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Abstract: Effective spin foams provide the most computationally efficient spin foam models yet
and are therefore ideally suited for applications, e.g., to quantum cosmology. Here, we provide
the first effective spin foam computations of a finite time evolution step in a Lorentzian quantum
de Sitter universe. We will consider a setup that computes the no-boundary wave function and a
setup describing the transition between two finite scale factors. A key property of spin foams is that
they implement discrete spectra for the areas. We therefore study the effects that are induced by
the discrete spectra. To perform these computations, we had to identify a technique to deal with
highly oscillating and slowly converging or even diverging sums. Here, we illustrate that high-order
Shanks transformation works very well and is a promising tool for the evaluation of Lorentzian
(gravitational) path integrals and spin foam sums.

Keywords: spin foams; quantum cosmology; quantum gravity

1. Introduction

The real-time or Lorentzian path integral is particularly important for quantum grav-
ity [1–10]. Euclidean quantum gravity approaches rely on a formal Wick rotation to justify
a path integral based on the Euclidean gravity action, over Euclidean metrics. However,
such Euclidean approaches suffer from the conformal factor problem [11]. Furthermore,
the space of Euclidean metrics is quite different from the space of Lorentzian metrics,
making the notion of (inverse) Wick rotation in general ill-defined [2–4].

However, the Lorentzian path integral is very challenging to compute. The oscillating
amplitude prohibits the application of Monte Carlo methods, and a direct integration or
summation typically leads to a very slow convergence. One way to deal with this issue
is to deform the integration contour into the complex plane using, e.g., Picard–Lefschetz
methods [8,12–23].

In this work, we will consider effective Lorentzian spin foams applied to a cosmo-
logical model describing de Sitter space. The spin foam approach [7] provides a path
integral for quantum gravity based on the quantum geometric ingredients of loop quantum
gravity [24,25]. The derivation of a cosmological dynamics from spin foams is arguably
much less developed than loop quantum cosmology [26–29], which studies loop quan-
tum gravity versions of the Wheeler–DeWitt equation. However, there are a number of
important open questions in loop quantum cosmology, including whether the theory is
fully covariant [30,31] and how loop quantum cosmology relates to the full theory of loop
quantum gravity [32,33]. Spin foams can serve as an independent approach to quantum cos-
mology [34] and might help to answer these questions. However, a key difficulty for spin
foams is the extremely high computational demands [35] of models, such as the EPRL/FK
model [5,6]. Effective spin foams, introduced in [9,36,37], require far less computational
resources. As this paper will illustrate, effective spin foams allow for probing quantum
time evolution in cosmology, which, so far, has not been achieved in spin foam cosmology
using other spin foam models [34,38–41].
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In contrast to previous works on spin foam cosmology [34,38–41], the spin foam
partition function discussed in this work will include an unbounded sum over a lapse-
like bulk variable. This sum features an oscillating amplitude and is not necessarily
absolutely convergent. A key issue that we therefore face here is how to perform this
sum. The corresponding path integrals for Regge calculus [23] or for continuum mini-
superspace [8] results in proper integrals, and, as mentioned above, can be computed using
a deformation of the integration contour in a complexified configuration space or, more
specifically, Picard–Lefschetz theory [12–15]. However, these techniques are not applicable
to sums.

Here, we will show that one can treat such sums arising from partition functions with
oscillating amplitudes with non-linear series transformations [42] and, in particular, Wynn’s
epsilon algorithm, which accelerates the convergence of these sums. Surprisingly, this
technique can also be applied to evaluate expectation values, which involve diverging sums.
We identify as a reason for the effectiveness of these techniques the simple asymptotic
behavior of the gravitational (Regge) action. This gives hope that these techniques can
be applied for more general gravitational and possibly non-gravitational path integrals
and sums.

A key question that we will pursue here is how the replacement of integrals into sums
affects the dynamics. These sums arise due to (loop) quantum geometry, which prescribes a
discrete spectrum for areas [43–45], and it is important to understand how the discreteness
of geometric variables such as areas does influence the dynamics.

Effective spin foams [9,36,37] do implement the key principles of spin foam construc-
tion, in particular, a discrete area spectrum. They offer two advantages over previous spin
foam models [7], which make them particularly suitable for applications to cosmology.
The first advantage is that their numerical evaluations are by several magnitudes faster than
those for for EPRL/FK models [5,6]. Here, we will provide the first evaluation of cosmolog-
ical spin foams with an internal bulk (area) variable. One such evaluation on a standard
laptop can take less than a second. In contrast, EPRL models require high-performance
computational resources and have led to the development of specialized algorithms for
their evaluation [35]. Despite these concerted efforts, the most recent works, which evaluate
EPRL spin foam amplitudes for cosmology [40,41] via high-performance computation, do
not involve a summation over a bulk area variable.1

Another important advantage of effective spin foams is that they allow sub-simplices
of arbitrary signatures, particularly time-like tetrahedra, triangles, and edges. In contrast,
the standard EPRL/FK models rely in their construction on the so-called time gauge, which
forces all tetrahedra (and thus triangles and edges) to be space-like. An extension of
the EPRL/FK models that includes more general building blocks does exist [43], but the
development of numerical techniques for this extended formulation lags very much behind
those for the standard formulation [35]. Many cosmological mini-superspace path integrals
incorporate an integral over a lapse-like variable (which then might be Wick-rotated). Such
a lapse-like variable is difficult to construct if only space-like tetrahedra are allowed.

The effective spin foam models do rely in their construction more directly on the Regge
action. The models described here will automatically incorporate the correct (semi-)classical
limit. This point has been a major concern for spin foam cosmology [34,38,39] and group
field quantum cosmology [46,47]. In our case, the action will have the same critical points
(that is, saddle points) as the Regge action, which does, in the appropriate regime, reflect
the dynamics of the continuum mini-superspace models. Appropriate regimes, where
discretization artifacts can be neglected, have been identified in [48]. The Regge path
integral for these cosmological models has been evaluated in [23] and closely reproduced
the continuum mini-superspace results [8].

A key difference between effective spin foams and Regge path integral is the im-
plementation of a discrete area spectrum into the former class of models. Here, we will
therefore concentrate on the effects induced by this imposition. Our results indicate that
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a discrete area spectrum may lead to significant differences for the no-boundary wave
functions, affecting the probabilities for the quantum creation of a de Sitter universe.

This paper is organized as follows: We will first provide necessary background on
effective spin foams (Section 2.1) and the de Sitter mini-superspace model and its dis-
cretization using the so-called ball and shell model (Section 2.2). We will then discuss
the issue of configurations with an irregular light cone structure (Section 2.3) and the
(cosmological) Regge action (Sections 2.4 and 2.5). Readers familiar with [48] or [23] can
skip Sections 2.2–2.5.

We will then provide further necessary ingredients for the construction of the cosmo-
logically effective spin foam model in Sections 2.6 and 2.7. Section 2.8 will summarize the
final (ball and shell) models and present the related partition function.

In Section 3, we will provide some background on non-linear sequence transforma-
tions, particularly on the higher-order Shanks transform and Wynn’s epsilon algorithm.

Wynn’s epsilon algorithm is then applied to compute the partition functions and expec-
tation values for the cosmologically effective spin foam models. Section 4.1 will present the
results for the cosmological shell model. Here, we will consider the “Lorentzian regime”,
that is, boundary data that lead to Lorentzian critical points. Section 4.2 will discuss the re-
sults for the ball model, where we will consider the “Euclidean regime”—corresponding to
boundary data that only have Euclidean (tunneling) saddles. For all cases, we will compare
the effective spin foam sum with the Regge path integral and analyze the differences.

We will close with a discussion and outlook on future work in Section 5.

2. The Cosmological Ball and Shell Model with Effective Spin Foams
2.1. Effective Spin Foam Models

Effective spin foam models [9,36,37] are designed to capture key features of the
EPRL/FK spin foam models [5,6], but are much more amenable to numerical calcula-
tions. We will leverage this fact here and will provide the first evaluation of cosmological
spin foam amplitudes that involve the summation over a bulk variable, which can be
identified as lapse.

Effective spin foams [7] are defined on triangulations, where all triangles (and pos-
sibly all tetrahedra) are decorated with geometric data. The spin foam partition function
sums over these geometric data weighted by a model-specific quantum amplitude. All
models have in common that this quantum amplitude leads to the Regge action [49], which
provides a very elegant discretization of the Einstein–Hilbert action, in the limit of large
quantum numbers.

