the flight length fl and the awareness probability AP.

The chosen parameter values that covered the entire space of possible values are
summarised in Table 1.

In the first step the range of parameter fl was from 1 to 5, and for AP it was from 0 to 1.
These results were not sufficient to determine the most appropriate intervals, i.e., where
J values were the lowest. For this, the interval for fl was increased to 0 to 5, and the step
was also decreased from 1 to 0.1, as well as decreasing the AP step from 0.1 to 0.05. These
results are presented as Supplementary Materials (Table S2). A 3D plot of the results is
presented here in Figure 1.



Mathematics 2024, 12, 2317 6 of 20

Table 1. Range and step for the values of the main parameters of the algorithm.

fl Range fl Step AP Range AP Step

1 to 5 1 0 to 1 0.1
0 to 5 0.1 0 to 1 0.05
1 to 4 0.1 0.05 to 0.5 0.05

1.5 to 4 0.1 0.05 to 0.35 0.01
1 to 4 0.5 0.01 to 0.5 0.01
1 to 4 0.5 0.05 to 0.5 0.05
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Based on these results the decision for the following changes in the parameter ranges
and steps were made: fl, from 1 to 4 (step 0.1), and AP, from 0.05 to 0.5 (step 0.05). Next,
following Table 1, the ranges were reduced, looking for the area where the smallest J values
were obtained.

Finally, after analysing the results from all numerical experiments, it was found that
steps 0.5 for fl and 0.05 for AP were more appropriate than 0.1 and 0.01. The algorithm’s
performance with a variation of fl and AP based on the smaller steps was very similar in
the case of neighbouring parameter pairs. For example, for fl = 1.0, 1.1, or 1.2 and AP = 0.05,
0.06, or 0.07 the CSA performance was almost similar. Therefore, steps of 0.5 and 0.05 were
chosen for fl and AP, respectively. Also, applying algorithm parameters in the range of 0 to
1 and 4 to 5 for fl and of 0 to 0.05 and 0.5 to 1 for AP, the CSA performance was not good.
The observed value for optimisation criterion J was larger than the J value obtained based
on CSA parameters values in the ranges 0.05–0.5 and 1–4.

Finally, based on the results of a preliminary set of tests, the following ranges for the
variation of algorithm parameters were chosen:

• fl between 1 and 4 with a step of 0.5;
• AP between 0.05 and 0.5, with a step of 0.05.

Thus, the research surface was formed by seven values for fl, namely 1, 1.5, 2, 2.5, 3,
3.5, and 4, and 10 values for AP, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5. A total
set of 70 combinations of the CSA parameters, presented as ordered pairs (fl; AP), resulting
in 70 differently tuned algorithms were studied further. For each of these CSA algorithms,
30 runs were performed to show the robustness of the proposed CSA.

The notations used for the 70 algorithms are described in Table A1, in the Appendix A.
For example, the CSA with AP = 0.05 and fl = 1.0 was noted as C1, and the CSA with
AP = 0.1 and fl = 2.0 was noted as C10, etc., following Table A1. The selected notations (Ci,
i = 1, 2, . . ., 70) were chosen in a way that helped to present tabular and graphical results
more easily and clearly.
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3.3. Statistical Approaches and InterCrteria Analysis

To measure the similarity between the performances of the differently tuned CSA, two
well-known statistical approaches were performed:

• One-way analysis of variance (ANOVA) [49], a parametric test “analysis of variance”
that compares the means of two or more independent groups to determine whether there
is statistical evidence that the associated population means are significantly different;

• Wilcoxon test [50], a nonparametric equivalent of the paired t-test, but unlike the t-test,
it tests differences in the median rather than the mean.

Further, the InterCriteria Analysis (ICrA) approach [51], based on the apparatus of
the index matrices (IM) [52] and the intuitionistic fuzzy sets (IFS) [53,54], was applied.
A multi-criteria decision-making approach was proposed, evaluating the relationships
in the behaviour of pairs of criteria when evaluating multiple objects. As a result, exist-
ing dependencies or independences between a set of indicators (criteria) were identified.
ICrA is not a widely known approach, but it has some advantages over known statistical
approaches [55–57].

