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Abstract: The NR2F family, including NR2F1, NR2F2, and NR2F6, belongs to the nuclear receptor
superfamily. NR2F family members function as transcription factors and play essential roles in the
development of multiple organs or tissues in mammals, including the central nervous system, veins
and arteries, kidneys, uterus, and vasculature. In the central nervous system, NR2F1/2 coordinate
with each other to regulate the development of specific brain subregions or cell types. In addition,
NR2F family members are associated with various cancers, such as prostate cancer, breast cancer,
and esophageal cancer. Nonetheless, the roles of the NR2F family in the development and diseases
of the lung have not been systematically summarized. In this review, we mainly focus on the lung,
including recent findings regarding the roles of the NR2F family in development, physiological
function, and cancer.
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1. Introduction

Nuclear receptors (NRs), a family of evolutionarily conserved proteins, are ligand-
activated transcription factors that participate in the regulation of both physiological and
pathological processes [1]. In humans, 48 NRs have been identified, including receptors
for steroid hormones, thyroid hormones, cholesterol metabolites, and lipophilic vitamins.
NRs are categorized into seven classes: Class 0: miscellaneous; Class I: thyroid hormone
receptor-like; Class II: retinoid X receptor-like; Class III: estrogen receptor-like; Class IV:
nerve growth factor IB-like; Class V: steroidogenic factor-like; Class VI: germ cell nuclear
factor-like [2]. NRs share common structural characteristics, including a transactivation
region, a central DNA-binding domain, a region responsible for nuclear localization, and a
ligand-binding domain. They function as transcription factors and regulate the expression
of genes involved in metabolism, fertility, immunity, angiogenesis and other biological
processes [3]. The Nuclear Receptor Subfamily 2 Group F (NR2F) family belongs to Class
II of the nuclear receptor superfamily. Due to the lack of identified endogenous ligands,
NR2F family members are also known as orphan nuclear receptors.

In humans, the main members of the NR2F family include NR2F1, NR2F2, and NR2F6.
NR2F1 and NR2F2 are also named COUP-TFI (Chicken Ovalbumin Upstream Promoter
Transcription Factor I) and COUP-TFII (Chicken Ovalbumin Upstream Promoter Transcrip-
tion Factor II), respectively [4–6]. NR2F1 and NR2F2 contain two highly conserved domains,
the DNA-binding domain and the ligand-binding domain. NR2F1 and NR2F2 are highly
conserved across vertebrate species (in many cases, the conserved subdomains exceed
95% homology) [5]. In general, the NR2F family members exert their functions through
two major mechanisms. One is direct regulation by binding to DNA elements, including
direct repeat-1, which directly suppresses or activates the expression of target genes. The
other mechanism is indirect regulation by interacting with transcription factors such as SP1

J. Dev. Biol. 2024, 12, 24. https://doi.org/10.3390/jdb12030024 https://www.mdpi.com/journal/jdb

https://doi.org/10.3390/jdb12030024
https://doi.org/10.3390/jdb12030024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jdb
https://www.mdpi.com
https://orcid.org/0000-0001-6394-2773
https://doi.org/10.3390/jdb12030024
https://www.mdpi.com/journal/jdb
https://www.mdpi.com/article/10.3390/jdb12030024?type=check_update&version=1


J. Dev. Biol. 2024, 12, 24 2 of 14

to activate the expression of target genes [7–9]. NR2F family members perform regulatory
functions by forming homodimers or heterodimers. In addition to self-dimerization, NR2F
family members also competitively bind with other nuclear receptors, such as retinoic X
receptors (RXRs), to inhibit the function of other nuclear receptors [10]. Consequently, sev-
eral nuclear receptors, such as thyroid hormone receptors (TRs) and retinoic acid receptors
(RARs), have been shown to have crosstalk with NR2F family members [10,11].