The two key features of spin foams are the following: First, the spectra for geometric
operators, such as area operators, are discrete [43–45]. The spin foam partition function
sums over geometries, which are characterized by discrete eigenvalues of the area opera-
tors associated with the triangles (and, depending on the model, possibly on additional
geometric quantities associated with the tetrahedra). For spatial triangles, the spectral gap
is characterized by the dimensionless Barbero–Immirzi parameter, whereas the spectral
gap for time-like areas is independent of the Barbero–Immirzi parameter.

These discrete spectra lead to the second feature of spin foams [36]: an enlarge-
ment of the configuration space of geometries [50–52], which can be effectively described
as replacing the length metric by the area metric [53–56]. Spin foam dynamics impose
shape matching constraints [57], which suppress fluctuations away from length metric
configurations [36,37,58,59]. These constraints are, however, second class and are therefore
only imposed weakly, e.g., via Gaussians peaked on configurations that satisfy the con-
straints. The Barbero–Immirzi parameter also appears here in characterizing the strength
of the suppression,2 e.g., as the variance of the Gaussians [36,52].

As we explain below, due to the symmetry reduction used in the ball and shell models,
these shape-matching constraints are automatically satisfied, so this second key feature
will not play a role here. The main point of the current article is to understand the effects
induced by introducing the discrete area spectra into the model. The summation range
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for the bulk area will mostly involve time-like areas. The choice of the Barbero–Immirzi
parameter γ will therefore have a very limited influence on the results. We will fix it to
γ = 0.1, as this value has been previously found to lead to a satisfying implementation
of the gravitational equation of motion for triangulations consisting of a few building
blocks [37].

Whereas the EPRL/FK spin foam amplitudes are defined via a gauge-theoretic refor-
mulation of general relativity [7], the effective spin foam models leverage the Regge action
more directly. This can be justified through a higher gauge formulation of gravity [60],
which leads to a model directly featuring the Regge action [61,62]. Directly using the Regge
action is particularly advantageous if we aim to describe the full Lorentzian spin foam
sector. As mentioned above, the original Lorentzian EPRL/FK models only consider space-
like sub-simplices, and their extension [43] still faces challenges regarding asymptotics [63]
and numerical evaluation [64].

This is another reason why effective spin foam models are much easier to handle
and why we are able to implement in this work the first calculation involving a summation
over a lapse-like variable.

As we have already mentioned, effective spin foams leverage the Regge action for
their construction. This Regge action, however, uses areas as fundamental variables and is
therefore known as Area Regge action [65,66]. This Area Regge action does, in principle,
lead to different dynamics3 from the original Length Regge action [49]. This difference,
again, plays no role here due to the symmetry restriction we impose. In fact, we will have a
one-to-one transformation between the length and area variables in the model. This allows
us to easily impose the discrete spectrum conditions for the areas (see Sections 2.4 and 2.6).

Another simplifying construction step that we will take is to work with (Lorentzian)
flat building blocks and to implement the cosmological constant via a cosmological constant
term in the action. This is again straightforward to perform in effective spin foam models,
but has also been used in simplified versions of the EPRL model [38,67]. An alternative
procedure is to base the discretization on homogeneously curved building blocks [68–73].
This reduces discretization artifacts [74–76], particularly with regard to the breaking of
diffeomorphism symmetry by the discretization [77,78]. The amplitudes of the resulting
spin foam models [69–73] are, however, much harder to compute than for the models with
flat building blocks, making these models unsuitable for our purposes for now.

2.2. The Discretization

In this work, we aim to construct a numerically accessible model for mini-superspace
quantum cosmology, which describes a Lorentzian de Sitter universe.

We will consider a finite time evolution step in a mini-superspace model given by

ds2 = −N2(t)dt2 + a2(t)dΩ2 (1)

where dΩ2 is the metric on the unit three-sphere. A given mini-superspace configuration
is determined by the scale factor a(t) and the lapse variable N(t) as functions of the time
parameter t.

Spin foams rely on a discretization of the underlying space-time manifold into a
piecewise (Minkowski-) flat geometry. We choose a discretization that allows us to describe
the discrete time evolution of spatial discretized hypersurfaces, which are as homogeneous
as possible (see [23,48] for more details).

We will use two models, the so-called ball model and the shell model. Variations
of the first model have been used in the context of Euclidean quantum gravity [79–81];
the classical dynamics associated with the shell model are described in [48,82,83]. A recent
work [23] constructed the Lorentzian Regge path integral describing one time evolution
step based on these models. This work [23] illustrated that this simple approximation
already captured the main key features of the continuum mini-superspace evolution, and
particularly modeled the no-boundary wave function.
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The so-called ball model approximates the first time evolution step of the quantum
de Sitter universe by a subdivided regular 4-polytope. The center of the 4-polytope cor-
responds to the beginning of the universe, where the scale factor is vanishing. The outer
boundary of the 4-polytope corresponds to a spatial spherical slice of the de Sitter space-time
with a finite scale factor. We will consider regular 4-polytopes, whose (three-dimensional)
boundary defines a triangulation. There are three such 4-polytopes, known as 5-cell, 16-
cell, and 600-cell. To minimize discretization artifacts [48], we will consider the 600-cell,
whose boundary consists of 600 tetrahedra. To implement homogeneity, we choose all
edge lengths in this boundary to be the same and refer to the squared edge length in the
boundary as sl .

We subdivide the 600-cell into 600 four-simplices by placing a vertex in the center of
the 600-cell and by connecting this central vertex with all the vertices in its boundary. We
set again all the lengths of these new edges to be equal. It is, however, more convenient to
use as a variable the height square sh of the four-simplices. For positive sl and negative
sh, the four-simplices satisfy the Lorentzian generalized triangle inequalities, whereas, for
positive sl and positive sh, the four-simplices satisfy the Euclidean generalized triangle
inequalities. One can understand the height square as a discrete analogue of (minus) the
squared lapse parameter. For the Regge path integral, considered in [23], one integrates
over this variable; for the effective spin foam model, we will replace this integral by a sum.

The shell model describes a time evolution step between two 600-cell boundaries,
characterized by the squared edge lengths sl1 and sl1 . Instead of insisting on a triangulation,
it is simpler to use as four-dimensional building blocks frusta4 with a tetrahedral base [82].
We set the length of the edges connecting the two tetrahedra of a given frustum to be equal,
but will use, instead of this length, the height square sh of the frusta as a dynamical variable.
This variable can be again understood as an analogue of (minus) the squared lapse variable.
In the Regge path integral, we integrate over this variable, and for the effective spin foam
model, we sum over this variable.

In summary, the geometry of the spatial hypersurfaces in the ball and shell model
is characterized by sl . By comparing the three-volume of a 600-cell boundary with the
three-volume of a three-sphere in the continuum mini-superspace model, we can deduce
the following relation between scale factor a and the squared edge length sl [48] and thus
between the scale factor and the area of the triangles in the 600-cell boundary

sl = ν2a2 , A =

√
3

4
sl =

√
3

4
ν2a2 , (2)

where ν ≈ 0.654.
The lapse parameter in (1) is replaced by the squared height sh. This squared height

can also be translated into the area square ABall
blk of the bulk triangles or area square AShell

blk of
the bulk trapeziums in the ball and shell model, respectively.

ABall
blk =

√
sl

4
√

2
(sl + 8sh) , AShell

blk =

√sl1 +
√sl2

4
√

2

(
(
√

sl2 −
√

sl1)
2 + 8sh

)
. (3)

Note that these area squares can be negative, null, or positive.

2.3. Regular and Irregular Light Cone Structure

Even though the models we consider are quite simple, they feature configurations
with an irregular light cone structure.

In a smooth Lorentzian manifold, a point comes with a regular light cone structure,
if, in a small ball around this point, there are exactly two light cones attached to this point.
For piecewise Minkowski-flat geometries, which we consider here, one can formulate a set
of conditions5 that ensure a regular light cone structure [23,85,86].

Of particular importance is one such condition, which we will refer to as hinge
regularity. Configurations that violate this condition feature imaginary terms in the Regge
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action, which comes with a sign ambiguity. This sign ambiguity can be understood as a
branch cut for the complexified Regge action [23].

Hinge regularity is particularly important as it is a condition that involves the deficit
angles, which are a key ingredient for the Regge action. The deficit angles are attached to
the building blocks of co-dimension two, known as hinges. To define the deficit angle, one
projects out from all building blocks attached at the hinge the hinge itself. This leads to
a two-dimensional piecewise flat manifold given by two-dimensional building blocks b,
which all share the vertex v resulting from the hinge. The deficit angle is defined as the
difference between the flat angle and the sum of the two-dimensional angles θb

v at v in the
building blocks b.

If the hinge is time-like, the two-dimensional building blocks b resulting from the
projection will all be space-like, and thus, the angles θb

v will be Euclidean and the flat angle
is given by 2π.