As a result of the ICrA application, an index matrix of intuitionistic fuzzy pairs
(IFP) [54] is obtained. Each IFP is an estimation of the degrees of “agreement” (consonance)
µC,C′ and “disagreement” (dissonance) νC,C′ between each two criteria, in this work be-
tween two considered algorithms. The IFP is an ordered pair of real non-negative numbers〈

µC,C′ , νC,C′
〉

such that µC,C′ + νC,C′ ≤ 1. The difference πC,C′ = 1 − µC,C′ + νC,C′ is con-
sidered as a degree of “uncertainty” [51]. Most simply, the higher value of µC,C′ means a
stronger connection or similarity is observed between two selected criteria (algorithms).

4. Numerical Results and Discussion

The performance of the CSA was investigated by varying the values of the main
algorithm parameters, i.e., the flight length fl and the awareness probability AP. Based on
the methodology presented in Section 3.2 of varying the CSA parameters, a total of 70
differently tuned CSAs (C1–C70) were run.

The simulation tests were performed on a machine with the following parameters:

• Core: Intel® Core™i7-8700 CPU @ 3.20 GHz, 3192 MHz;
• Memory (RAM): 32 GB;
• Operating system: Windows 10 pro (64-bit).

The CSA was implemented in the MATLAB environment (R2019a). Mathematical
models (Equations (1) and (9)) were modelled through Simulink implementation. Solver
options were variable step and ode4 (Runge–Kutta) with TIMESPAN = [0 12].

Each CSA, with a particular combination of fl and AP parameter values, was run
30 times. The stochastic nature of the algorithm required at least 30 runs to have statisti-
cally reliable results. The algorithm searched for the best mathematical model parameters
(µ1max, µ2max, KS1 , KS2 , Y1, Y2, Y3, YH2 , and YCH4 (Equations (1)–(9))) to fit the experimen-
tal data in the best way. The model parameters were coded in a specific range (lower
bound (Lb) ≤ parameter ≤ upper bound (Ub)) as follows:

0.01 ≤ µ1max ≤ 0.8; 0.01 ≤ µ2max ≤ 0.8;
0.001 ≤ KS1 ≤ 1; 0.001 ≤ KS2 ≤ 1;

0.01 ≤ Y1 ≤ 10; 0.01 ≤ Y2 ≤ 10; 0.01 ≤ Y3 ≤ 10;
0.01 ≤ YH2 ≤ 10; 0.01 ≤ YCH4 ≤ 10.

(13)

The model parameter bounds were chosen based on the authors’ experience with
anaerobic digestion processes [23,48] and published results for processes similar to the one
considered here [2,9–11].

The obtained results are presented as a 3D plot in Figure 2; 3D view 1 and 3D view 2
show the obtained best results, and 3D view 3 and 3D view 4 show the resulting average
results of J. Views 2 and 4 show the area of the surface where the lowest values of the
objective function J were observed. The CSA provided the best results (lowest J value) for
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the following fl and AP ordered pairs: (2; 0.35) and (3; 0.15). The best average results were
obtained at the combinations (3; 0.05) and (2.5; 0.1).
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Figure 2. Plot of the obtained results from identification procedures: best and average results of
objective function J (Equation (10)).