Previous studies have shown that the NR2F family plays pivotal roles in mammalian
embryonic development. For example, in the central nervous system (CNS), Nr2f1 orches-
trates the regionalization of neocortex [12]; meanwhile, both Nr2f1 and Nr2f2 are involved
in the development of cortical interneurons and the generation of the dorsal–ventral axis of
the hippocampus [13–15]. Moreover, several studies have demonstrated that mutations
in NR2F1 lead to Bosch–Boonstra–Schaaf optic atrophy syndrome (BBSOAS), which has
various symptoms, such as optic atrophy, autism, mental retardation and epilepsy [16–18].
It is noteworthy that Nr2f1 and Nr2f2 often have a complementary effect on neuronal
development. Additionally, Nr2f2 regulates vasculogenesis in the heart and spinal cord,
as well as the development of the kidney, stomach, and diaphragm [19–21]. Nr2f6 is
involved in adipocyte differentiation, and it is also considered an essential factor in im-
mune checkpoint regulation to manipulate the development and physiological functions of
immune cells [22,23].

Numerous reports have suggested that the NR2F family members are highly involved
in cancer, including breast cancer, prostate cancer, and liver cancer [24–28]. Dysregulated
long noncoding RNAs associated with the NR2F family have been identified in cancers.
For example, NR2F1 interacted with NR2F1-AS1 to activate the Sonic Hedgehog signaling
pathway and promote the progression of esophageal squamous cell carcinoma [29]. The
functions of the NR2F family in CNS development have been reviewed [17,30]. Neverthe-
less, the roles of the NR2F family in cancer occurrence and progression still lack in-depth
studies and systematic summaries. In this review, we summarize the current understand-
ing of the NR2F family in lung development and pathological conditions, proposing an
updated and critical view of the various functions of NRs.

2. NR2F Family in Lung Development and Non-Cancerous Diseases

In mice, lung development begins at E9.0. By E9.5, lung progenitors form the trachea
and buds, progressing through stages to generate functional lungs [31] (Figure 1a). Multiple
genes regulate lung development. For instance, Fgf10 regulates early branching morpho-
genesis [32–34]. Sox2 and Sox9/Id2 dominate the proximal–distal axis patterning. Proximal
cells with high Sox2 expression develop into neuroendocrine cells and non-neuroendocrine
cells, while distal cells with high Sox9/Id2 expression give rise to type I and type II alveolar
cells. Alveolar cells are responsible for gas exchange, morphology maintenance, and surfac-
tant secretion [31,35,36]. Abnormalities in terms of lung development can cause diseases
like bronchopulmonary dysplasia [37].

Previous studies have demonstrated that NR2F2 is widely expressed in the developing
lung [38]. With advancements in single-cell RNA sequencing and the stem cell-derived
organoid system, NR2F1 has been shown to be expressed in the foregut and developing
lung epithelium and mesenchyme [39]. Both blood vessels and lymph vessels are essential
components of the lung mesenchyme. Recent studies suggest that the NR2F family may
play critical roles in lung angiogenesis and lymphangiogenesis. NR2F1 and NR2F2 have
been identified as lymphatic marker genes, with NR2F2 specifically marking venous en-
dothelial cells [40] (Figure 1b). Additionally, NR2F1 has been suggested in a BioRx preprint
to be one of the genes involved in the core organ-size regulation program, displaying a
unique expression pattern in the developing swine lung epithelium and mesenchyme [41].
In the lung epithelium, the expression of NR2F1 is restricted to the initial stages of lung de-
velopment, whereas it is almost absent in later stages. In contrast, in the lung mesenchyme,
NR2F1 is continuously expressed throughout development. Furthermore, a function of
Nr2f1 in the growth and differentiation of ciliated bronchial epithelium was uncovered in a
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study evaluating the role of Pten overexpression in lung cancer [42]. Pten overexpression
blocked this function of Nr2f1. These authors also found that Nr2f1 upregulated other
ciliogenesis-related genes, including Mucin5a, DNAI2, and DNAI3 (Figure 1c). Despite
some progress in understanding the role of the NR2F family in lung development, the
regulatory mechanisms remain largely unexplored. Nonetheless, the association of the
NR2F family with various lung-related diseases underscores its significant functions in
the lung.
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Figure 1. Roles of the NR2F family in the lung development. (a) An illustration of lung development. 
(b) NR2F1/2 were identified as markers of angiogenesis and lymphangiogenesis in lung. (c) Up-
regulation of Nr2f1 increases the number of lung bronchial epithelial ciliated cells through cilia-
related genes such as DNAI2. 
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(b) NR2F1/2 were identified as markers of angiogenesis and lymphangiogenesis in lung. (c) Up-
regulation of Nr2f1 increases the number of lung bronchial epithelial ciliated cells through cilia-related
genes such as DNAI2.

