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Abstract: A relativistic positioning system is a set of four emitters broadcasting their proper times
by means of light signals. The four emitter times received at an event constitute the emission
coordinates of the event. The covariant quantities associated with relativistic positioning systems are
analysed relative to an observer in Minkowski space-time by splitting them in their relative space-like
and time-like components. The location of a user in inertial coordinates from a standard set of
emission data (emitted times and satellite trajectories) is solved in the underlying 3+1 formalism. The
analytical location solution obtained by Kleusberg for the GPS system is recovered and interpreted in
a Minkowskian context.
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1. Introduction

The central question in positioning theories is to determine the location of the user
without ambiguity after solving the navigation equations.

For users of global navigation satellite systems (GNSSs), such as GPS and Galileo,
these navigation equations are usually formulated in terms of pseudoranges, which are the
apparent distances to the user from each of the emitters, as inferred from the travel time of
the signal (see Section 4 for more detail).

In general, the procedures used in GNSSs to solve the equations analytically can
be divided into two classes depending on whether they use pseudoranges (Bancroft’s
algorithm [1]) or pseudorange differences (Kleusberg’s method [2,3]), thus eliminating
the user clock bias (see Section 4). In line with [1], Abel and Chaffee stated the problem
using the Lorentz scalar product [4] and analysed the existence and non-unicity of the
solutions [5] (bifurcation), which was also considered in [6].

A fully relativistic formulation of the problem in Minkowski space-time was given in
the context of the theory of relativistic positioning systems (RPSs) [7,8]. For the foundations,
genesis, objectives and perspectives of the RPS theory, refer to [9–12] and references therein.
Recently, Bancroft’s solution [1] was interpreted in the language of RPSs [13,14], but the
corresponding RPS interpretation of Kleusberg’s solution remained to be done. This
complementary task is achieved in this paper.

Recall that an RPS is a set of four ordered clocks A (A = 1, 2, 3, 4) with world-lines
γA(τ

A) broadcasting their times τA by means of light signals. For simplicity, and as is
the case in the present work, the time considered is the proper time. The four times {τA}
received by an event x constitute the emission coordinates of the event [15]. Again, for
simplicity, the emission and reception processes are assumed to be continuous. For the
theory and classification of RPSs based on a discrete set of data, see [16].

Current GNSSs do not broadcast the proper time of their clocks, but the system’s own
time (the GPS or the Galileo time), a time which, roughly speaking, coincides up to a fixed
shift with the International Atomic Time.
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In any case, for every set of four satellites in a given constellation (that could include
both GPS and Galileo satellites), the four broadcast times essentially share the algebraic and
differential properties that characterise an emission coordinate system. These properties
were analysed elsewhere [7,15], and they do not need to be exhaustively remembered here.
Only one property needs to be highlighted now, which concerns the very unusual character
of the emission coordinates: all the gradients dτA are light-like. This means that {τA}
is a set of four null gradient coordinates, which is an outstanding property that wholly
determines the causal class of every relativistic emission coordinate system [17].

Suppose there is a specific coordinate system {xα} that covers the whole region of
emission coordinates, let γA(τ

A) be the world-lines of the clocks A with respect to this
particular coordinate system and let {τA} be the values of the emission coordinates received
by a user. The data set E ≡ {γA(τ

A), {τA}} is called the standard data set.
The location problem with respect to E , also called the standard location problem or

the E-location problem for short, is the problem of finding the coordinates {xα} of the user
from the sole data E by solving the following algebraic system of four non-linear equations
(called the null propagation equations):

(x− γA)
2 = 0, A = 1, 2, 3, 4. (1)

The covariant solution to the standard location problem in Minkowski space-time was
already discussed [7,8]. Nevertheless, it remains to be formulated in the framework of an
arbitrary inertial coordinate system associated with an inertial observer u (u2 = −1), that
is, by describing space-time from its relative splitting in space plus time with respect to u.
Then, the unknown space-time position x of the user can be split, relative to u, in inertial
components {x0, x⃗} as follows:

x = x0u + x⃗, x0 = −x · u, x⃗ · u = 0. (2)

From now on, we take the speed of light in vacuum to be c = 1 and t ≡ x0 (see
Appendix A for the notation used in this article).

The matter is then how to determine, with respect to u, the solution of the standard
location problem, that is, the coordinate transformation from the emission to inertial
coordinates x0(τA) and x⃗(τA) when the motions of the emitters are known (received data)
in the inertial coordinate system. For this purpose, the tensor quantities that are intrinsically
related to the configuration of the emitters at x have to be split in time-like and space-like
components. Once the splitting is accomplished, we can recover Kleusberg’s analytical
solution [3] used in GPS navigation [18].

The covariant solution [7,8] was used in the construction of numerical algorithms for
positioning in flat and curved space-times [19–22]. The statement of the location problem
in the exact Schwarzschild metric and its perturbative treatment was modelled in [23–25].

The paper is organised as follows. In Section 2, the geometric objects (vector and
bivectors) associated with the configuration of the emitters for the reception event are de-
composed in time-like and space-like components, relative to an inertial observer. Section 3
is devoted to splitting, relative to an inertial observer, the covariant formula that gives the
location of a user in relativistic positioning. In Section 4, we use the preceding splittings
to express Kleusberg’s procedure in a relativistic formalism and to recover Kleusberg’s
solution from the covariant solution. In Section 5, an alternative expression of the covariant
solution in terms of the principal directions of the configuration bivector is provided. The
principal directions are split relative to an inertial observer and Kleusberg’s solution is
again recovered. The results are summarised and discussed in Section 6. Appendix A is
devoted to summarising the notation and conventions used.