The results presented in Figure 3a show that the computational time increased signifi-
cantly for algorithms with AP values in the interval 0.2–0.5. The time was not significantly
affected by fl values. Such a result meant that the algorithm convergence speed mainly
depended on the AP parameter. For example, algorithms C43, C47, C48, and C57 showed
significant increases in the decision time. Their AP and fl values were as follows: (0.35, 1.0),
(0.35, 3.0), (0.35, 3.5), and (0.45, 1.0). It can be seen that regardless of whether the fl value
was 1.0 or 3.0, if AP was a large value, the computational time increased significantly.
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Based on the results presented in Figure 3b it is clear that the algorithm did not achieve
solutions with higher accuracy when the value of fl was 1.0. Such a value should be avoided.
The best model accuracy was obtained for the AP values from 0.05 to 0.15. There were
two cases for which good results were obtained, AP = 0.35 and 0.45 with fl = 2.0 and
2.5, respectively. But in these cases, the observed computational time was significantly
bigger because of larger values of AP. Good convergence speed and decision accuracy were
achieved for lower values of AP (up to 0.15) and larger values of fl (more than 2.0).

The best five models according to obtained J values (model accuracy) were selected
among 70 CSA solutions. The estimated parameters of the best five models and the
corresponding computation time and J values are listed in Table 2. For better understanding,
the corresponding values of the algorithm parameters (fl and AP) are given too. The results
showed that the five models described the experimental data with identical accuracy:
J = 0.083. The algorithms are listed in the table in increasing order of the value of J, taking
into account six decimal places: algorithm C45, followed by the algorithms C19, C11, C5,
and C53. Algorithms C11 and C5 were those for which the best average results were
obtained. The greatest computation time was observed when AP was 0.35 and 0.40, and
the best J values were obtained for fl values between 2.0 and 3.0.

Table 2. Model parameter values of the best five models.

Algorithm/Parameters C45 C19 C11 C5 C53

fl 2.0 3.0 2.5 3.0 2.5

AP 0.35 0.15 0.10 0.05 0.40

Model parameters

µ1max 0.014 0.014 0.012 0.017 0.013

µ2max 0.461 0.508 0.469 0.487 0.456

KS1 1.174 1.249 1.174 1.262 1.012

KS2 0.845 1.000 0.874 1.002 0.883

Y1 0.160 0.260 0.186 0.256 0.145

Y2 9.333 8.678 9.938 7.015 8.801

Y3 0.070 0.070 0.070 0.070 0.070

YH2 0.013 0.013 11.548 7.607 10.142

YCH4 0.461 0.508 0.701 0.756 0.735

Computation time, min 2.53 0.67 1.03 1.42 1.89

J 0.082939 0.082972 0.082996 0.082998 0.083004

According to the results presented in Figure 1 and in the Supplementary Materials,
the worst J value was 0.11754. After performing the optimal tuning of the CSA parameters,
an accuracy improvement of 29% was achieved: the best J value obtained was 0.082939.

The estimated values of the model parameters were comparable to those found for
similar processes [58]. Some examples of models with similar structures and parameter
values are presented in [59–62]. Since there are no published results for the same process,
the obtained parameter values were confirmed by the results in the case of similar processes.
Considering Monod kinetics, the following values were estimated for µmax: 0.05 and 0.12
in [58], 0.67 in [59], and 0.098 in [61]. These values corresponded to the estimates for
µmax obtained here. The published values of the yield coefficient were 0.3-0.67 [58] and
0.48-0.58 [60]. The values estimated here were 0.14-0.26 for Y1 (the yield coefficient in
Equation (1)) and also corresponded to the published ones. For other yield coefficients (Y2,
Y3, YH2 , and YCH4 ), there were no published analogous models.

To distinguish the selected models, we can look at the dynamics of the predicted pro-
cess variables, as well as investigate some statistical characteristics of the numerical data.
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The models’ predicted dynamics for hydrogen and methane concentrations compared
with the experimental data are presented in Figure 4. The models followed the data as
best as possible, given that we had noisy and difficult real measurements, in the cases of
both hydrogen and methane dynamics. Data collection could reduce or increase the quality
of the results achieved by reducing the possible errors that may occur during sampling.
Therefore, a lot of time must be spent on data collection to obtain relevant data. In the
present study, obtaining data was a long and difficult process [48].
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The performance of the considered five CSA algorithms was statistically evaluated by
comparing the observed average value, the standard deviation (SD), and the median of the
estimated model parameters and J value. To present summary statistics, box plot diagrams
are shown in Figure 5.