Congenital diaphragmatic hernia (CDH) is a severe lung-related developmental dis-
ease with an incidence rate of approximately 1/3000 and a mortality rate exceeding 30%.
Several studies suggest that NR2F2 deficiency induces CDH [21,43]. Moreover, pulmonary
fibrosis is a progressive lung disease characterized by fibrosis and scar formation in the
distal lungs. Idiopathic pulmonary fibrosis (IPF) is the most common form of pulmonary
fibrosis without effective treatment available to date. Several studies demonstrated that
Nr2f2 can affect IPF by influencing downstream genes such as Col1a1 and Fn1, inhibiting
the activation of fibroblasts and the production of extracellular matrix, and enhancing the
dissolution of fibrosis [44,45]. Lymphangioleiomyomatosis (LAM), another lung disease, is
characterized by abnormal proliferation of smooth muscle, which leads to the obstruction
of pulmonary bronchioles and lymphatics, as well as lung function impairment, including
pneumothorax. Recent research indicates the potential roles of NR2F2 in the progression of
LAM due to its overexpression in tumor tissues [46].

3. NR2F Family in Primary Lung Cancer

Lung cancer is the leading cause of cancer-related deaths worldwide. Lung cancer
can be categorized into small-cell lung cancer and non-small-cell lung cancer (NSCLC).
Small-cell lung cancer, characterized by rapid growth and high metastatic potential, is
less common but predominantly found in smokers, with most patients exhibiting TP53
mutations [47–49]. NSCLC, which accounts for over 85% of all lung cancer cases, can
be further classified into lung squamous cell carcinoma (LUSC), lung adenocarcinoma
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(LUAD), and large cell carcinoma. LUSC and LUAD have been prevalent and extensively
studied [47]. LUSC originates mainly from the internal epithelial cells of the bronchi or
bronchioles, and it is characterized by a squamous cell morphology, keratinization, and
the presence of intercellular bridges [50]. LUAD arises from glandular cells with secretory
functions in the lungs and exhibits diverse morphological features, and it can be identified
by NKX2.1 expression or Napsin-A staining [47].

Studies on LUAD have found that the overexpression of NR2F1 can enhance the
migration and invasion of tumor cells, probably through NR2F1-AS1, which is upregulated
by NR2F1 and ZEB1 [51]. Intriguingly, the overexpression of NR2F2 in lung tumor cells also
enhances their invasion and migration capabilities by in vitro modeling [52]. Furthermore,
NR2F2 is regulated by the Wnt signaling pathway to activate the expression of GPX4, which
could induce high glutathione (GSH) consumption to inhibit ferroptosis and lead to the
drug resistance of lung cancer cells that metastasize to the brain [53]. Additionally, NR2F6
expression is significantly upregulated in LUAD tissue [54], and the single nucleotide
variation of NR2F6 is strongly related to the survival rate of patients in the early stage
of NSCLC [55]. These results from lung and other tissue cancer studies suggest that
NR2F6 plays important roles in immunity, metabolism, and the reaction of T cell responses
to inflammatory cytokines, such as IL2 and TNFβ, which mediate anti-cancer immune
reactions [23,56] (Table 1).

Table 1. Primary lung diseases related to the NR2F family.

Disease Type Genes Functions Models/Cell
Lines/Tissues Related Genes Related Pathways Reference

Non-
cancerous

CDH

Nr2f2↑
May rescue lung
hypoplasia and

enhance lung growth

Nitrofen rat model of
CDH Fog2 and Gata4 - [57]

Nr2f2↓ Formation of CDH
Nkx3-2Cre/+;

Nr2f2flox/flox mouse
model

Fog2 - [21]

NR2F2↓ Formation of CDH 15q deletion patients
specimens

CHD2, RGMA
and SIAT8B - [43]

IPF Nr2f2↑ Decreases fibrosis Bleomycin-treated
mice model Fn1 and Col1a1 - [44]

LAM NR2F2↑ Drives LAM
pathogenesis

S-LAM patients
specimens

MCTP2 and
SPATA8 - [46]