Some preliminary results of this work were communicated without proof at the ESA-
Advanced Concepts Team Workshop “Relativistic Positioning Systems and their Scientific
Applications” (see Ref. [26]).
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2. Configuration of the Emitters: Underlying Geometry

In relativistic positioning terminology, the configuration of the emitters for an event P
is the set of four events {γA(τ

A)} of the emitters at the emission times {τA} received at P.
The covariant solution [7] to the standard location problem depends on the configuration
of the emitters through different scalars, vectors and bivectors, all of which are computable
from the standard data set {γA(τ

A), {τA}}. These quantities are analysed in this section.
The setR of events that are reached by the broadcast signals are called the emission

region of the RPS. Then, if P ∈ R, let us denote by x ≡ OP the position vector with respect
the origin O of a given inertial system. If a user at P receives the broadcast times {τA} and
γA denotes the position vectors of the emitters at the emission times, then γA ≡ OγA(τ

A).
The trajectories followed by the light signals from the emitters γA(τ

A) to the reception
event P are described by the vectors mA ≡ x− γA. Let us choose a reference emitter (say
A = 4) and refer the other emitters (referred emitters) to it. Then, the position vector of the
a-th emitter with respect to the reference emitter is written as (see Figure 1a)

ea = γa − γ4 = m4 −ma (a = 1, 2, 3). (3)

The world function [27,28] of the end point of ea is the scalar

Ωa =
1
2
(ea)

2. (4)

As discussed in [7], the emission/reception conditions imply Ωa > 0.

x
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(a) (b)
Figure 1. Configuration vectors in Minkowski space-time and in the 3-space orthogonal to u, E⊥.
(a) The fourth emitter γ4 is taken as the reference emitter. Then, the position vector of the event P is
m4. The relative positions ea of the referred emitters γa are given by ea = γa − γ4 (a = 1, 2, 3). This
figure was taken from [7,8,26]. (b) In the 3-space orthogonal to u, E⊥, taking the fourth emitter as the
reference emitter, y⃗ = m⃗4 is the position vector of the user’s location X. The relative positions e⃗a of
the referred emitters are given by e⃗a = γ⃗a − γ⃗4 = m⃗4 − m⃗a (a = 1, 2, 3).

2.1. Splitting of γA, mA and ea

The position vectors γA can be decomposed, relative to u, as

γA = tAu + γ⃗A (A = 1, 2, 3, 4), (5)

where tA ≡ γ0
A is the coordinate inertial time of the event γA(τ

A) as measured by the
inertial observer u. The vectors mA are decomposed as follows:

mA = (t− tA)u + x⃗− γ⃗A = m0
Au + m⃗A (A = 1, 2, 3, 4), (6)
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which are null and future pointing:

(t− tA)
2 = (x⃗− γ⃗A)

2, t > tA. (7)

For later convenience, we define

y ≡ x− γ4 = m4 = y0u + y⃗. (8)

The position vector ea of the a-th emitter with respect to the reference emitter is decomposed
as follows (see Figure 1b):

ea = σau + e⃗a, σa = ta − t4, e⃗a = γ⃗a − γ⃗4 (a = 1, 2, 3). (9)

With the inertial components of ea, {σa, e⃗a}, we can express the world function (4) as

Ωa =
1
2
((⃗ea)

2 − σ2
a ) =

1
2
[(γ⃗a − γ⃗4)

2 − (ta − t4)
2]. (10)

2.2. Splitting of the Configuration Vector χ

Here, we always consider that for the reception event P, the emitter configuration is
regular, that is, the four emission events {γA(τ

A)} determine a hyperplane named the
configuration hyperplane for P. Or equivalently, we assume that the configuration vector
χ, defined as

χ ≡ ∗(e1 ∧ e2 ∧ e3) (11)

is nonzero, i.e., χ ̸= 0. The star ∗ stands for the Hodge dual operator associated with the
metric volume element η = (ηαβµν). One has χα = ηαβµνeβ

1 eµ
2 eν

3 ̸= 0. Non-regular emitter
configurations (with χ = 0) can sporadically occur in current global navigation systems, as
it was stressed and considered in [4,5].

Substituting (3) into (11) and taking into account (A3) and (A4), we have

χ = σ1 ∗ (u ∧ e⃗2 ∧ e⃗3) + σ2 ∗ (⃗e1 ∧ u ∧ e⃗3) + σ3 ∗ (⃗e1 ∧ e⃗2 ∧ u) + ∗(⃗e1 ∧ e⃗2 ∧ e⃗3)

= (⃗e1, e⃗2, e⃗3) u + σ1 e⃗2 × e⃗3 + σ2 e⃗3 × e⃗1 + σ3 e⃗1 × e⃗2,

where × denotes the cross product between vectors in the three-space orthogonal to u, E⊥
(see Appendix A). The following result concerning the decomposition of χ in time-like and
space-like components holds.

Proposition 1. Relative to an inertial observer u, the configuration vector is expressed as
χ = χ0u + χ⃗, with

χ0 = (⃗e1, e⃗2, e⃗3), χ⃗ =
1
2

ϵabcσa e⃗b × e⃗c , (12)

where {σa, e⃗a} are the components of the position vectors of the referred emitters.

Then, we see that |χ0| is the volume of the parallelepiped defined by the relative
positions e⃗a of the referred emitters. On the other hand, χ⃗ represents a weighted vector
area. The area Abc of the face generated by e⃗b and e⃗c is weighted with a complementary σa
factor. Then,

|σa⃗eb × e⃗c| = c|tc − t4|Abc (13)

is the volume of the time-like parallelepiped generated by {σau, e⃗b, e⃗c}.

2.3. Splitting of the Bivectors Ea

The positions of the referred emitters, ea, generate the bivectors Ea, which are defined as

E1 = ∗(e2 ∧ e3), E2 = ∗(e3 ∧ e1), E3 = ∗(e1 ∧ e2), (14)
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that is, Ea = ∗(ea+1 ∧ ea+2), where the notation is understood to be modulo 3. By using
index notation, one can write, for example,

(ea ∧ eb)
µν = eµ

a eν
b − eµ

b eν
a , (15)

[∗(ea ∧ eb)]αβ =
1
2

ηαβµν(ea ∧ eb)
µν = ηαβµνeµ

a eν
b . (16)

Then, according to (A3), one obtains

i(u) ∗ (ea ∧ eb) = −e⃗a × e⃗b (17)

where i() is the interior product (defined in Appendix A) and we have taken (9) into
account.

For an observer u, the electric and magnetic parts of a bivector Ea are vectors in the
three-space orthogonal to u, which are defined as

S⃗a = −i(u)Ea, B⃗a = −i(u) ∗ Ea, (18)

respectively. Then, from (17) and taking into account the identity ∗(∗Ea) = −Ea and (9),
we have

S⃗a = −i(u) ∗ (ea+1 ∧ ea+2) = e⃗a+1 × e⃗a+2, (19)

B⃗a = i(u)(ea+1 ∧ ea+2) = −σa+1 e⃗a+2 + σa+2 e⃗a+1, (20)

where these equalities are understood to be modulo 3.
Thus, the following result is established.