If the hinge is space-like, the two-dimensional building blocks b will be time-like,
and we have to deal with Lorentzian angles θb

v. These Lorentzian angles, as defined in,
e.g., [22,23,87,88], will, in general, include a real part and an imaginary part ±ıkπ/2, which
comes with a sign ambiguity. Here, k denotes the number of light rays included in the
wedge described by θb

v. Depending on the sign ambiguity, the Lorentzian flat angle is given
by ±2πı.

Hinge regularity is violated if the union of the wedges described by θb
v does not

include exactly four light rays or two light cones. In case of such a violation, the deficit
angle includes an imaginary part with a sign ambiguity.

Note that, for hinge regular configurations, the choice of a sign does not affect the
deficit angles.

The Regge action [49,87] is given by the sum of the deficit angles weighted by the
volume (here area) of the hinges.6 Hinge regularity violations thus lead to imaginary parts
in the Regge action. Depending on the sign of these imaginary parts, these can lead to
either a suppression or an enhancement of hinge regularity violating configurations in the
path integral.

Both choices of a sign for the Lorentzian action and the Euclidean action arise from
a notion of complex Regge action [23]. The sign ambiguity can then be associated with a
branch cut, which goes along hinge regularity violating configurations. For the Lorentzian
path integral, we then have to decide whether to include such hinge irregular configurations.
If we do include such configurations, we have to choose a side for each branch cut.

With the methods presented here, we can consider each of the options. Ref. [23] has,
however, found that including irregular configurations for the ball model does lead to a
real amplitude, as one also finds in the continuum. We will therefore include irregular
configurations and choose the suppressing side, as has also be done in [23]. For some
cases, we will provide a comparison with the choice where one does not include the
irregular configurations.

As discussed above, the ball model allows us to obtain the no-boundary wave function
from the path integral. In [23], the authors showed that choosing the suppressing side of
the branch cut will lead to an approximation of the Vilenkin version of the no-boundary
wave function. With this choice, we obtain an exponential suppression of the wave function
scaling with exp(− c

h̄Λ ) (with c > 0 a constant factor), as expected from quantum mechanical
tunneling. This Vilenkin version of the no-boundary wave function has also been obtained
from a Lorentzian mini-superspace model in [8] and a Regge path integral in [23]. The no-
boundary wave function from the Regge path integral does approximate the one obtained
from the continuum mini-superspace path integral surprisingly well. A key question we
will consider here is how the discrete area spectra do the results obtained from the Regge
path integral.

Note that one can also choose the enhancing side of the branch cut. This has been done
in the recent work [90] in order to compute the entropy for de Sitter space via a simplicial
Lorentzian path integral. To obtain the de Sitter entropy, one indeed needs an exponentially
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enhanced result scaling with exp(+ c
h̄Λ ). The corresponding version of the no-boundary

wave function is the Hartle–Hawking one.
Although the light cone irregularities and, therefore, the choice of the branch cut side

appear to be a discretization artifact, there is a similar ambiguity of integration contour in
the continuum, as illustrated by the fact that [91] obtained the Hartle–Hawking version of
the no-boundary wave function from a Lorentzian mini-superspace model. The difference
between [8] and [91] lies in the choice of how the integration contour navigates an essential
singularity in the continuum mini-superspace action at a vanishing lapse. We refer the
reader to [90] for a more in-depth discussion of this issue.

2.4. The Regge Action

The effective spin foam models rely on the Regge action [49], which provides a
discretization of the Einstein–Hilbert action. This discretization is based on triangulations,
and in (length) Regge calculus, one uses lengths attached to the edges of this triangulation
as basic variables. In the case of effective spin foams, one instead uses areas as basic
variables and, thus, the area Regge action [65,66], which is accompanied by gluing or shape-
matching constraints [9,36,57]. However, with the symmetry reduction employed here, we
will have the same number of length and area variables, and length and area Regge action
will lead to the same equations of motion. That is, as mentioned above, the shape-matching
constraints are automatically satisfied.

We can thus start with the length Regge action, which has already been computed
for the cosmological model that we will consider here [23,48]. We can then implement a
variable transformation to areas, which will allow us to impose that these have a discrete
spectrum, as in effective spin foam models.

Using the notation of [23], the Regge action for the ball and shell model has the
following form:

±ı (8πG)S±
Ball = ne

√
±Ablk δ±blk + nt

√
± Abdry δ±bdry − Λnτ

√
±Vσ ,

±ı (8πG)S±
Shell = ne

√
Ablk δ±blk + nt

(√
±Abdry1 δ±bdry1

+
√

±Abdry2 δ±bdry2

)
− Λnτ

√
±V4-frust . (4)

Here, ne = 720, nt = 1200 and nτ = 600 denote the number of edges, triangles, and
tetrahedra in the boundary of the 600-cell. (The action does generalize to the 5-cell and
16-cell if one replaces these numbers appropriately.) Note that the number of edges in
the boundary of the 600-cell is equal to the number of bulk triangles. We collected the
expressions for the complex deficit angles δblk, the boundary angles δbdry, the signed area
squares Ablk and Abdry, and the signed four-volume squares Vσ in Appendix A.

In (4), we introduced two different ways of expressing the complex Regge action [23].
These differ in the evaluation of the square root and the logarithm (which appears in the
deficit angles δ±; see Appendix A) along the principal branch cut, that is, the negative real
axis, for these functions. The branch cut values are defined by

√
+ − 1 = +ı,

√
− − 1 = −ı

and log+(−1) = +ıπ, log−(−1) = −ıπ.
The actions S+ and S− evaluate the same function for Lorentzian data, which satisfy

the hinge regularity condition. This is the case if sh < − 1
8 sl for the ball model and if

sh < − 1
8 (
√sl2 −

√sl1) for the shell model. Starting from this regular Lorentzian region,
we can analytically continue this action7 to negative values of sh, which violate these
inequalities and describe hinge irregular configurations. As there is a branching point at
sh = − 1

8 sl (or sh = − 1
8 (
√sl2 −

√sl1) for the shell model), we find different actions when
we analytically continue along sh = x + ıε or sh = x − ıε with negative x. Going along
sh = x + ıε, we find S+, which, for the hinge-violating configurations, has a negative
imaginary term, and going along sh = x − ıε, we find S−, which, for the hinge-violating
configurations, has a positive imaginary term. As in [23], we will work with the choice that
suppresses hinge-violating configurations, that is, S−.
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In a Lorentzian (non-degenerate) triangulation, we have sh < 0. This translates into
negative or positive bulk area squares. Negative bulk area squares Ablk < 0 describe hinge
regular configuration; the null case Ablk = 0 leads to a branching point for the Regge action.

For the ball model, the hinge irregular Lorentzian regime includes bulk areas with
0 < Ablk < 1

6Abdry; for the shell model, the Lorentzian regime extends to

Ablk < 1
6 (
√
Abdry2

−
√
Abdry1

)2. These configurations include a further branching point

Ablk = 1
9Abdry, respectively Ablk = 1

6 (
√
Abdry2

−
√
Abdry1

)2, where the three-dimensional

bulk building blocks are null.
The imaginary parts of S− are given by

8πG Im(S−
Ball) =

ne2π
√
Ablk for 0 < Ablk < 1

9Abdry

−neπ
√
Ablk + ntπ

√
Abdry for 1

9Abdry < Ablk < 1
6Abdry

,

8πG Im(S−
Shell) =


ne2π

√
Ablk for 0 < Ablk < 1

9 (
√
Abdry2

−
√
Abdry1

)2

−3neπ
√
Ablk + ntπ(

√
Abdry2

−
√
Abdry1

)

for 1
9 (
√
Abdry2

−
√
Abdry1

)2 < Ablk < 1
6 (
√
Abdry2

−
√
Abdry1

)2

, (5)

and are positive for the entire hinge irregular regime.
The suppressing effect by the imaginary part of the action can be used to avoid

summation over the range of values where the imaginary part of the action is very large.

2.5. Critical Points of the Action

The existence of critical points for the action in the ball and shell model has been
analyzed in [48]. We will summarize the main points here and will start with the ball
model. Here, one does not find a critical point for negative, that is, Lorentzian, values of
sh (or the bulk area) as long as the boundary length square sl (or A =

√
Abdry) is below

a certain threshold value sthresh1. Instead, one finds a critical point for positive, that is,
Euclidean, values of sh. This feature mimics the behavior of the mini-superspace model,
where one finds Euclidean critical values8 if the boundary values for the scale factor are
both smaller than aΛ =

√
3/Λ. In the continuum, the Hamilton–Jacobi function, that

is, the action evaluated on the critical points, shows a monotonous behavior. Discretely,
this is only the case for sl < sthresh2 ≈ 1.75/Λ (for the 600-cell), which translates to
a scale factor athresh2 ≈

√
4.08/Λ. We consider the behavior in the regime above this

threshold as discretization artifact, and will therefore only consider boundary values below
this threshold.