Cancerous

NSCLC NR2F1-AS1↓

Decrease NSCLC cell
proliferation,

migration, and
invasion and

promoted tumor cell
apoptosis

NSCLC patients
specimens; BEAS-2B,
H522, H460, H1299,
A549 and SK-MES-1
cell lines; nude mice

-
NR2F1-AS1/miR-

493-5p/ITGB1
pathway

[58]

NSCLC NR2F1-AS1↑
Tumorigenic,

promotes glycolysis
and glutamine

metabolism

NSCLC patients’
specimens; 16HBE,

A549 and H522 cells
- miR-363–

3p/SOX4 axis [59]

LUAD NR2F6↑
Promote proliferation,

migration, invasion
and enhances cell

apoptosis

Lung adenocarcinoma
patients specimens;

A549, HCC827, HBE
cells

miR-142-3p - [54]

Lung
Carcinoma NR2F2↑ Promote cell invasion

A549, HeLa,
NCI-H460, H661,

H520, H441,
MDAMB231 and

H460SMcells

FAK(PTK2),
MMP2, uPA and

uPAR
- [52]

LUAD NR2F1↑

Promote growth,
migration, invasion,

and tumorigenicity of
lung adenocarcinoma

cells

393P, 344SQ, 412P,
307P, 344LN, 344P,

393LN, 531LN1,
531LN2, 531LN3,

531P1, 531P2, 713P,
A549 and HCC827

cells

ZEB1 ZEB1/NR2F1/
NR2F1-AS1 axis [51]

LUAD NR2F2↑

Induces platinum
chemotherapeutic
resistance in lung

cancer brain
metastasis

PC9, PC9-BrM1 and
PC9-BrM3 cells; Nude

mice
GSTM1 and

GPX4
Wnt signaling

pathway [53]

↑, upregulation; ↓, downregulation.
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4. NR2F Family in Metastatic Lung Cancer

Most cancer-related deaths result not from the primary tumor itself but from
metastatic dissemination [60]. In the later stages of cancer, primary tumor cells un-
dergo transformation, then travel to distant sites, and re-establish tumor clones. Almost
any cancer can spread to the lungs since all blood must pass through the lungs during
oxygenation and any circulating tumor cell could be filtered out in its rich capillary net-
work. Many cancer patients in advanced stages are often discovered to have lung lesions,
particularly in patients with breast and colon cancer, which are highly prone to lung
metastasis. The late-stage metastasis of tumor cells is an important factor contributing
to the challenge of the treatment and the high mortality rate. The process of tumor cell
metastasis to the lungs involves several stages, including tumor cells detaching from
the primary tumor tissue, infiltrating surrounding tissues, invading the blood or lym-
phatic vessels, entering the lungs through the bloodstream and lymphatics, extravasating
from the vessels, colonizing in lung tissue, initiating growth, and eventually forming
metastatic lung cancer [61,62].

During tumor cell metastasis, several crucial biological processes unfold, includ-
ing reshaping of the tumor microenvironment (TME), transformation of the tumor cell
status, and the dormancy and activation of tumor cells [61–64]. Reshaping the TME pri-
marily involves the activation of inflammatory responses, increased angiogenesis, and
immune suppression [63]. The transformation of the tumor cell status includes the tran-
sition of tumor cells from an epithelial cell state to a mesenchymal cell state, known
as epithelial–mesenchymal transition (EMT), during the initial stages of metastasis, fa-
cilitating migration and invasion. Subsequently, upon reaching distant organs via the
bloodstream, tumor cells may undergo mesenchymal–epithelial transition (MET), revert-
ing to an epithelial state to support rapid proliferation [61–63]. Upon initial arrival in the
lungs, tumor cells often enter a period of dormancy before being reactivated, which is
possibly related to the establishment of a new niche of tumor cells in the lungs, and it is
also a significant reason why many cancer patients experience recurrence after undergoing
curative treatment [61,64].

Studies using animal models of metastatic lung cancer indicate that elevated NR2F1
expression in tumor cells can induce dormancy in lung tissues by co-regulating with
SMAD4 and TGFβ, causing tumor cells to exit the cell cycle [65]. Similarly, NR2F1-AS1
upregulates NR2F1 expression to suppress ∆Np63 expression and prevent the MET process
in tumor cells, leading to reduced proliferation of breast cancer cells that have metastasized
to the lungs [66].