Proposition 2. Relative to an inertial observer u, the configuration two-forms are expressed as

Ea = u ∧ S⃗a − ∗(u ∧ B⃗a), (21)

S⃗a ≡ e⃗a+1 × e⃗a+2, B⃗a ≡ ϵabcσc e⃗b, (22)

where {σa, e⃗a} are the components of the position vectors of the referred emitters.

2.4. Splitting of the Configuration Bivector H

For each emitter γA, we can define a configuration bivector H(A) with respect to that
emitter. In the present work, we define H ≡ H(4) as the configuration bivector with respect
to the reference emitter γ4:

H = ΩaEa = Ω1E1 + Ω2E2 + Ω3E3. (23)

Relative to an inertial observer u, this bivector can be written as

H = u ∧ S⃗− ∗(u ∧ B⃗), (24)

where S⃗ = −i(u)H and B⃗ = −i(u) ∗ H are, respectively, the electric and magnetic parts of
H relative to u. Taking into account (21)–(23), S⃗ and B⃗ are given according to the following
proposition.

Proposition 3. Relative to an inertial observer u, the electric and magnetic parts, S⃗ and B⃗, into
which the configuration bivector H is split, can be expressed as

S⃗ = ΩaS⃗a = Ω1 (⃗e2 × e⃗3) + Ω2 (⃗e3 × e⃗1) + Ω3 (⃗e1 × e⃗2), (25)

B⃗ = Ωa B⃗a = (Ω3σ2 −Ω2σ3 )⃗e1 + (Ω1σ3 −Ω3σ1 )⃗e2 + (Ω2σ1 −Ω1σ2 )⃗e3. (26)
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As was noted in [8], since the invariant Hµν(∗H)µν identically vanishes, it always
occurs that S⃗ · B⃗ = 0, which also results from (25) and (26).

We can now express the splitting of the configuration vector χ (12) in terms of S⃗ and B⃗,
which follows from (25) and (26) by the scalar and cross product with e⃗a.

Proposition 4. Relative to an inertial observer u, the configuration vector is expressed as
χ = χ0u + χ⃗, with

χ0 =
S⃗ · e⃗a

Ωa
, χ⃗ =

σaS⃗ + e⃗a × B⃗
Ωa

, (27)

for any a = 1, 2, 3, where {σa, e⃗a} are the components of the position vectors of the referred emitters.

3. The Location Problem

The E-location problem in flat space-time was analysed in [7,8] by specifically consid-
ering an inertial coordinate system {xα}. The result may be expressed in a closed formula
that we explain below. The goal of this section is to separate this formula in time-like and
space-like components by splitting, relative to an inertial observer, the quantities involved
in the covariant solution to the E-location problem.

The transformation from emission to inertial coordinates is expressed in closed form
according to the following proposition (see [7,8]).

Proposition 5. Let γA(τ
A) be the world-lines of four arbitrary emitters of an RPS with respect

to an inertial coordinate system {xα}, and let {τA} be their emission coordinates. The coordinate
transformation x = K(τA) between the emission and inertial coordinates is given by

x = γ4 + y∗ + λχ, (28)

y∗ =
1

ξ · χ i(ξ)H, λ = − y2
∗

(y∗ · χ) + ϵ̂
√

∆
, ∆ = (y∗ · χ)2 − y2

∗χ
2, (29)

where ξ is any vector that satisfies the transversality condition ξ · χ ̸= 0; ϵ̂ is the orientation of the
positioning system at x, which is given by ϵ̂ = sgn[∗(m1 ∧m2 ∧m3 ∧m4)]; χ is the configuration
vector; and H is the configuration bivector.

As set out in [7], the null propagation Equation (1) can be expressed with respect to
the reference emitter and separated into a quadratic equation:

y2 = 0, (30)

and a system of three linear equations

ea · y = Ωa, a = 1, 2, 3. (31)

The quantity y∗ is the particular solution to the system (31). Note that ξ · y∗ = 0 and
that y∗ is directly computable from the sole standard emission data since χ and H are
determined by the vectors ea given by Equation (3).

Furthermore, the consistency of the above definition of λ is assured. Since the vectors
{y∗, χ} and {m4, χ} generate the same two-plane, one has that sgn (∆) = sgn [(χ ·m4)

2],
and then ∆ ⩾ 0.

As was noticed in [8], ∆ is the scalar invariant of H defined by f ≡ 1
2 trH2,

∆ = f = −1
2

HµνHµν, (32)

and may be directly computed from H.
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3.1. Splitting of the Particular Solution y∗
In this subsection, we carry out the relative decomposition of the particular solution

y∗ that appears in Equation (28). From Equation (29), the splitting of y∗ is obtained by
splitting the vector i(ξ)H. To begin with, notice that the transversal vector ξ can always be
chosen so that its time-like component ξ0 is equal to one (ξ0 = −ξ · u = 1), that is

ξ = u + ξ⃗. (33)

Thus, the transversality condition says that χ0 ̸= ξ⃗ · χ⃗, and from Proposition 1, this
other result follows.

Proposition 6. Relative to an inertial observer u, the transversality condition ξ · χ ̸= 0 is
expressed as

(⃗e1, e⃗2, e⃗3) ̸=
1
2

ϵabcσa (ξ⃗, e⃗b, e⃗c). (34)

Then, from (33) and (24), we have

i(ξ)H = −S⃗− (ξ⃗ · S⃗)u + ∗(ξ ∧ u ∧ B⃗) = −(ξ⃗ · S⃗)u− S⃗− ξ⃗ × B⃗

and the following statement holds.

Proposition 7. Relative to an inertial observer u, the particular solution y∗ orthogonal to ξ = u+ ξ⃗
is expressed as

y∗ = y0
∗ u + y⃗∗, (35)

where

y0
∗ = −

ξ⃗ · S⃗
D

, y⃗∗ = −
S⃗ + ξ⃗ × B⃗

D
, (36)

with the transversality condition expressed as

D ≡ ξ · χ = ξ⃗ · χ⃗− (⃗e1, e⃗2, e⃗3) ̸= 0. (37)

The vectors χ⃗, S⃗ and B⃗ are obtained from the positioning data using Equations (12),
(25) and (26).