The shell model allows for modeling the behavior of the continuum model, when both
boundary scale factors are above the value aΛ =

√
3/Λ. One then finds critical points in

the Lorentzian regime.9 For the shell model, we will therefore consider boundary values
that lead to Lorentzian critical values.

2.6. Discrete Area Spectra

In (Length) Quantum Regge calculus, the path integral is defined as a continuous
integral over the length of the bulk edges of the triangulation. In spin foams, one instead
sums over discrete values assigned to the areas of the bulk triangles. These discrete values
are determined from the discrete spectra for the loop quantum gravity area operator.
For space-like areas (in a space-like tetrahedron), the spectrum is given by [44,45]

Aspace−like = ℓ4
Pγ2 j(j + 1) ∼ ℓ2

Planckγ2 j2 , j = 1
2 , 1, 3

2 , 2, 5
2 . . . . . (6)

Here, ℓ2
P = 8πGh̄ is the Planck length squared and γ is the dimensionless Barbero–Immirzi

parameter. We choose this parameter as γ = 0.1, which is within the range where one can
expect the recovery of the Regge equations of motion from spin foams [37]. The spectrum
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for the area becomes equidistant for large j. For simplicity,10 we will adopt this equidistant
spectrum and include only the integer j’s. (The latter corresponds to a definition of loop
quantum gravity as an SO(3) gauge theory instead of an SU(2) gauge theory.)

The spectrum for time-like areas is given by [43]

Atime−like = ℓ4
Planck(n/2)2 , n = 0, 1, 2, 3, . . . . (7)

Thus, the time-like spectrum does not depend on the Barbero–Immirzi parameter γ. Similar
to the space-like case, we will restrict to n ∈ 2N.

Adopting these spectra for the area squares of a single triangle (or trapezium) in our
symmetry-reduced model will, however, not lead to sensible results. The reason for this
is that the change from one spectral value to the next spectral value induces a very large
change in the action. That is, the number of spectral values over a few oscillations of the
phase of the amplitude exp(ıS) is very low, even around the saddle point, and we can
therefore not expect a semi-classical regime. See Figure 4 for an example.

This issue is caused by the symmetry reduction. Indeed, assume that we change the
area of a bulk triangle by the spectral gap value (γ)ℓ2

P. Due to our symmetry requirements,
the total area will change by ne(γ)ℓ2

P, with ne = 720, leading to a rather large change in
the action.

Thus, we adjust the spectrum to the symmetry reduction: we divide the spectral gaps
for the bulk triangles by the number of bulk triangles (or bulk trapeziums) ne and the
spectral gap for the boundary triangles by the number of boundary triangles nt = 1200.
Thus, we have for the bulk triangles

Aspace−like,bulk =
ℓ2

Planck
n2

e
γ2 j2 , j = 1, , 2, . . . , Atime−like,bulk =

ℓ2
Planck
n2

e
n2 , n = 1, 2, . . . . (8)

This choice can be justified by the following consideration: Consider homogeneous config-
urations with sufficiently large areas. Changing the area of X of the ne bulk triangles by the
spectral gap value will still give a configuration that is almost homogeneous and whose
action can be approximated by assuming a homogeneous configuration with a suitable
adjusted area value. With X running from 1 to ne, we obtain that the total area, that is,
the sum of all bulk areas, has changed by ne times the minimal allowed spectral value. To
implement that the total area can change by the spectral gap value, we therefore adjust
the spectrum of a single bulk triangle (trapezium) by dividing the area spectral gaps by
the number of bulk triangles ne. Similarly, we adjust the spectrum for a single boundary
triangle by dividing the area spectral gap by the number of boundary triangles nt.

Of course, here, we have made many simplifying assumptions. These will have to
be confirmed or corrected by future work that will investigate constructions with less
symmetry reductions. These new insights might particularly affect the spectrum for the
regime where the total area is relatively small.

A similar need for the adjustment of spectral gaps appears also in Loop Quantum
Cosmology [92,93], and the task of fully justifying these choices from the full theory is still
open [33,94].

To be able to trace back how the results change if we replace the continuous Regge
path integral by the effective spin foam sum, we will also consider a further refinement
of the area spectra. That is, we divide the spectral gap by a refinement parameter Rref
and compare the spin foam sum using the spectrum (8) with the spin foam sum using a
refined spectrum and with the Regge path integral or, in other words, the sum with an
infinitely refined spectrum.

2.7. The Path Integral Measure

The second ingredient we have to fix is the measure term for the spin foam summation.
As we wish to primarily study the difference between doing a (spin foam) summation and
doing a (Regge) path integral, we will adopt the measure from the (Regge) path integral [23].
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This Regge measure was derived from the continuum path integral constructed in [8]
and led to a very good agreement between the Regge path integral and the continuum
path integral.

The (dimensionless) measure for the Regge path integral in the ball model is given
by [23]

µBall(sh)dsh =
(−1)

3
4

ℓP

s
1
4
l

(−sh)
3
4

dsh (9)

where the integral is over negative sh (with the integral oriented to go from sh = 0 to
sh → −∞ ). Transforming this measure to area variables gives for the ball model

µt
Ball(Bt)dBt =

(−1)−
1
4

ℓP

4 × 2
1
4 Bt(Abdry

3 + 2B2
t

) 3
4

dBt , µs
Ball(Bs)dBs =

(−1)−
1
4

ℓP

4 × 2
1
4 Bs(Abdry

3 − 2B2
s

) 3
4

dBs . (10)

Here, we parametrize the time-like range of the bulk area by −B2
t = Ablk and the space-like

range of the bulk area by B2
s = Ablk with Bt, Bs > 0. For the time-like range, we integrate

from Bt = 0 to Bt → ∞ and, for the space-like range, from Bs = 0 to Bs =
√
Abdry/

√
6.

We define the measure for the shell model by replacing in µBall the boundary variable
Abdry by the average Abdry → 1

2 (Abdry1
+Abdry22

).

2.8. The Spin Foam Sum

The final definition of our cosmological spin foam sum for the ball model is as follows:

ZBall(Abdry) =
γℓ2

P
Rrefne

jmax
B

∑
jB=1

µs
Ball

(
γℓ2

P jB
Rrefne

)
exp

 ı
h̄

SBall

Abdry ,

(
γℓ2

P jB
Rrefne

)2
 +

ℓ2
P

Rrefne

∞

∑
nB=1

µt
Ball

(
ℓ2

PnB

Rrefne

)
exp

 ı
h̄

SBall

Abdry ,

(
ℓ2

PnB

Rrefne

)2
 (11)

where jmax
B =

[[
Rref

√
Abdry√
6

ne
γ

]]
, and [[x]] defines the integer part of x. We will later use

Rref = 1, that is, the spectrum (8), as well as a refinement factor of Rref = 10.
The partition function for the shell is of the same form as (11). However, it now depends

on two boundary valuesAbdry1
andAbdry2

, and one has jmax
B =

[[
Rref(

√
Abdry2

−
√

Abdry1
)

√
6

ne
γ

]]
.

We will see that the differences between spin foam sum and Regge path integrals will be
minimal; hence, we will only consider Rref = 1.

Apart from the partition function, we will compute the expectation value of Ablk.
To this end, we insert B2

s and −B2
t into the sum over jB and nB, respectively.

The second sum in (11) includes infinitely many terms and is converging only very
slowly (see Figure 1). It even diverges if we insert −B2

t for the computation of expectation
values (see Figure 2). However, it turns out that the so-called acceleration techniques for
series convergence work very well in this case and allow also the evaluation of (absolutely)
diverging sums arising for the computation of expectation values.
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Figure 1. The plot on the left panel shows the partial sums over time-like areas with cut-off NB for the
ball model. We sum all nB with nB ≤ NB. (The parameters for the spin foam sum area Λ = 0.2ℓ−2

P and√
Abdry ≈ 0.033ℓ2

P.) On the right panel, we show the series resulting from applying Wynn’s epsilon

algorithm (which will be explained in the main text) to the series defined by the first 100 partial sums
shown on the left. The resulting series has a highly accelerated convergence. The maximal relative
error (defined in (20)) is of the order of 10−11.
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Figure 2. The plot on the left panel shows the partial sums over time-like areas for the computation
of the expectation values. That is, compared with the sums shown in Figure 1, we insert a term
proportional to n2

B. As before, we sum over all positive values nB ≤ NB. The right panel shows
Wynn’s epsilon algorithm applied to the series defined by the first 100 partial sums. This series shows
quite a fast convergence. Note that the (anti-) limit is a very small number, which we found is typical
for the computation of the expectation values in the ball model. The maximal relative error (defined
in (20)) is of the order of 10−8.