According to Figure 5a the algorithm C5 produced the lowest mean value of J, followed
by C11 and C19. Statistically (see box plots), the algorithm C5 showed the best performance,
followed by C11, C19, C53, and C45. So, the CSA (C5) with AP = 0.05 and fl = 3.0 showed
superior performance compared with the other four algorithms. It is known that the AP
parameter controls the search capability of crows, and the fl parameter balances the trade-
off between exploration and exploitation. The results presented here show that values of fl
lower than 2.0 did not ensure a better balance between exploration and exploitation. At
the same time, values larger than 0.2 degraded the search capability of the algorithm. The
obtained results corresponded to the findings in the latest publications [26,29,63].

The presented box plots show that the algorithms estimated model parameters Y3 and
YCH4 most easily. The parameters KS1 , KS2 , and Y3 were the most difficult to estimate, as
commented also in [64].

Next, the parametric test ANOVA and nonparametric Wilcoxon test were performed
to estimate the statistical differences between the selected best five CSAs. The tests were
run in Matlab R2019a using functions “anova1” and “ranksum” on the numerical results of
objective function J and the estimates of the nine model parameters over 30 runs of each
algorithm C1–C70. The obtained results are presented in Tables 3 and 4.

The observed results from algorithm C45 (AP = 0.35 and fl = 2.0) were statistically
different compared with the algorithms C19 (AP = 0.15 and fl = 3.0), C11 (AP = 0.10 and
fl = 2.5), and C5 (AP = 0.05 and fl = 3.0). Statistically different were also observed for C11
and C53 (AP = 0.40 and fl = 2.5), and C5 and C53. It can be seen that this difference was due
to the larger differences in the parameter values of the algorithms, especially for parameter
AP. The results showed that the AP parameter was more sensitive, i.e., changing it affected
the performance of the algorithm to a greater extent. The parameter fl was less sensitive
compared with AP.
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On the other hand, the algorithm C5 was statistically similar to C19 and C11. The same
behaviour as C45 was shown by C53, as well as C19. The close values of CSA parameters
determined the similarity found.

These results were confirmed by both ANOVA and the Wilcoxon test.

Table 3. ANOVA results.

Algorithm Pair “Source” “SS” “df” “MS” “F” “Prob > F”

C45 vs.

C19
“Columns” 3.8730 × 105 1 3.8730 × 105 6.2614 0.01518

“Error” 3.5875 × 104 58 6.1855 × 106 - -

C11
“Columns” 6.6368 × 105 1 6.6368 × 105 11.8194 0.00109

“Error” 3.2568 × 104 58 5.6152 × 106 - -

C5
“Columns” 7.8010 × 105 1 7.8010 × 105 14.0096 4.1957 × 104

“Error” 3.2296 × 104 58 5.5683 × 106 - -

C53
“Columns” 4.6988 × 106 1 4.6988 × 106 0.6519 0.42271

“Error” 4.1803 × 104 58 7.2074 × 106 - -
C19 vs.

C11
“Columns” 3.6993 × 106 1 3.6993 × 106 1.1048 0.29755

“Error” 1.9419 × 104 58 3.3481 × 106 - -

C5
“Columns” 6.8069 × 106 1 6.8069 × 106 2.0619 0.15639

“Error” 1.9147 × 104 58 3.3012 × 106 - -

C53
“Columns” 1.6448 × 105 1 1.6448 × 105 3.3293 0.07320

“Error” 2.8654 × 104 58 4.9403 × 106 - -
C11 vs.

C5
“Columns” 4.7009 × 107 1 4.7009 × 107 0.1721 0.67975

“Error” 1.5839 × 104 58 2.7309 × 106 - -

C53
“Columns” 3.5748 × 105 1 3.5748 × 105 8.1802 0.005877

“Error” 2.5346 × 104 58 4.3701 × 106 - -
C5 vs.