In both human tissues and cellular models, NR2F1 suppresses the metastasis of
salivary adenoid cystic carcinoma (SACC) tumor cells to the lungs by upregulating the
CXCL12/CXCR4 pathway [67]. Nr2f2 modulates the metastasis of breast tumor cells to
the lungs by activating the expression of Ang1, thereby promoting tumor angiogenesis,
facilitating the provision of nutrients and oxygen to support tumor cell metastasis to the
lungs [24]. Additionally, reports on gastric cancer with lung metastases have discovered
that Fbxo21 inhibits EMT by suppressing Nr2f2 in both in vivo tissues and in vitro cell
lines [68]. These findings underscore the involvement of the NR2F family in the metastatic
processes of various tumor cells in relation to the lungs, which could indicate its significance
in the progression of metastatic lung cancer (Table 2).
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Table 2. Metastatic lung cancer related to the NR2F family.

Primary Cancer
Types Genes

Inhibition/
Promotion
Metastasis

Models/Cell
Lines/Tissues Related Genes Related

Pathways Reference

Breast cancer NR2F1-AS1↑ Inhibition

BALB/c nude mice
and NOD/SCID
mice; CA1h-P1,
CA1h-P2 and

4175-LM2 cells

PTBP and
miR-205

NR2F1/∆Np63
axis [66]

Pancreatic
cancer NR2F1-AS1↑ Promotion

PC and matched
paracancerous tissue

samples; BxPC-3,
Capan-2, CFPAC-1,

SW1990, MIA PaCa-2,
PANC-1 and HPDE
cells; nude mouse

NR2F1
HIF pathway,
AKT/mTOR

pathway
[69]

SACC NR2F1↑ Inhibition

SACC patients
specimens; SACC-83
and SACC-LM cells;

nude mice

-
CXCL12/
CXCR4

pathway
[67]

HNSCC NR2F1↑ Inhibition

T-HEp3 cells and
D-HEp3 cells;

chicken
chorioallantoic

membrane (CAM)
model; NU/J female

mice model

-

TGF-
β/SMAD4
signaling
pathway

[65]

Gastric cancer Nr2f2↓ Inhibition

Gastric cancer
patients specimens;
SGC-7901, BGC-823,
MGC-803, MKN-45,
MKN-28 and AGS

cell lines; nude mice

Fbxo21 and Zeb1 Nr2f2/Snail
pathway [68]

Breast
carcinoma Nr2f2↓ Inhibition

ROSA26CRE-ERT2/+;
Nr2f2flox/floxmouse

model and
PyMT+/−/

ROSA26CRE-ERT2/+;
Nr2f2flox/flox mouse
model; B16F10 and

LLC cells

Ang-1 VEGF signaling
pathway [24]

↑, upregulation; ↓, downregulation.

5. Other Members of the Nuclear Receptor Superfamily Associated with the NR2F
Family and Lung Cancer

In addition to the NR2F family, there are more than 40 members of the nuclear receptor
superfamily [70], many of which play important roles in organ development and homeosta-
sis, including the lungs. These nuclear receptors actively regulate various cellular functions;
in addition, the expression levels of many nuclear receptors, such as progesterone receptor
(PR), have been identified as prognostic factors for lung cancer patients [71,72]. The NR2F
family members either interact with other nuclear receptors, such as RXRs, to form het-
erodimers or compete with other nuclear receptors for the binding sites of target genes to
mutually regulate their functions [10]. Therefore, summarizing the roles of other nuclear
receptors in lung cancer can provide further insights into their interaction mechanisms
with the NR2F family (Figure 2).
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Figure 2. The effect of nuclear receptors in lung cancer. These seven nuclear receptors are all
associated with the NR2F family, and the nuclear receptors near the left of the figure tend to have a
positive effect in lung cancer, while the nuclear receptors near the right of the figure tend to have a
negative effect, and the nuclear receptors near the middle of the figure have a debatable effect.