3. Acceleration Operators for Series Convergence

As we explained in the previous sections, we have to evaluate oscillating and slowly
converging, or even diverging, sums. Direct summation would be very cumbersome;
e.g., Figure 1 shows an example for an effective spin foam sum for the ball model. We show
the partial sums with up to 105 terms, but the result still oscillates with an amplitude that
is larger than the absolute value of the limit value. For the evaluation of expectation values,
we even encounter diverging sums (see Figure 2). Given that we aim to evaluate a large
number of such sums, this process of direct summation is not practical.

Fortunately, there exists a well-developed theory of acceleration operators, also known
as non-linear sequence transformations (see e.g., [42]). Such transformations and algorithms
are constructed with the aim of accelerating the convergence of slowly converging series,
and can also be used to define limit values to divergent series. We will see that these limit
values lead to physically reasonable results; e.g., for the computation of expectation values,
we rely on such limit values, and in most cases, the expectation values we compute will
approximate well the classical solutions.
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The non-linear sequence transformations can be applied to compute the limit of sums
or integrals with infinite summation or integration range. To treat sums, we form a series
from the partial sums Sk, k = 0, 1, . . .

Sk =
Cmin+kCstep

∑
n=1

f (n) . (12)

Here, one can choose an arbitrary minimal cut-off Cmin for the sum so that S0 represents
the sum of Cmin terms. Cstep is the step size for probing the partial sums. We found that
choosing Cstep = 1 often leads to the best results.

For the application to integrals, we define

Sk =
∫ Cmin+k×Cstep

x0

f (x) dx . (13)

Cstep should be chosen such that the Sk probes the (largest frequency) oscillations of the
integral S(y) =

∫ y
x0

f (x)dx; i.e., there should be several Sk for each period.
In the following, we will explain how non-linear sequence transformations can acceler-

ate sequence convergence and briefly sketch the construction of Wynn’s epsilon algorithm,
which we will use to compute the cosmological Regge path integrals and effective spin
foam sums.

3.1. Shanks Transform and Wynn’s Epsilon Algorithm

To begin with, we will discuss the Shanks transform. The Shanks transform was
derived by Schmidt [95] in 1941 and rediscovered and popularized by Shanks [96] in 1955.
To motivate this transform, we consider a model series {Sk}k, which we assume to be of
the form

Sk = S + αtk . (14)

The series converges for |t| < 1 to its limit value S. The term αtk is called a transient. In the
case where |t| > 1, we have a divergent series. One can nevertheless define S as a limit
value (also known as anti-limit) of this series.

Now, if our series {Sk}M
k=1 is (approximately) of the form (14), we can (approximately)

determine S from three consecutive values Sk, Sk+1 and Sk+2. Applying (14) to these three
values leads to three equations, which can be solved for the three unknowns S, α, and t.
The solution for S defines the first-order Shanks transform {T1

k }
M−2
k=1 given by

T1
k ≡ T1(Sk, Sk+1, Sk+2) = Sk −

(Sk+1 − Sk)
2

(Sk+2 − Sk+1)− (Sk+1 − Sk)
. (15)

If the original sequence converges, the value of T1
k approximates S increasingly better

as k is increased (for high enough values) and does so faster than Sk. It is in this sense that
convergence has been “accelerated”.

In the case where the series {Sk}k has M distinct transients, i.e., is of the form

Sk = S +
M

∑
m=1

αmtk
m (16)

with 1 > |t1| > |t2| > · · · |tM|, the first-order Shanks transform eliminates the dominant
transient term α1tk

1 [42]. This suggests iterating the Shanks transform in order to eliminate
all the transients.

An alternative procedure in order to eliminate a larger number of transients from a se-
ries, which is (approximately) of the form (16), is to apply an M-th-order Shanks transform.
Here, one applies Equation (16) to the (2M + 1) consecutive values Sk, Sk+1, . . . , Sk+2M
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to determine the (2M + 1) unknowns {αm, tm}M
m=1 and S. The solution for S can be via

Cramer’s rule, expressed via a ratio of determinants (see e.g., [42]). Thus, the M-th-order
Shanks transform

TM
k ≡ TM(Sk, · · · , Sk+2M) (17)

returns a series of length N − 2M if the initial series is of the length N. Note that the same
holds true for the M-th iteration of the first-order Shanks transform.

Computing determinants is numerically expensive. Fortunately, Wynn’s epsilon
algorithm allows the computation of the higher-order Shanks transform via a simple
recursive scheme. To this end, one defines

ϵ
(−1)
k = 0 , ϵ

(0)
k = Sk

ϵ
(m+1)
k = ϵ

(m−1)
k+1 +

1

ϵ
(m)
k+1 − ϵ

(m)
k

, k, m ≤ 1 . (18)

Wynn [97] could show that the epsilon values with even superscripts ϵ2m
k reproduce

the m-th-order Shank transformations

ϵ
(2m)
k = Tm

k , (19)

whereas the epsilon values with odd superscripts are auxiliary quantities.
Thus, in order to compute a high-order Shanks transform, one can proceed by re-

peatedly using the second equation in (18), which allows for determining the values
{ϵ

(m+1)
k }N−2

k=1 as a function of {ϵ
(m)
k }N−1

k=1 and {ϵ
(m−1)
k }N

k=1. However, in fact, it is not really

necessary to proceed by computing the values ϵ
(m)
k for all k for a fixed m.

It is more efficient [98] to increase k in each iteration step by one, and to compute for
each fixed k, the values ϵ

(m)
k−m. Wynn’s moving lozenge technique implements [98] such an

iterative scheme (see [42] for a concise description).
This algorithm takes as input a (truncated) series {Sk}M

k=1 and produces as output

{T0
1 = S1, T1

1 , T2
1 , T3

1 , . . . , T[[(M−1)/2]]
1 } and {T0

2 = S2, T1
2 , . . . , T[[M/2]]−1

2 }. Here, [[R]] de-
notes the integer part of a real number R. We can summarize both parts into one series
W ≡ {S1, S2, T1

1 , T1
2 , T2

1 , T2
2 , . . . , }.

Depending on whether M is odd or even, T[[(M−1)/2]]
1 respectively T[[M/2]]−1

2 should
be adopted as the best approximation to the limit value S. Of course, one should choose
the parameter M such that the difference between these two values is much smaller than
the precision one is interested in.

Wynn’s algorithm (18) can lead to a division by very small numbers. This can lead to a
termination of the numerical algorithm. One can, however, implement simple stabilization
procedures, which prevent a termination of the computation due to overflow caused by
this issue [42].

In this work, we will apply Wynn’s epsilon algorithm to compute the Regge path
integrals and effective spin foam sums. To this end, we have to choose several parameters,
i.e., Cmin and Cstep in (12) and (13), as well as the length of the series to which we apply
Wynn’s epsilon algorithms. The choice of these parameters influences the degree of conver-
gence for the resulting series. To control this rate of convergence, we define the maximal
relative error

E = maxk∈K
|Wk −Wk−1|

1
2 |Wk +Wk−1|

, (20)

where K includes the last five labels for the series {Wk}k, which results from Wynn’s epsilon
algorithm. For computations of the partition functions, we choose the above-mentioned
parameters so that E < 10−6. (Often, much smaller maximal errors could be reached,
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e.g., E < 10−12). For the computation of expectation values, we encountered a number
of examples where it was hard to find parameters that led to such small relative errors.
The underlying reason is that the sums for the computation of the expectation values can
become very small (see the example in Figure 2). We therefore allowed relative errors of up
to E < 10−3.

3.2. Applications

The non-linear sequence transformations, such as the higher-order Shanks transform,
are not guaranteed to lead to fast convergence for all series. However, for a series that can
be approximated by the form (16), one can expect fast convergence.

In general, we did observe for the examples we computed for this paper a good
convergence. We believe that the main reason for this is that the asymptotic behavior of the
Regge action for large (time-like) bulk areas is quite simple and particularly linear in the
summation/integration variable.11

In the case where the action exhibits a saddle point along the Lorentzian integra-
tion/summation contour, that is, for our shell model examples, this asymptotic behavior
will set in for bulk areas Bt that are only slightly larger than the critical value. In this case,
it is advisable to define the partial sums with cut-offs above this critical value. Here, it
was generally sufficient to apply Wynn’s epsilon algorithm to a series of the length 100
for the spin foam sum (that is, implement a 50th-order Shanks transform) and to a series
of the length less than 20 for the Regge integral, for the computation of both the partition
functions and expectation values.