3.2. Splitting of the Covariant Solution x

Equation (28) gives the solution x for the E-location problem provided that y∗ and
ϵ̂ are obtained from a standard set of data E ≡ {γA(τ

A), {τA}}. Relative to an inertial
observer u, the solution x is split as x = tu + x⃗, with

t = t4 + y0
∗ + λχ0, x⃗ = γ⃗4 + y⃗∗ + λχ⃗. (38)

In fact, according to Equation (28), the determination of the scalar λ involves both y∗
(given by (29)) and ϵ̂. Propositions 1 and 3 provide, respectively, the inertial components
of χ and H in terms of the data. Proposition 7 allows for determining y∗ = {y0

∗, y⃗∗}. The
invariant ∆ can be computed from (24) and (32) to see that it has a clear geometric meaning
according to the following proposition.

Proposition 8. Relative to an inertial observer u, H splits into electric (S⃗) and magnetic (B⃗) parts
so that the invariant ∆ is expressed as

∆ = S⃗2 − B⃗2. (39)

According to this proposition, the user knows when it is crossing the region where
∆ = 0 (44), namely, when S⃗ and B⃗ are equimodular. In this region, the user can still locate
itself using Proposition 5.
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Then, we can obtain λ:

λ = − −(y0
∗)

2 + y⃗ 2
∗

(−y0∗χ0 + y⃗∗ · χ⃗) + ϵ̂
√

S⃗2 − B⃗2
. (40)

Notice that to make this expression for λ operative, one needs to determine the orien-
tation ϵ̂, whose very definition (see Proposition 5) involves the unknown x. Therefore, the
covariant solution of the standard location problem, given by (28), has to be accompanied
by a method for obtaining ϵ̂ that does not involve the previous calculation of x.

This question was discussed in [7], which showed that in the central region of the
positioning system (the space-time region of all x ∈ R such that χ2 ≤ 0, see Section 3.3 below),
the orientation ϵ̂ is constant and can be obtained as ϵ̂ = sgn(u · χ) for any future-pointing
time-like vector u. In particular, if u is an inertial observer,

ϵ̂ = −sgn(χ0) = −sgn[(⃗e1, e⃗2, e⃗3)]. (41)

Note that from (12) and (27):

(⃗e1, e⃗2, e⃗3) =
S⃗ · e⃗a

Ωa
, for any a = 1, 2, 3, (42)

and therefore, since Ωa > 0,
ϵ̂ = −sgn(S⃗ · e⃗a). (43)

Thus, we arrive at the following result.

Proposition 9. In the central region of an RPS, the orientation ϵ̂ is +1 or −1 if S⃗ · e⃗a (a = 1, 2, 3)
is, respectively, negative or positive.

The determination of ϵ̂ from a set of observational data, as well as its connection
with the solution to the bifurcation problem (outside the central region), were analysed
elsewhere [7,8], where it was showed that the applicability of Proposition 5 has no strings
attached. A brief account of the bifurcation problem follows.

3.3. Emission Coordinate Domains and Bifurcation Problem

Equation (28) is the coordinate transformation from the emission to inertial coordinates,
xα = Kα(τA). The inverse transformation Θ, mapping to every x its emission coordinates,
τA = ΘA(x), is known as the characteristic emission function. As shown in [8], if jΘ(x) is
the Jacobian determinant of Θ:

jΘ(x) = 0 iff ∆ = 0. (44)

This property defines two different emission coordinate systems: the front emission
coordinate system and the back emission coordinate system. As long as we remain in
space-time regions where light signals do not bifurcate, the way emission coordinates
are created by the relativistic positioning system imposes that the coordinate domains in
space-time of the front and of the back emission coordinate systems are disjoint.

In addition, these coordinate domains are related by the following property: all of
the values of the emission coordinates {τA} on the back emission coordinate domain are
also values of the emission coordinates on a (generically proper) set of the front emission
coordinate domain, which is called the time-like front region; the complementary set (in
the front emission coordinate domain) of this time-like front region is called the central
region of the relativistic positioning system [7,8].

This coincidence of values of the emission coordinates in the back coordinate domain
and in the time-like front coordinate domain is at the origin of the bifurcation problem. How
can the users of the relativistic positioning system know in which of the two coordinate
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domains of space-time they are? To answer this question the user needs to compute the
causal character of the emitter configuration (at x): it is said to be space-like, light-like
or time-like if χ2 < 0, χ2 = 0 or χ2 > 0, respectively, at x. The regions defined by these
conditions are respectively denoted as Cs, Cl and Ct. The central region is C = Cs ∪ Cl . The
time-like front region CF

t and the central region form the front emission coordinate domain.
The back emission coordinate domain is the time-like back region CB

t .
Therefore, depending on the causal character of the configuration vector χ, we distin-

guish three situations (see Figures 3–5 in [8]):

1. If χ is time-like, there is only one emission solution P; the other (P′) is a reception
solution. In this case, the sign of ϵ̂ can be determined from the sole standard emission
data {γA(τ

A), {τA}} (see Proposition 9).
2. If χ is light-like, there is only one valid emission solution (the other solution is degen-

erate). The sign of ϵ̂ can be determined from {γA(τ
A), {τA}} (see Proposition 9).

3. If χ is space-like, there are two valid emission solutions: in order to determine the sign
of ϵ̂, additional observational information is necessary (relative positions of emitters
on the user’s celestial sphere; see [8]).

4. Kleusberg’s Solution

In a GNSS, the pseudoranges are modelled by considering the emitters’ positions
at signal emission, the user and emitter clock biases, and different corrections that affect
the signal propagation [29,30]. The pseudorange equations are first linearised around an
approximate position and then solved by iterative methods. The user’s approximate posi-
tion is usually obtained using analytic (closed-form) solutions of the equations (neglecting
emitter clock biases and signal propagation corrections), where the unknowns are the user’s
coordinates and clock bias with respect to a certain reference frame and reference time. In
this section, we see how the relative formulation of the characteristic quantities of an RPS
allows for interpreting Kleusberg’s analytical solution to the GPS navigation equations [3].