5.1. Estrogen Receptors (ERs)

ERs belong to Cass III of the nuclear receptor superfamily and serve as receptors for
the steroid hormone estrogen. ERs, including two subtypes ERα and ERβ, play essential
roles in normal cell growth, differentiation, and survival [70]. Several reports have revealed
a close association between ERs and NR2F2 expression. NR2F2 is highly expressed in
ER-positive breast cancer cell lines but is poorly expressed in ER-negative breast cancer cell
lines [73]. Additionally, Nr2f1 can also modulate the activity of ERs [74]. Studies in non-
small-cell lung cancer have shown the dynamic expression of ERs, indicating that ERs could
potentially have diverse functions in the genesis and progression of lung cancer [75–78].
Treatment with ER agonists have been found to increase the proliferation of lung tumor
cells in animal models, while ER antagonists inhibit cell growth through IL-6 [79].

5.2. Progesterone Receptor (PR)

Similar to ERs, PR belongs to Class III of the nuclear receptor superfamily and is a
receptor for progesterone. PR has two isoforms, PR-A and PR-B, which form homodimers or
heterodimers to bind to the progesterone response elements (PREs) on DNA and to regulate
the expression of target genes [80]. In breast cancer cell lines, PR and ERs collaborate to
downregulate the transcription of NR2F1-AS1 [81]. During embryonic implantation, PR
regulates the expression of NR2F2 by controlling Indian Hedgehog, which can activate
NR2F2, then NR2F2 inhibits ERs in the uterine epithelium [82]. Several studies have shown
a significant decrease of PR in lung cancer tissues [83], and similar results were observed
in a mouse model with lung tumor cells transplanted [84], suggesting that PR could be a
potential target for lung cancer treatment.

5.3. Retinoic Acid Receptors (RARs)

RARs belong to Class I of the nuclear receptor superfamily and act as receptors for
retinoic acid. RARs, which can be classified into three subtypes, RARα (NR1B1), RARβ
(NR1B2), and RARγ (NR1B3), regulate cell proliferation, differentiation, and death [70].
Previous studies indicated that the NR2F family members inhibit the target gene regulation
of RARs [10]. Intriguingly, NR2F1/2 can be activated by RA signals [85]. In turn, NR2F2
induces the expression of RARβ through RA and RARα [86]. RARβ is considered a
tumor suppressor in epithelial cells [87,88]. For example, the expression of RARβ was
downregulated in lung tumor tissues, suggesting a potential tumor-suppressive role of
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RARβ [89–91]. Nevertheless, the upregulation of RARβ is also observed in lung cancer
tissues [92]. Therefore, further investigation into the roles of RARs and their potential
interactions with the NR2F family in lung cancer is warranted.

5.4. Retinoic X Receptors (RXRs)

RXRs belong to Class II of the nuclear receptor superfamily and serve as receptors
for 9-cis-retinoic acid. RXRs are mainly divided into RXRα (NR2B1), RXRβ (NR2B2),
and RXRγ (NR2B3), and RXRγ can further be subdivided into RXRγ1 and RXRγ2 [93].
RXRs can form heterodimers with several nuclear receptor families, including the NR2F
family [10,94]. Studies have shown the downregulation of RXRs in lung cancer tissues [95].
Treatment with RXRs agonists, such as bexarotene, inhibits tumor angiogenesis, suppresses
the proliferation and migration of lung tumor cells, and promotes tumor cell death through
the PPARγ, PTEN, and mTOR pathways [96].

5.5. Peroxisome-Proliferator-Activated Receptors (PPARs)

PPARs belong to Class I of the nuclear receptor superfamily and are receptors for fatty
acids. PPARs have three subtypes: PPARα, PPARβ, and PPARγ. They form heterodimers
to bind onto the peroxisome proliferator response elements (PPREs) on target genes. PPARs
are prominently expressed in adipocytes, and the Wnt/β-catenin signaling pathway can
increase the expression of NR2F2 to inhibit PPARγ expression, leading to the suppres-
sion of adipogenesis [97]. In addition, a significant decrease of PPARγ expression was
reported in lung cancer research [98]. Treatment with PPARγ ligands in adenocarcinoma
cell lines inhibits cell proliferation, suggesting that PPARγ ligands hold promise as potential
therapeutic agents [99].