In the case where the action does not exhibit saddle points along the Lorentzian in-
tegration/summation contour, that is, for our ball model examples, one can also easily
identify an asymptotic regime. The resulting sums and integrals tend to lead to numbers
much smaller than those in the Lorentzian regime. We therefore experienced more difficul-
ties in obtaining the needed convergence for the computation of the expectation values,
particularly for the spin foam sum. For some examples, we had to consider a series of the
length 500 to obtain relative maximal errors, which are smaller than 10−3.

The Regge integrals can be computed either by applying Wynn’s epsilon algorithm
or by using a deformation of the integration contour into the complex plane (see [23]).
Naturally, we find in both cases the same results.

The effective spin foam sums cannot be computed via a deformation of the “summation
contour”. We will comment on this point in more detail in Section 4.2. We therefore have
to rely entirely on the method of non-linear sequence transformations. We will see that
the spin foam results in the shell model (that is, for examples with saddle points along
the integration contour) reproduce very well the Regge integrals and the expectation
values closely approximate the classical solutions. This validates the method of non-linear
sequence transformation and justifies a posteriori the association of (anti-) limit values with
divergent series, which appear for the computation of expectation values.

We note that the first-order Shanks transform agrees with Aitken’s delta-squared
process [99]. The latter has been applied previously in spin foams [35,100]. The aim
there was to provide bounds for the results of an amplitude evaluation involving a cut-
off. Numerical constraints allowed only a cut-off on the order of 101, and the spin foam
evaluation in question led to a non-oscillating series, truncated to an order of 101 terms,
which appears to converge extremely quickly if compared with Figure 1.

4. Results
4.1. The Shell Model—Examples with a Lorentzian Saddle Point

Here, we will consider the shell model and a range of examples that have one saddle
point along Lorentzian data.

Regarding the numerical procedure, these examples with a saddle point along the
original integration contour are typically easier to handle than the ball model examples
where the saddle point is rather in the complex plane. One obtains fast convergence for,



Universe 2024, 10, 296 15 of 34

e.g., Wynn’s epsilon procedure, if the minimal cut-off for the lapse variable is chosen such
that it includes the saddle point. Beyond the saddle point, the action does go over into a
simple asymptotic behavior, which is linear in our summation variable (see Figure 3).
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Figure 3. The left and right panel show the action (in units of ℓ2
P) as a function of the time-like bulk

area Bt (left panel) and of the space-like bulk area Bs (right panel); both areas are given in terms of
ℓ2

P. Different colors for the graph encode different values for the cosmological constant. We fixed as
values for the boundary areas A1 = 5ℓ2

P and A2 = 7.5ℓ2
P. For space-like areas, the action has a real

part (solid lines) and an imaginary part (dashed line). This imaginary part does not depend on the
cosmological constant and is therefore the same for all shown cases. The case with Λ = 0.01ℓ−2

P (in
blue) does not have a Lorentzian critical point, but it has a Euclidean one. We will discuss examples
with Euclidean critical points in the next section.

The results will show the following:

• The difference between including and excluding the hinge irregular region is relatively
small; e.g., the absolute values of the differences in the spin foam sum for the first
example below are of the order of 10−8; for the second example, 10−6; and for the third
example, 10−5. We will show here the version where we include the hinge irregular
region into the path integral. There would not be a visible difference in the plots for
the alternative choice.

• The difference between Regge path integrals and effective spin foam sums is relatively
small (e.g., see Figure 5).

• The expectation value for the bulk area squared is well approximated by its classical
value (e.g., see Figure 6).

• Larger deviations can be found for large values of the cosmological constant (see
Figures 13 and 14).

We will illustrate these features with a few examples below.
Let us start with our first example. Here, we choose Λ = 0.2ℓ−2

P and fix as the smaller

boundary area A1 :=
√
Abdry1 = 5ℓ2

P. For the larger boundary area, we consider a range

from A2 = 5.5ℓ2
P to A2 = 8ℓ2

P. We can translate these boundary areas to the scale factor
squared: a2

1 ≈ 27ℓ2
P and a2

2 ≈ 29.7ℓ2
P, . . . , 43.2ℓ2

P. To do so, we equate the three volumes
of the hypersurface of the shell model with the three volumes of the hypersurface in the
mini-superspace model (see [48]). Note that, in the mini-superspace model, there are
Lorentzian solutions for the lapse function, if both boundary values for the scale factor
squared are larger than a2

Λ = 15ℓ2
P.

The main difference between the Regge path integral and the effective spin foam sum
is that, in the former case, we integrate over the bulk variable, and in the second case,
we rather sum over the spectral values (8). We expect to see large differences between
the results if, around the classical solution, there are only very few spectral values per
oscillation of the amplitude.

Figure 4 shows that this is not the case, and that we can determine very well the saddle
point also with the restriction of the bulk variable to its spectral values (8). We indeed find
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that the Regge path integral and the effective spin foam sum approximate each other very
well (see Figure 5).
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Figure 4. These plots show the amplitude (including the measure term) as a function of the (time-like)
summation parameter nB for the example with Λ = 0.2ℓ−2

P . (That is, Bt = ℓ2
PnB/ne with ne = 720.)

On the left panel, we use a continuous plot; on the right panel, we show only the amplitude values for
the discrete values of nB, which we sum over. Note that if we would have used a spectrum Bt = ℓ2

PnB,
the 5040 = 7ne points shown on the right panel would reduce to just 7 points.
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Figure 5. The left and right panels show the absolute value and the real part of the spin foam sum
and Regge integral, respectively. Here, we keep A1 = 5.5ℓ2

P fixed and vary A2 from 5.5ℓ2
P to 8ℓ2

P. We
translated this boundary area to a scale factor squared according to (2), and express it in units of
ℓ2

P. This applies also to all the following figures. We plotted only every fifth spectral value for the
boundary area. For both the absolute value and the real part, differences between spin foam sum and
Regge integral are not visible.

Figure 6 compares the (effective spin foam) expectation value of the bulk area squared
with the classical solution. The differences for the real part of this expectation values are
however not visible in this plot. Tiny oscillations of the expectation value are only visible
for larger values of the scale factor if one zooms in (see Figure 7). In Figure 6, we also
show the imaginary part of the expectation value. The fact that it does not vanish can be
understood as a quantum effect; the ratio of imaginary and real parts is, however, quite
small, namely, ≈10−3.



Universe 2024, 10, 296 17 of 34

ESF

Class

30 32 34 36 38 40 42

-20

-15

-10

-5

0

a2

R
e
(<
B
2
>
)

ESF

30 32 34 36 38 40 42
0.03

0.04

0.05

0.06

0.07

0.08

a2

Im
(<
B
2
>
)

Λ = 0.2ℓ−2
P Λ = 0.2ℓ−2

P

Figure 6. The left panel shows the real part of the expectation value of the (signed) squared bulk area
B2 ≡ Ablk for the spin foam sum and the classical solution. There are no visible differences. The right
panel shows the imaginary part of the expectation value—the imaginary part of the classical solution
is vanishing. Here, we expressed B2 in units of ℓ4

P (also in the following figures).
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Figure 7. Here, we zoom into a smaller region of the plot shown on the left panel in Figure 6. The
left panel shows the expectation value for smaller values of the scale factor squares for the outer
boundary a2

2 (or smaller differences (a2 − a1)
2) and the right panel for larger differences. In the latter

case, we do observe very small oscillations of the expectation value around the classical value.

For the second example, we choose Λ = 2ℓ−2
P . Note that this value is 10 times the

value of the cosmological constant in the first example. We choose the boundary areas (or
squared scale factors) to be 1/10 the values in the first example. The actions in the first and
second example are then connected by the following scaling behavior

SShell

(
1
c

A1,
1
c

A2,
1
c

B; c Λ
)

=
1
c

SShell(A1, A2, B; Λ) . (21)

This scaling behavior lets us expect the same number of (bulk area) spectral values per oscil-
lation of the amplitude for examples that are connected by scaling. Indeed, Figure 8 shows
that the saddle point is still very well recognizable in this second example, although we
show only 1/10 of the spectral values for the bulk area as compared with the first example.
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Figure 8. These plots show the amplitude (including the measure term) as a function of the (time-like)
summation parameter nB for the example with Λ = 2ℓ−2

P . This example is connected by scaling (21)
to the example shown in Figure 4. Due to this scaling, one has approximately the same number of
spectral points per oscillation for the two examples, and could therefore expect the same quality of
approximation of the Regge integral by the spin foam sum.

Figure 9 compares the absolute value of the Regge and effective spin foam partition
function, and we again see that these approximate each other very well. The real parts of
the partition functions differ by a small shift.
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Figure 9. The left panel shows the absolute value of the spin foam sum and of the Regge path integral
for the second example. The right panel shows the real parts. In the latter, we see a small shift in the
phase between spin foam sum and Regge path integral. Here, we plot the partition functions for all
spectral values in the shown range for the outer boundary area.