4.1. Concepts and Notations

In [3], the starting point is the measured pseudoranges between the satellites and the
user. The pseudoranges pA are modelled as follows (taking the speed of light c = 1):

pA = [(x− xA)
2 + (y− yA)

2 + (z− zA)
2]

1
2 + δT, (45)

where {xA, yA, zA} are the Cartesian coordinates of the A-th satellite (A = 1, 2, 3, 4) at the
time tA of emission; {x, y, z} are those of the user at the time t of reception; and δT is the
user’s clock bias, which is defined as the difference between the user’s clock time and the
so-called GPS time.

Assuming that the bias δT is the same for all the satellites, it can be removed by
subtracting one reference pseudorange (p4) from the other three: da := pa − p4, a = 1, 2, 3.
In the covariant solution, this difference can be identified with σa := ta − t4:

da ←→ σa.

Kleusberg denoted the Euclidean positions of the three emitters with respect to the
reference emitter as ba êa and the user’s position vector from the reference emitter as s0ê,
where êa and ê are unit vectors. In the covariant solution, the position four-vector ea of
the a-th emitter with respect to the reference emitter is decomposed relative to the inertial
observer u as ea = σau + e⃗a, and therefore,

ba ←→ |⃗ea|.

These and other correspondences are summarised in Table 1, including the electric
and magnetic parts of the configuration bivector H.
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Table 1. Identifying Kleusberg’s notation and concepts with the time-like and space-like components
of those of the RPS solution. In the last row, µ = 1 (µ = −1) stands for the emission (reception)
solutions.

Kleusberg RPS

Pseudorange difference da σa Coordinate time difference

Emitter distance
to reference emitter ba |⃗ea|

Emitter distance
to reference emitter

Unit vector from reference
emitter to emitter a êa

e⃗a
|⃗ea |

Unit vector from reference
emitter to emitter a

User distance
to emitter a sa |m⃗a|

User distance
to emitter a

User distance
to reference emitter s0 |⃗y| User distance

to reference emitter

Unit vector from
reference emitter to user ê y⃗

|⃗y|
Unit vector from

reference emitter to user

Semi-difference 1
2 (b

2
a − d2

a) Ωa World function scalar

Three-vector G⃗ S⃗
4Ω1Ω2Ω3

Electric part of
configuration bivector H

Three-vector H⃗ B⃗
µ4Ω1Ω2Ω3

Magnetic part of
configuration bivector H

With these correspondences, we can explain Kleusberg’s procedure in the RPS nota-
tion. The starting point is the following equations, which result from (6), (8) and (9) (see
Figure 1b):

e⃗a = γ⃗a − γ⃗4 = m⃗4 − m⃗a = y⃗− m⃗a, a = 1, 2, 3,

which implies that
m⃗2

a = (⃗y− e⃗a)
2 = y⃗ 2 + e⃗ 2

a − 2⃗y · e⃗a. (46)

Furthermore, from (8), as y = m4 is light-like:

−(y0)2 + y⃗ 2 = 0. (47)

This equation is solved by taking y0 = µ|⃗y|, where µ can take the values ±1, with
µ = 1 (µ = −1) for emission (reception) solutions.

Also, from (3) and (8), we have (see Figure 1a)

ma = m4 − ea =y− ea,

and then
−(y0 − σa)

2 + (⃗y− e⃗a)
2 = 0, a = 1, 2, 3. (48)

Therefore,
m⃗2

a = (y0 − σa)
2 = (µ|⃗y| − σa)

2, a = 1, 2, 3, (49)

where in the last equality, we use y0 = µ|⃗y|.
Expanding (49):

m⃗2
a = y⃗ 2 + σ2

a − 2µ|⃗y|σa, a = 1, 2, 3. (50)

Equating (46) and (50), we obtain the equations solved by Kleusberg using the same
notation as in the covariant solution:

−µ|⃗y|σa + y⃗ · e⃗a = Ωa, (51)
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where we have taken into account (4). Then,

|⃗y| = Ωa

−µσa + ê · e⃗a
, a = 1, 2, 3, (52)

where we use Kleusberg’s notation ê = y⃗
|⃗y| to simplify the expression. Note that the sign of

µ, which gives the emission or reception character of the solution, has to be maintained for
further discussion, even if such a distinction is not made in Kleusberg’s procedure.

4.2. Kleusberg’s Procedure to Obtain the Solution

Kleusberg’s procedure yields y⃗ = |⃗y|ê, and therefore, involves two steps: first, one
obtains ê, and then |⃗y| by substituting ê in (52).

In order to solve the system of Equation (51), Kleusberg equated the right-hand sides
of the first and second of the equations in (52), and of the second and third, to obtain the
following equations:

Ωa

−µσa + ê · e⃗a
=

Ωa+1

−µσa+1 + ê · e⃗a+1
, a = 1, 2. (53)

He rearranged each of these equations to obtain[
e⃗1

Ω1
− e⃗2

Ω2

]
· ê = µ

(
σ1

Ω1
− σ2

Ω2

)
, (54)[

e⃗2

Ω2
− e⃗3

Ω3

]
· ê = µ

(
σ2

Ω2
− σ3

Ω3

)
. (55)

And rewrote these equations as

F⃗1 · ê = U1, F⃗2 · ê = U2, (56)

F⃗a ≡
e⃗a

Ωa
− e⃗a+1

Ωa+1
, Ua ≡ µ

(
σa

Ωa
− σa+1

Ωa+1

)
, a = 1, 2. (57)

To solve them, Kleusberg started with the following identity and expanded the double
cross-product:

ê× (F⃗1 × F⃗2) = µ(U2 F⃗1 −U1 F⃗2), (58)

and defined two three-vectors:

G⃗ ≡ F⃗1 × F⃗2, H⃗ ≡ µ
(

U2 F⃗1 −U1 F⃗2

)
. (59)

As results from (25) and (26), these vectors are directly related to the vectors S⃗ and B⃗,
in which the configuration bivector H of the covariant method is split with respect to the
inertial observer u (see Table 1).

Proposition 10. The electric and magnetic parts, S⃗ and B⃗, in which the bivector H is split relative
to an inertial observer u, can be expressed as

S⃗ = 4Ω1Ω2Ω3G⃗, B⃗ = µ4Ω1Ω2Ω3H⃗, (60)

with G⃗ and H⃗ given in (59) and where µ = 1 (µ = −1) corresponds to emission (recep-
tion) solutions.