C53
“Columns” 4.4417 × 105 1 4.4417 × 105 10.2742 0.002194

“Error” 2.5074 × 104 58 4.3232 × 106 - -
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Table 4. Wilcoxon test results.

Algorithm Pair p-Value H
STATS12

zval ranksum

C45 vs.
C19 0.012732 1 2.4911 1084
C11 0.001857 1 3.1121 1126
C5 3.9881 × 104 1 3.5408 1155

C53 0.6204 0 0.4952 949
C19 vs.

C11 0.3183 0 0.9979 983
C5 0.1494 0 1.4414 1013

C53 0.0614 0 −1.8702 788
C11 vs.

C5 0.6520 0 0.4509 946
C53 0.005084 1 −2.8016 725

C5 vs.
C53 0.002052 1 −3.08255 706

Statistical differences exist with a significance level of α = 0.05.

Further, ICrA was carried out using the cross-platform software ICrAData v2.6 [65].
The calculations employed numerical data from 30 runs of 70 CSA for the values of the
objective function. The resulting degree of “agreement” µC,C′ and degree of “disagree-
ment” νC,C′ between the considered algorithms pairs are presented as index matrix in the
following form:

C1 C2 . . . C70
C1 -- ⟨µC1,C2, νC1,C2⟩ . . . ⟨µC1,C70, νC1,C70⟩
C2 ⟨µC2,C1, νC2,C1⟩ -- . . . ⟨µC2,C70, νC2,C70⟩
...

...
... . . . ...

C70 ⟨µC70,C1, νC70,C1⟩ ⟨µC70,C2, νC70,C2⟩ . . . --

The resulting index matrix was too big to be presented in the paper, so it is given as
Supplementary Materials (Table S1). Here, in Figure 6, a visualisation of the obtained µC,C′

and νC,C′ values in the intuitionistic fuzzy interpretation triangle is presented.
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The ICrA results are discussed according to the scheme of consonance and dissonance,
proposed in [66].

From Figure 6 it is clear that all intuitionistic fuzzy pairs were on the hypotenuse
of the triangle, meaning the obtained πC,C′ values were zero, i.e., the numerical results
were reliable, and there was no uncertainty in the data. Some of the algorithm pairs were
in positive consonance (marked in green), and the rest of the pairs were in dissonance
(marked in red). There were no pairs in negative consonance.

In Table 5 the index matrix only with the algorithm pairs that were in consonance with
the corresponding

〈
µC,C′ , νC,C′

〉
values is presented.

Table 5. Index matrix with the results for the pair algorithms that were in consonance.

C5 C11 C19 C45 C53

C5 ⟨0.8057, 0.1943⟩ ⟨0.7908, 0.2092⟩ ⟨0.5402, 0.4598⟩ ⟨0.4598, 0.5402⟩
C11 ⟨0.8057, 0.1943⟩ ⟨0.8234, 0.1766⟩ ⟨0.4874, 0.5126⟩ ⟨0.4989, 0.5011⟩
C19 ⟨0.7908, 0.2092⟩ ⟨0.8234, 0.1766⟩ ⟨0.4943, 0.5057⟩ ⟨0.7608, 0.2392⟩
C45 ⟨0.5402, 0.4598⟩ ⟨0.4874, 0.5126⟩ ⟨0.4943, 0.5057⟩ ⟨0.8563, 0.1437⟩
C53 ⟨0.4598, 0.5402⟩ ⟨0.4989, 0.5011⟩ ⟨0.7608, 0.2392⟩ ⟨0.8563, 0.1437⟩

From 70 differently tuned CSAs, only five algorithm pairs were in consonance, i.e.,
they showed similar performances. The remaining 2410 pairs were in dissonance, i.e.,
these algorithms showed different behaviour during the 30 performed runs. Such a result
indicated that the values for the CSA parameters chosen to be investigated (ten levels of
AP and seven levels of fl) were distinctive and specific and led to qualitatively different
algorithms being obtained. This fact confirmed the correct choice of algorithm parameters
for which to investigate the CSA performance.