We depict the expectation values in Figures 10 and 11. As expected, the real part of
the expectation values is connected by the scaling behavior (21). This extends to the size of
the imaginary part.

However, zooming in (see Figure 11), we find that the differences between the expec-
tation value and the classical value appear (in their relative size) to be somewhat larger
than in the first example, as shown in Figure 7.

We choose the third and last example to showcase an example with larger differences
between the Regge and effective spin foam path integral. We found that these differences
are enhanced for large values of the cosmological constant and, therefore, choose Λ = 100ℓ2

P.
The boundary values are chosen as A1 = 0.2ℓ2

P (a2
1 ≈ 1.1ℓ2

P) and A2 = 0.22ℓ2
P, . . . , 0.4ℓ2

P
(a1 = 1.2ℓ2

P, . . . , 2.1).
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Figure 10. The left panel shows the real part of the expectation value of the (signed) squared
bulk area for the spin foam sum and the classical solution for the second example. There are no
visible differences. The right panel shows the imaginary part of the expectation value, whose size is
approximately 3% of the size of the real part.
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Figure 11. Here, we zoom into the plot shown on the left panel in Figure 10. We see a small shift for
smaller values for the outer squared scale factor and small oscillations for larger values for the outer
squared scale factor.

Figure 12 shows the amplitude as a function of the continuous bulk variable and
as a function of the discrete bulk variable. There is a classical saddle point at jB ≈ 30;
this classical saddle point is, however, not visible in the discrete plot. We see, however, a
so-called pseudo saddle point at jB ≈ 225: such saddle points appear if the frequency of
the spectral values is similar to the frequency of the oscillations.

One could therefore expect rather large differences between the Regge path integral
and the effective spin foam path integral and also large deviations of the effective spin
foam results from the classical limit. We will see, however, that the classical results are still
reproduced to a surprising degree.

Figure 13 compares the absolute value of the Regge and effective spin foam partition
functions. Compared with the previous examples, there are visible differences, which are,
however, relatively small. The deviations increase for a growing boundary scale factor
a2

2. This could be due to the fact that there is a pseudo saddle point for larger values of
this boundary scale factor, but we could identify no such pseudo saddle point for smaller
values of a2

2.
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Figure 12. These plots show the amplitude as a function of the (time-like) summation parameter
nB for the example with Λ = 100ℓ−2

P . On the left panel, we show the amplitude as a function of
a continuous parameter nB. Here, we see a (true) saddle point around nB = 30. On the right, we
show the amplitude as a function of the discrete summation parameter nB ∈ N. Due to the size of the
spectral gap, we do not see the (true) saddle point anymore. One rather has a pseudo saddle point
around nB = 220, which arises through interference between the discretization and the frequency of
the oscillations in the amplitude.
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Figure 13. The left panel shows the absolute value of the spin foam sum and of the Regge path
integral for the third example where Λ = 100ℓ2

P. The right panel shows the real parts. We now do
see (small) differences between spin foam sum and Regge integral for both the absolute value and
the real part. Here, we again plot the partition functions for every spectral value in the shown range
for the outer boundary area.

We compare in Figure 14 the effective spin foam expectation value for the squared
bulk area with the classical value. The real part of the expectation value does approximate
the classical value quite well, given that we cannot identify the classical saddle point on the
right panel of Figure 12. We notice, however, also small oscillations of the expectation value
around the classical value, which become more noticeable when we zoom into a smaller
range for the boundary scale factor (see Figure 15). The oscillations increase again if we
increase the values for a2

2.
Overall, we find that, for the shell model, with boundary values chosen such that we

have classical saddle points for negative values of the bulk area square (and thus satisfying
the Lorentzian triangle inequalities), we have relatively small differences between the
Regge path integral and the effective spin foam sum on the one hand and the effective spin
foam sum expectation value and the classical solution on the other hand.

This does change drastically for examples where we have only a saddle point for a
(positive) value of the bulk area square, which satisfies the Euclidean triangle inequal-
ities. Such saddle points can be interpreted to have imaginary lapse and to describe a
Euclidean geometry.
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Figure 14. Here, we show real and imaginary parts of the expectation value for the (signed) bulk
area squared and compare with the classical solution. The expectation value still approximates the
classical value very well, despite the fact that the true saddle point is washed out by the discretization
(see Figure 12). We see, however, small deviations with oscillatory behavior.
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Figure 15. Here, we zoom into the plot shown on the left panel in Figure 14. We now see visible
differences between the expectation value and the classical value for both small and larger values of
the outer scale factor.

4.2. The Ball Model–Examples with a Euclidean Saddle Point

Here, we will consider the ball model, which implements a boundary value A1 = 0
and thus a2

1 = 0. We will choose the second boundary value that is sufficiently small so that
the classical action has a saddle point for a positive bulk area so that Euclidean triangle
inequalities are satisfied.

The path integral, as a function of the second boundary value, does the so-called no-
boundary wave function [101]. In the continuum mini-superspace model, the path integral
can be reduced12 to a one-dimensional integral over a global lapse parameter. Starting from
a Lorentzian contour, one can deform the contour to go along Euclidean data and apply
a saddle point approximation [8] or evaluate this integral numerically [23]. In [23], the
authors considered the Regge path integral based on the ball model that approximates
continuum time evolution with one time step. This reduces the “path integral” to an integral
over one variable, which can be interpreted as a lapse. This integral was evaluated using
a deformation of the contour to Euclidean data, along which the integral is exponentially
decaying. This allowed a numerical integration along this contour. Despite the rather
coarse approximation of the continuous time evolution with one simplicial time step,
the Regge model provided an astonishingly accurate approximation of the continuum
mini-superspace results [23].

Here, we will use, instead of a contour deformation, a direct evaluation of the
Lorentzian path integral based on using acceleration operators for series convergence.
For the Regge integral, we find exactly the same results as with the contour deformation.
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For (effective) spin foams, we replace the integral with a discrete sum, and we thus
cannot apply a contour deformation. We will thus rely on the acceleration operator tech-
nique. In contrast to the cases with Lorentzian saddle points, we will find for the cases
with Euclidean saddle points that the effective spin foam sum substantially deviates from
the Regge integral. This deviation grows with the difference between the initial and final
scale factors, but appears already for quite small differences. On the other hand, the de-
viation does decrease if we refine the spectrum for the bulk variable. As one can expect,
the deviations vanish when we consider the infinite refinement limit.

We will thus find a drastic difference between the regimes with Lorentzian and Eu-
clidean saddle points. In the cases with Lorentzian saddle points, we found only small
differences between the Regge and effective spin foam models, and reproduced the classical
expectation value even in cases where the classical saddle points could not be identified
in the discrete amplitude plot. That is, the Lorentzian regime is not very sensitive to a
discretization of the bulk variable. In contrast, the Euclidean regime appears to be sensitive
to such a discretization.

A possible explanation for this sensitivity might be rooted in the fact that, in the
Lorentzian regime, the saddle points are on the initial integration contour, whereas in the
Euclidean regime, there are no saddle points on the initial integration contour.

If we perform the Regge integral for the examples in the Euclidean regime along
the initial contour, the result relies on subtle cancellations between different parts of the
amplitude, occurring across the entire integration range. This leads to an overall exponential
suppression, which (for larger differences between initial and final scale factors) can lead to
very small absolute values for the result of the integral, e.g., on the order of 10−6. These
subtle cancellations are easily disturbed by a discretization of the bulk variable. Indeed,
we will see that, whereas cancellations still occur in the discrete case, the suppression
effect works only to a certain degree, and one will not reach such small numbers as for the
continuous integral.

On the other hand, if we do a deformation of the integration contour to Euclidean
data, we rely on an analytical continuation. The concept of harmonic functions and
analytical continuation can be extended to functions of discrete variables [102]. Such
discrete analytical continuations,however, behave quite differently than their continuum
counterparts. For example, whereas the analytical continuation of exp(ıx) into the upper
complex half-plane leads to a decaying function, this is generally13 not the case for the
discrete version of this function.

In view of this discussion, we conjecture that integrals with no saddle points along
the initial contour are quite sensitive to a discretization of the integration variable. That is,
phenomena like tunneling can be affected. Interestingly, we find that the probability for
tunneling tends to increase.