Now, Equation (58) is written as

ê× S⃗ = µB⃗, (61)
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or equivalently, multiplying by S⃗ (cross-product) from the left:

S⃗× (ê× S⃗) = µS⃗× B⃗. (62)

Expanding the vector triple product on the left-hand side:

S⃗2ê− (S⃗ · ê)S⃗ = µS⃗× B⃗. (63)

Furthermore,
S⃗ · ê = |S⃗| cos ϕ, (64)

where ϕ ∈ [0, π] is the angle formed by {S⃗, y⃗}. And from (61):

|B⃗| = |S⃗| sin ϕ. (65)

Therefore, when ϕ = π
2 , S⃗ and B⃗ are equimodular. Squaring (64) and (65) and adding

gives the following: (
S⃗ · ê

)2
+ B⃗2 = S⃗2 ⇔ S⃗ · ê = ±

√
S⃗2 − B⃗2. (66)

Note that in this step, an extra solution is introduced and that both solutions have the
same emission or reception character. Substituing (66) in (63), we arrive at the following result.

Proposition 11. The unit vector ê = y⃗
|⃗y| , which gives the direction from the reference emitter to

the user’s position, can be expressed only in terms of the electric and magnetic parts of the bivector
H as follows:

ê = |S⃗|−2
[

µS⃗× B⃗± S⃗
√

S⃗2 − B⃗2
]

, (67)

where µ = 1 (µ = −1) corresponds to the emission (reception) solutions.

To obtain |⃗y|, Equation (67) is substituted into any of the equations in (52).

Proposition 12. Using the same notation as in the covariant solution relative to an inertial observer
u, Kleusberg’s solution y⃗K is expressed as

y⃗K = |⃗y| ê = Ωa
S⃗× B⃗± µS⃗

√
S⃗2 − B⃗2

−S⃗2σa + (S⃗× B⃗) · e⃗a ± µS⃗ · e⃗a

√
S⃗2 − B⃗2

, (68)

for any a = 1, 2, 3.

4.3. Recovering Kleusberg’s Solution from the Covariant Solution

We can compare Equation (51) with those solved in the covariant method
(Equations (30) and (31)), written with respect to u:

ea · y = Ωa ⇒ −y0 σa + y⃗ · e⃗a = Ωa, a = 1, 2, 3, (69)

and
y2 = 0⇒ (y0)2 = y⃗ 2, (70)

where we use y = y0 u + y⃗ and ea = σa u + e⃗a.
Comparing Equations (51), (69) and (70), we realise that in contrast to the covariant

method, where, first, the linear system (69) and then the quadratic Equation (70) are solved
(the initial system of equations is split into a linear system and a single quadratic equation),
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Kleusberg directly solves the quadratic equation. Equation (51) is equivalent to (69) but
includes the quadratic condition (70), specifically y0 = µ|⃗y| .

To recover Equation (68) from the covariant solution (28), let us first split the covariant
solution y relative to the inertial observer u as y = y0u + y⃗:

y0 = y0
∗ + λχ0, y⃗ = y⃗∗ + λχ⃗, (71)

where y0 and y⃗∗ are given by (36), λ is given by (40), and χ0 and χ⃗ are given by (12).
Note that the particular solution y∗ and, by extension, λ, depend on the choice of the

transversal vector ξ. Therefore, we expect to recover (68) with a suitable choice of ξ. As
long as the transversality condition (34) is satisfied, we can choose ξ of the form ξ = u + ξ⃗.
We start by writing a general expression for ξ⃗ as

ξ⃗ = aS⃗ + bB⃗ + cS⃗× B⃗, (72)

with {a, b, c} as real scalars. Kleusberg’s solution (68) is equivalent to the covariant solution
with respect to the inertial observer (71) if we take a = ± 1√

∆
and c = 0 in (72):

ξ⃗ = ± S⃗√
∆
+ bB⃗, (73)

with b as a real scalar. With this choice of ξ, it is easy to see from (36) that y∗ is light-like
and, from (40), λ = 0 such that y⃗ = y⃗∗. Then, the following result is established.

Proposition 13. Setting the transversal vector ξ = u + ξ⃗, with ξ⃗ = ± S⃗√
∆
+ bB⃗ and b as a real

scalar, the covariant solution y obtained with this choice of ξ is split relative to the inertial observer
as y = y0u + y⃗, where

y0 = Ωa
S⃗2

−S⃗2σa + (S⃗× B⃗) · e⃗a ± S⃗ · e⃗a

√
S⃗2 − B⃗2

,

y⃗ = Ωa
S⃗× B⃗± S⃗

√
S⃗2 − B⃗2

−S⃗2σa + (S⃗× B⃗) · e⃗a ± S⃗ · e⃗a

√
S⃗2 − B⃗2

,

(74)

for any a = 1, 2, 3. The space-like component y⃗ is Kleusberg’s solution (68).

5. Covariant Solution in Terms of the Principal Directions of H

The covariant solution (28) can also be expressed in terms of the principal directions
(eigenvectors) of H. In general, a two-form, such as H, may be algebraically decomposed
in terms of its principal directions through its scalar invariants (see [31,32]). We say that a
two-form F is regular if it has at least one non-zero scalar invariant and can therefore be
decomposed as

F = α n ∧ l + β ∗ (n ∧ l), (75)

with {α, β} as real scalars and n and l as the principal directions of F, which are light-like
and satisfy l · n = −1. These are the eigenvectors of F with the respective eigenvalues α
and −α (they are also the eigenvectors of ∗F with the respective eigenvalues −β and β).

If f = − 1
2 FµνFµν and f̃ ≡ 1

2 Fµν(∗F)µν are the usual scalar invariants, the eigenvalues
are related to the invariants as follows:

α =
1√
2

√√
f 2 + f̃ 2 + f , β =

1√
2

√√
f 2 + f̃ 2 − f . (76)

As it was noticed in [8], in the case of the bivector H, since the invariant
f̃ = Hµν(∗H)µν = 0, it follows from (76) that β = 0. Then, from (75), it can be decom-
posed as

H = α n ∧ l, (77)
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with α =
√

∆, which follows from (32) and (76). Note that from (44), there is a region
where ∆ = 0, and thus, α = 0. But this does not mean that H = 0, rather that H is singular
(α = β = 0) in that region.