A careful analysis of the results presented in Table 5 confirmed the conclusion made
based on the statistical analysis. The pair of CSAs that were in positive consonance was
C45–C53, where the fl and AP values for both algorithms were closer. Next, the pairs
C11–C19, C5–C11, and C5–C19 (with close

〈
µC,C′ , νC,C′

〉
values) were in weak positive

consonance: there was a weak similarity between the algorithms’ performances. In this
case, the AP values were (0.10–0.15), (0.05–0.10), and (0.05–0.15), whereas the fl values were
(2.5–3.0), (3.0–2.5), and (3.0–3.0). As can be seen, the fl values were very close, even the
same in one case, which once again showed that the parameter AP was more sensitive.
The behaviour of the algorithm largely depended on the AP setting. The behaviour of the
algorithms C11–C19, C5–C11, and C5–C19 was slightly similar, due to the differences in
the values of the parameter AP, in the case of almost identical values of the parameter fl.

Finally, considering all the results and the above-presented analysis, the best algorithm
performance was achieved for the following CSA parameters: AP = 0.05, fl = 3.0, followed
by AP = 0.10, fl = 2.5, and AP = 0.15, fl = 3.0. Based on the performed investigation it can be
concluded that the best CSA performance can be expected for a lower value of AP in the
interval of 0.05-0.15 and larger values of fl in the interval of 2.5–3.0. Thus, a solution with a
higher accuracy can be obtained for a reasonable convergence time.

The obtained best mathematical model was compared with the models proposed
in [23]. Table 6 presents the resulting model parameter values, estimated with the firefly
algorithm (FA) [67], the cuckoo search algorithm (CS) [68], and the coyote optimisation
algorithm (COA) [19], all applied to the model (Equations (1)–(9)).
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Table 6. Comparison of the mathematical models of the considered TSAD process.

Algorithm CSA (C45)
[This Study] FA [23] CS [23] COA [23]

Parameters Model parameter estimates

µ1max 0.014 0.017 0.010 0.012

µ2max 0.461 0.443 0.077 0.029

KS1 1.174 1.100 1.139 1.004

KS2 0.845 0.919 0.001 0.0001

Y1 0.160 0.222 0.010 12.137

Y2 9.333 10.276 0.122 5.702

Y3 0.070 0.100 19.781 24.272

YH2 0.013 8.117 13.727 11.598

YCH4 0.461 0.989 2.298 7.993

J 0.0829 0.1075 0.0913 0.0940

As can be seen, the estimates identified by the four algorithms’ model parameters
were different. Each metaheuristic algorithm found a different solution, i.e., local minimum.
According to some published mathematical models, the parameter values obtained by the
CSA and the FA are the most appropriate [26,29,63]. The questionable estimates obtained
from the CS and the COA are those for parameter KS2 , due to too-small values.

The behaviour of the models dynamics was also compared. The graphical results are
presented in Figure 7.
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Graphical results showed that the behaviour of the hydrogen concentration was similar
for the four models. The methane concentration dynamics of the CS and COA models was
different in comparison with the dynamics of methane of the CSA and FA models. The
mathematical model proposed here (CSA/C45) best described the real experimental data
compared with the FA, CS, and COA models.

5. Conclusions

In this paper, for the first time, the CSA was applied to estimate the parameters of the
proposed mathematical model of the TSAD process. The process dynamics in the cascade
BR1 and BR2 were described by a set of five ODEs, representing substrate (S1), biomass
(X1 and X2), and products (Ac1 and Ac2) in the two bioreactors. The flow rates of the
hydrogen (QH2) and methane (QCH4) were represented by two algebraic equations. The
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model consisted of nine model parameters that should be identified (µ1max, µ2max, KS1 , KS2 ,
Y1, Y2, Y3, YH2 , and YCH4 ).