5.6. Vitamin D Receptors (VDRs)

Vitamin D is synthesized by cells of the immune system and plays a critical role in
anti-proliferative activities in cancer cells, such as breast, colon, and stomach tumor cells.
VDRs are steroid hormone receptors that induce a cascade of cell signaling to maintain
healthy Ca2+ levels, which serve to control several biological processes. The NR2F family
may compete with VDRs to bind to elements of the VDRs, such as DR3, on their target
genes to inhibit the activity of VDRs [10]. The expression levels of VDRs in lung cancer
tissues are higher than those in non-cancerous tissues [100]. The expression of VDRs was
also associated with improved survival in another lung cancer study [101], suggesting
that the dysregulation of VDRs may interact with the NR2F family, leading to malignant
transformation in the lungs.

5.7. Thyroid Hormone Receptors (TRs)

TRs belong to Class I of the nuclear receptor superfamily and act as receptors for
thyroid hormone. TRs consist of two subtypes, TRα and TRβ, which are important reg-
ulators of many fundamental physiological processes, including development, growth,
and metabolism. The NR2F family inhibits the activities of TRs on their target genes by
competing for the TRs’ binding sites [10]. TRα is significantly higher expressed in LUSC
than in LUAD, indicating that it may play a dominant role in LUSC [102]. Intriguingly,
both types of lung cancer patients exhibit the loss of TRβ expression [103], demonstrating
that TRs play diverse roles in different subtypes of lung cancer.

6. Discussion

The NR2F family not only plays a role in lung development but also contributes to
various lung-related diseases, such as CDH, IPF, and lymphangioleiomyomatosis. More-
over, the NR2F family is essential for the progression of both primary lung cancer and
metastatic lung cancer. In primary lung cancer, NR2F1 and NR2F2 influence the migration
and invasion of tumor cells, while NR2F6 acts as an immune checkpoint factor to modulate
immune processes. In metastatic lung cancer, NR2F1 mainly inhibits the transition of



J. Dev. Biol. 2024, 12, 24 9 of 14

dormant tumor cells to a proliferative state in the lungs, while NR2F2 influences tumor cell
metastasis to the lungs by affecting the tumor microenvironment, such as angiogenesis or
EMT. NR2F1-AS1 is closely linked to NR2F1-related functions in the progress of lung cancer.
Previous studies have provided some preliminary insights into the regulatory mechanisms
of the NR2F family in lung cancer and other lung diseases; nonetheless, how the NR2F
family participates in the regulation of the tumor microenvironment in lung cancer is still
largely unclear. The roles of lung cancer-related genes, such as KRAS, EGFR, and ALK,
have been systematically investigated in specific animal models of cancers [104]. However,
previous studies on the NR2F family in the lungs have mostly been conducted using lung
cancer cell lines or clinical tissue samples. The generation of specific lung cancer animal
models for NR2F1, NR2F2, and NR2F6 will not only enhance the understanding of the
molecular mechanisms of lung cancer but also improve the diagnosis and therapy for lung
cancer associated with NR2F family dysregulation.

Previous studies have demonstrated that nuclear receptors are excellent targets for
cancer therapy. Currently, drugs against nuclear receptors, such as ER and RXR, have
been developed and used to treat various cancers, including breast cancer, with convincing
efficacy [105]. The NR2F nuclear receptor subfamily, which interacts with various nuclear
receptors, including RARs and RXRs, is a potential novel therapeutic target in cancer,
especially in lung cancer.

Single-cell and spatial omics technologies are rapidly advancing and have been widely
applied to research on development and disease, which enables precise identification of
cellular heterogeneity and cell–cell communications. Spatial omics technology, which
can simultaneously provide spatial location and omics information of tissues, makes it
possible to uncover the interactions among cells in the tumor microenvironment [106].
Recently, spatial omics methods have been used to compare the difference between primary
and metastatic tumor tissues in the brain metastasis of NSCLC. Changes in the immune-
suppressive and fibrotic microenvironment were identified, and those changes aid the
metastatic tumor cells in creating a suitable niche for rapid proliferation and progression in
the brain [107].

In summary, the expression and functions of the NR2F family are closely associated
with lung development and lung-related diseases. By establishing well-designed animal
models targeting the NR2F family members in the lungs and combining the latest technolo-
gies, like spatial omics, a better understanding of the molecular and cellular mechanisms of
the NR2F family in the development and diseases of the lung may be achieved, which will
benefit the findings of novel diagnostic and therapeutic approaches for NR2F-related lung
diseases, including lung cancer.
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