5.1. Principal Directions of H: Covariant Determination

According to [31,32], the principal directions of a two-form H can be obtained in
covariant form from its minimal polynomial. Since the eigenvalue β = 0, the minimal
polynomial p(κ) of H is

p(κ) = (κ + α)(κ − α)κ. (78)

For each of the eigenvalues ±α, we can construct a polynomial p±(κ):

p+(κ) = (κ − α)−1 p(κ), p−(κ) = (κ + α)−1 p(κ). (79)

And define the following projectors:

H+ ≡ p+(H) = H2 + αH, (80)

H− ≡ p−(H) = H2 − αH. (81)

Since p(H) = H3 − α2H = 0, it is then easy to verify that the principal directions n
and l are obtained by contracting an arbitrary time-like direction v with these projectors:

n = i(v)H+, l = i(v)H−, (82)

and normalising such that n · l = −1. Now, we can express the covariant solution of the
location problem in terms of l and n, which are computable from the standard data E
using (80)–(82).

Proposition 14. In regions where ∆ ̸= 0, each of the two solutions y+ and y− included in the
general solution y to the location problem (28) can also be expressed as

y+ =
αn

χ · n , y− = − αl
χ · l , (83)

where n and l are the principal directions of H, which are known from (82), α =
√

1
2 trH2 and the

configuration vector χ (11).

In order to analyse the cases in which the denominators in (83) vanish, first note that
we can form a basis of Minkowski space-time {l, n, p, q} with the principal directions l and
n and with two orthogonal space-like directions p and q, where

l2 = n2 = 0, l · n = −1, p2 = q2 = 1,

l · p = l · q = n · p = n · q = p · q = 0.

We can express the configuration vector χ in this basis as

χ = a l + b n + c p + d q, (84)

with {a, b, c, d} as real scalars. From (11) and (23), it follows that

i(χ) ∗ H = 0. (85)
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Since H = αn ∧ l (β = 0), it follows that ∗H = hp ∧ q (with h as a real scalar), and
thus,

i(χ) ∗ H = h i(χ)(p⊗ q− q⊗ p) = h(χ · p)q− h(χ · q)p = 0.

Therefore, c = χ · p = 0 and d = χ · q = 0, and then χ is a linear combination of l
and n:

χ = a l + b n. (86)

5.2. Emission Coordinate Domains and Bifurcation Problem

With this expression of χ, we can analyse the denominators in (83). This discussion is
directly related to the causal character of χ, which, in turn, determines the number of valid
emission solutions (see Section 3).

1. If χ is time-like, there is only one emission solution, while the other is a reception
solution. Explicitly using (86),

χ2 = (a l + b n)2 = −2ab < 0. (87)

Therefore, sgn(a) = sgn(b) ̸= 0. Since a = −χ · n and b = −χ · l, it follows that the
denominators in (83) do not vanish in this case. Furthermore, since n and l are both
future oriented and α > 0, y+ and y− have different orientations, with one being an
emission and the other a reception solution. If χ is future (past) oriented, then y− (y+)
is the valid emission solution.

2. If χ is light-like, there is only one valid emission solution (the other solution is
degenerate). Again, using (86),

χ2 = (a l + b n)2 = −2ab = 0. (88)

Therefore, a = 0 or b = 0 such that χ is collinear with n or l and one of the solutions,
y+ or y−, is degenerate, with the other being an emission solution. If χ is future (past)
oriented, then y− (y+) is the valid emission solution.

3. If χ is space-like, there are two valid solutions. Using (86),

χ2 = (al + bn)2 = −2ab > 0. (89)

Therefore, sgn(a) = −sgn(b) ̸= 0 and the denominators in (83) do not vanish in this
case. Since n and l are both future oriented and α > 0, y+ and y− are both emission
solutions if χ · n > 0 or χ · l < 0.

5.3. User Location in the Region Where jΘ(x) = 0

As said earlier, there is a region in which α = 0, and then, since β = 0, H is a singular
two-form. In this case, H can be decomposed as

H = k ∧ p, (90)

where k is the fundamental direction, which is light-like and satisfies i(k)H = i(k) ∗ H = 0,
and p is a space-like vector such that k · p = 0. Note that p can be determined up to a
transformation p→ p + ωk (with ω as a real scalar). To obtain the fundamental direction k,
one constructs the projectorH0 by setting α = 0 in (80) or (81):

H0 = H2 (91)

and contracts an arbitrary time-like direction v with it:

k = i(v)H0. (92)
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In this case, the only solution to the location problem is found according to the
following result.

Proposition 15. In the region where ∆ = 0, the solution y0 to the location problem (28) can also be
expressed as

y0 = Ωa
k

k · ea
, (a = 1, 2, 3), (93)

where k is the fundamental direction of H, which is known from (92), ea is the position vector of the
a-th emitter with respect to the reference emitter (3) and Ωa is the world function scalar (4).

Note that from (11) and (23), i(ea)H = −Ωaχ. Furthermore, as was stated in [8], the
region where ∆ = 0 is a subregion of the time-like region Ct such that χ2 > 0 in this region.
Therefore, (i(ea)H)2 ̸= 0. Explicitly, using (90):

i(ea)H = −Ωa[(k · ea)p− (p · ea)k]. (94)

Squaring:

(i(ea)H)2 = Ω2
a(k · ea)

2 ̸= 0. (95)

Hence, the denominator in (93) does not vanish in this region.

5.4. Splitting of the Covariant Solution in Terms of l and n

We can split the principal directions of H relative to an inertial observer u by posing
the eigenvalue equations

i(n)H = αn, i(l)H = −αl, (96)

and expressing H relative to u according to (24) and n and l as

n = n0 u + n⃗, l = l0 u + l⃗. (97)

Expanding the left-hand side of (96) using (24), (97) and (A3):

i(n)H = i(n)(u ∧ S⃗)− i(n) ∗ (u ∧ B⃗) = (−n⃗ · S⃗)u− (n0S⃗ + n⃗× B⃗). (98)

Expanding the right-hand side of (96) using (97):

i(n)H = αn0u + α⃗n, (99)

and Equations (98) and (99), yields the following equations for the time-like and space-like
components of the principal direction n:

n⃗ · S⃗ = −αn0, n0S⃗ + n⃗× B⃗ = −α⃗n. (100)

Similarly, the second eigenvalue equation in (96) leads to the following equations for
the time-like and space-like components of the principal direction l:

l⃗ · S⃗ = αl0, l0S⃗ + l⃗ × B⃗ = α⃗l. (101)

The solution of Equations (100) and (101) yields the following result.