To achieve the best CSA performance the influence of the main algorithm parameters
was investigated. Numerous simulation experiments were performed to find the best
tuning of the parameters fl and AP. Seventy differently tuned CSA algorithms were studied.
Boxplots, the parametric test ANOVA, and the nonparametric Wilcoxon test were used to
compare the performance of the best developed CSA. The newly proposed InterCritera
Analysis was also performed. The best CSA algorithm performance was achieved for
AP = 0.05, fl = 3.0, followed by AP = 0.10, fl = 2.5, and AP = 0.15, fl = 3.0. Moreover, it was
found that the awareness probability (AP) was a more sensitive parameter than the flight
length (fl) and influenced to a greater extent the CSA solution accuracy and convergence
time. As a result, a 29% improvement in the objective function value was achieved.

The developed mathematical models of the TSAD process had a high degree of
accuracy and could be used for further process behaviour investigation and process control
and optimisation.

Although good results have been obtained so far, some possible future directions for
work aimed at further improving the performance of the CSA can be indicated.

Here, the suggested values for the population size (N) and the number of iterations
(MaxIter) were chosen to be sufficient to provide the required amount of diversity among
generated solutions, and these solutions evolved in a reasonable computation time. The
influence of the N and MaxIter can be further investigated more thoroughly to establish
their relationship with the fl and AP parameters. This study will lead to the development
of a CSA with even better performance.

To achieve better searchability and convergence of CSAs, the process of updating the
current positions can be improved by introducing adaptive fl and AP parameters. Some
recent results are proposed in [69] where AP is adjusting linearly over the optimisation
process and fl is adjusting according to the generalised Pareto probability density function.
The authors in [70] present fl as a descending function of time and the AP as the rate of
change in fl. All the proposed modified CSAs provided very competitive outcomes over
some well-known metaheuristics regarding stability and solution quality.

Knowing very well the influence of the CSA parameters and the dependence and
relationships between them, effective functions for dynamically changing fl and AP can be
further proposed, which will significantly improve the behaviour of the algorithm.
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Appendix A

Table A1. Notations of differently tuned CSA.

Notation

CSA
Parameters Notation

CSA
Parameters Notation

CSA
Parameters

AP fl AP fl AP fl

C1

0.05

1.0 C8

0.10

1.0 C15

0.15

1.0

C2 1.5 C9 1.5 C16 1.5

C3 2.0 C10 2.0 C17 2.0

C4 2.5 C11 2.5 C18 2.5

C5 3.0 C12 3.0 C19 3.0

C6 3.5 C13 3.5 C20 3.5

C7 4.0 C14 4.0 C21 4.0

Notation

CSA
Parameters Notation

CSA
Parameters Notation

CSA
Parameters

AP fl AP fl AP fl

C22

0.20

1.0 C29

0.25

1.0 C36

0.30

1.0

C23 1.5 C30 1.5 C37 1.5

C24 2.0 C31 2.0 C38 2.0

C25 2.5 C32 2.5 C39 2.5

C26 3.0 C33 3.0 C40 3.0

C27 3.5 C34 3.5 C41 3.5

C28 4.0 C35 4.0 C42 4.0

Notation

CSA
Parameters Notation

CSA
Parameters Notation

CSA
Parameters

AP fl AP fl AP fl

C43

0.35

1.0 C50

0.40

1.0 C57

0.45

1.0

C44 1.5 C51 1.5 C58 1.5

C45 2.0 C52 2.0 C59 2.0

C46 2.5 C53 2.5 C60 2.5

C47 3.0 C54 3.0 C61 3.0

C48 3.5 C55 3.5 C62 3.5

C49 4.0 C56 4.0 C63 4.0

Notation

CSA
Parameters

AP fl

C64

0.50

1.0

C65 1.5

C66 2.0

C67 2.5

C68 3.0

C69 3.5

C70 4.0
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