Proposition 16. In each coordinate domain of an RPS, the bivector H is a regular two-form that
can be algebraically decomposed as H = α n ∧ l, where n and l are the prinicipal directions, which
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are light-like eigenvectors of H with eigenvalues α and −α and satisfy n · l = −1. Relative to an
inertial observer u, the principal directions are split as n = n0u + n⃗ and l = l0u + l⃗, where

n0 =
S⃗2

M
, n⃗ =

−αS⃗ + S⃗× B⃗
M

, (102)

l0 =
S⃗2

M
, l⃗ =

αS⃗ + S⃗× B⃗
M

, (103)

with M =
√

2α|S⃗| and α =
√

S⃗2 − B⃗2.

Then, the alternative expression of the covariant solution given in Proposition 14 may
be split according to the following proposition.

Proposition 17. Relatively to an inertial observer u, the covariant solutions y+ and y− for the
E-location problem given in (83) are split as y+ = y0

+u + y⃗+ and y− = y0
−u + y⃗−, with

y0
+ = Nn0, y⃗+ = Nn⃗, N =

α

χ · n , (104)

y0
− = −Ll0, y⃗− = −L⃗l, L =

α

χ · l , (105)

where {n0, n⃗} and {l0, l⃗} are given by (102) and (103), respectively.

Using Proposition 17, it is easy to verify that each of the solutions included in (68),
depending on the sign of the square root term, are y⃗+ and y⃗− given in (104)–(105).

Proposition 18. The covariant solutions y± are split relative to the inertial observer as
y± = y0

±u + y⃗±, where y0
± and y⃗± are given by (104)–(105). The space-like component y⃗± is

Kleusberg’s solution (68).

6. Discussion and Comments

Users of global navigation satellite systems, such as GPS and Galileo, locate them-
selves by solving the navigation equations through iterative methods around an initial
approximate position. This initial estimation is usually analytically obtained by solving a
simplified version of the equations (neglecting gravitational, atmospheric and instrumental
effects). These closed-form solutions are either based on pseudoranges or on pseudor-
ange differences. In [14], a known analytical solution based on pseudoranges, Bancroft’s
solution [1], was interpreted in the language of RPS.

In this paper we analyse, from the perspective of the theory of RPS, another known
closed-form solution based on pseudorange differences, i.e., Kleusberg’s solution [3]. We
first formulated the theory of RPS in the framework of an inertial coordinate system. To
this end, the quantities that are related to the configuration of the emitters, such as the
configuration vector χ and the bivector H, are split in time-like and space-like components.
This formulation of the theory allowed us to interpret and express Kleusberg’s solution to
the pseudorange navigation equations in terms of these quantities.

Furthermore, a new expression of the covariant solution to the standard location
problem is given in terms of the principal directions (eigenvectors) of H and its only non-
vanishing scalar invariant, and the procedure to obtain these eigenvectors in covariant
form [31,32] is applied. A brief analysis of the solutions based on the causal character of the
emitter configuration is provided for this alternative expression of the covariant solution.

Kleusberg’s solution is recovered from the space-like component of the covariant
solution, both from its original expression and from the alternative expression given in
terms of the principal directions of the bivector H.

This manuscript aims to contribute to the development of RPS theory in a specific
direction: the 3 + 1 splitting, relative to an inertial observer, of the general transformation
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from emission to inertial coordinates in flat space-time. But RPS theory [11] was conceived
as a primordial element to provide current GNSSs with a true relativistic conception that
was founded exclusively on relativity theory. Moreover, since an RPS can be constructed
without any information about the gravitational field [33], it allows for carrying out rela-
tivistic gravimetry [34,35] in the unknown space-time domain where it operates, which is
an essential element of a true relativistic laboratory (see Refs. [9,10] for a deep discussion of
these ideas).
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Appendix A. Notation

The main sign convections and notations we adopt in this paper are as follows:
(i) g is the Minkowski space-time metric, with the signature taken as (−,+,+,+). We

use units in which the speed of light in vacuum is c = 1.
(ii) η is the metric volume element of g, as defined by ηαβγδ = −

√
−det g ϵαβγδ, where

ϵαβγδ stands for the Levi–Civita permutation symbol ϵ0123 = 1. The Hodge dual operator
associated with η is denoted by an asterisk ∗.

For instance, and using index notation, if x, y and z are space-time vectors, one has

[∗(x ∧ y ∧ z)]α = ηαβγδxβyγzδ. (A1)

where ∧ stands for the wedge or exterior product (antisymmetrised tensorial product of
antisymmetric tensors).

(iii) i() denotes the interior or contracted product, that is, i(x)T denotes the contraction
of a vector x and the first slot of a tensor T. Thus, for a covariant two-tensor, [i(x)T]ν =
xµTµν.

(iv) For an observer of unit velocity u, (u2 = g(u, u) = −1), the vector x splits as

x = x0u + x⊥ (A2)

where x0 = −g(x, u) ≡ −x · u and x⊥ = x⃗ is orthogonal to u, g(u, x⊥) = 0. We use the
notation x = (x0, x⃗), where x0 and x⊥(∈ E⊥) are the time-like and space-like components x
relative to u, respectively, and E⊥ is the space orthogonal to u. E⊥ has an induced volume
element given by η⊥ ≡ −i(u)η, that is, (η⊥)βγδ = −uαηαβγδ.

(v) For vectors x⃗, y⃗ ∈ E⊥, the vector or cross-product is expressed as

x⃗× y⃗ = ∗(u ∧ x⃗ ∧ y⃗), (A3)

and, if z⃗ ∈ E⊥, the scalar triple product (x⃗× y⃗) · z⃗ ≡ (x⃗, y⃗, z⃗) is then given by

(x⃗, y⃗, z⃗) u = ∗(x⃗ ∧ y⃗ ∧ z⃗). (A4)
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