Although we provide a general reason for the deviation between the Regge and
effective spin foam model in the Euclidean regime, we want to point out two caveats that
will be addressed in future work: the first one is that the results depend on the density of
the spectrum of the integration variable. In Section 2.6, we provided a heuristic reasoning
for our particular choice in this simplicial mini-superspace model. It would be highly
desirable to derive such a spectrum more directly from the non-symmetry reduced theory.
This task can be compared with the still-open question to derive loop quantum cosmology
more properly from the full theory [94]. The second caveat is that we consider only one time
step in our simplicial model. As we explained above, we find that the one-time-step Regge
integral approximates the continuum result to an astonishing degree (see [23]). For the
effective spin foam model, we find, however, that the deviations from the Regge integral
grow with the difference between the boundary values. This could possibly change if we
consider multiple time steps and, ultimately, the continuum limit.

We will now present the numerical results in more detail. To begin with, we consider
the difference between the Regge integrals with and without including the region with
an irregular light cone structure. Figure 16 compares these two integrals for the case
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Λ = 0.2ℓ−2
P . We see that the choice where we do include the irregular region leads to

a real result for the path integral, whereas not including the irregular region leads to
a non-vanishing imaginary part. The continuum mini-superspace model (which does
not feature such an irregular region) does lead to a real result. Furthermore, the path
integral, which includes the irregular region, shows an exponential decay as a function
of the squared scale factor, similar to the continuum mini-superspace model. In contrast,
the choice that excludes the irregular region shows an exponential decay only up to a
certain threshold value.
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Figure 16. Here, we compare the absolute value (left panel, with a logarithmic plot) and imaginary
part (right panel) of the Regge integral for two different choices: For ZRegge, we integrate over both
the hinge regular and irregular configurations; for ZRegge−Causal, we only integrate over the hinge
regular configurations. Including the irregular configurations into the integral leads to a continued
exponential decay of the partition function, which is also real. These two features are shared with the
path integral for the continuum mini-superspace model.

Thus, if we wish to have a close approximation of the continuum mini-superspace
results, we should include the irregular region. In the following, we will only show the
choice where we integrate or sum over the irregular region.

For the first example, we will choose Λ = 0.2ℓ2
P and γ = 0.1. For the ball model, the

initial boundary area or initial scale factor (squared) is always vanishing. For the final
area,14 we will choose a range from A = 1 × (γ/nt)ℓ2

P, that is, the smallest non-vanish
value, to A = 453× (γ/nt)ℓ2

P. Note that this is only a small part (namely, around 1 %) of the
range for the boundary area A that leads to Euclidean saddle points and approximates well
the continuum behavior [48]. This regime allows values of up to A = 45300 × (γ/nt)ℓ2

P.
However, we will find significant deviations from the Regge path integral already for this
small regime.

We will find larger deviations for larger values of the outer area. This can be explained
by comparing the spectral gap for the bulk variable with the frequency of the oscillations of
the amplitude. Figure 17 shows that this ratio is smaller for larger outer areas. We therefore
expect larger deviations in this case.

This is confirmed by comparing the results for the effective spin foam sum with the
Regge integral in Figure 18. The (logarithmic) plot for the absolute value of the spin foam
sum shows that it deviates from the Regge integral, starting with relative small values for
the boundary area, or, equivalently, the squared boundary scale factor. Refining the spectral
values for the bulk variable by a factor of 10, one can increase the range where the spin
foam sum and Regge integral agree.
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Figure 17. Here, we show the amplitude for a smaller value (left panel) and a larger value (right
panel) of the boundary area A as a function of the discrete (time-like) summation variable nB. We see
that, for larger boundary areas (equivalent to having larger differences between the outer and inner
boundary, as the area for the inner boundary is vanishing), the discretization does not fully capture
the oscillations of the amplitude over a larger range of the summation variable nB. One can therefore
expect that the difference between Regge integral and spin foam sum is larger for larger outer areas.
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Figure 18. Here, we show the absolute value (with a logarithmic plot on the left panel) and the
imaginary part (right panel) of the partition functions for the ball model. We compare the Regge
integral (red) with the effective spin foam sum (blue), with spectral values as described in (8), and the
effective spin foam sum (purple), where we refine the spectrum by a factor of 10. We see that the
effective spin foam sum does deviate from the Regge path integral for quite small values of the
squared scale factor. That is, the discretization (via the discrete spectra) of the integration variable
does interfere with the subtle mechanism that leads to destructive interference and an exponential
decay of the partition function. Refining the spectrum increases the range for the scale factor, in which
the spin foam sum does approximate the Regge integral reasonable well. The imaginary part of the
Regge integral does vanish; for the spin foam sums, one does find a non-vanishing imaginary part.

Correspondingly, we find also a non-vanishing imaginary value for the spin foam sum,
whereas it does vanish for the Regge integral. The value for the imaginary parts is larger
for very small values of the boundary area. However, comparing the size of the imaginary
part with the absolute value, we see that the relative size of the imaginary part grows for
larger boundary areas and that the amplitude becomes fully oscillatory (see Figure 19).
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Figure 19. Here, we show real and imaginary parts of the spin foam partition function. The oscillations
of the imaginary part are of the same magnitude as the oscillations of the real part, starting with quite
small values of the scale factor (squared).

Figure 20 shows the spin foam expectation value for the bulk area squared and
compares it with the Regge integral expectation value and the classical15 value.
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Figure 20. The left panel and right panel show the real and imaginary parts of the expectation value
for the bulk area squared, respectively. We observe that the Regge expectation value already deviates
from the critical value of the Euclidean classical action, with the difference increasing with larger
scale factors. The effective spin foam expectation value starts to deviate from the Regge expectation
value, starting with quite small scale factors. A refinement of the spectrum for the bulk area increases
the regime where Regge and (refined) spin foam expectation values coincide.

We see again that the effective spin foam value deviates from the Regge integral value
starting with quite small boundary areas. Refining the spectrum (by a factor of 10), we can
push the regime where we get agreement between spin foam and Regge result to larger
boundary areas. We also find a deviation between the Regge result and the classical value,
but they show the same qualitative behavior.

For the second example, we will choose Λ = 2ℓ−2
P . We choose the same range of

boundary values for the area as before. Due to having a cosmological constant value that
is 10 times the size of the value in the first example, this range now covers 10% (and not
only 1%) of the regime in which we approximate well continuum behavior with the Regge
path integral.

We noticed that the results for Λ = 2ℓ−2
P look very similar to the results for Λ = 0.2ℓ−2

P
(for the same range of boundary areas). That is, for these ranges of boundary areas, the
value of the cosmological constant has a weak influence. We will therefore just show a
comparison of the effective spin foam sums for these two cases in Figure 21.
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Figure 21. Here, we compare the absolute value of the spin foam partition function (left panel,
logarithmic plot) and its imaginary part (right panel) for the values Λ = 0.2ℓ−2

P and Λ = 2ℓ−2
P of the

cosmological constant. There are almost no differences visible in this plot.

Increasing the cosmological constant further and further, we decrease the range of
boundary values, which lead to an Euclidean saddle point and show for the action evaluated
on this saddle point the same qualitative behavior as in the continuum [48]. For example,
choosing a value of Λ = 100ℓ2

P, this range only extends to A = 90(γ/nt)ℓ2
P. Here, we find

agreement between the effective spin foam and the Regge results (see Figures 22 and 23).
However, the reader might want to keep in mind that we are looking at a range of boundary
areas, which is five times smaller than in the previous examples, and that we found also
agreement in this smaller range in the previous examples.
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Figure 22. Here, we consider a very large cosmological constant Λ = 100ℓ−2
P and compare the

absolute value (left panel, logarithmic plot) and imaginary part (right panel) of the partition function
for effective spin foams, effective spin foams with refined spectrum, and the Regge integral. We show
the entire range of the boundary scale factor squared, for which the classical equations of motions for
the discrete model emulate the continuum behavior. This range scales with the inverse of Λ, and is
therefore very small, including only 90 eigenvalues for the boundary area. We observe that, over this
small range, the differences for the various versions of the partition function are small.

In summary, in the Euclidean regime, we find rather large deviations between the
effective spin foam sum and the Regge integral, particularly when comparing with the
results in the Lorentzian regime. These deviations grow with the difference between
the boundary areas. We still find that the effective spin foam amplitude describing the
(tunneling) transition amplitude from a universe with a vanishing scale factor to a universe
with a finite scale factor is suppressed. However, above a certain threshold value for the
final scale factor, the probability for such transitions is increased in effective spin foams as
compared with the Regge path integral.
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Figure 23. These plots show the real and imaginary part of the expectation value for the bulk area
squared, and compare it with the critical value of the classical action. We see that (for the real part)
the expectation value for the various versions of partition functions does almost agree, but all deviate
from the classical value.

5. Discussion

Here, we discussed a Lorentzian path integral for quantum gravity based on effec-
tive spin foams, and applied it to a triangulation modeling homogeneous and isotropic
cosmology. Effective spin foams are much more amenable to numerical computations
than previous spin foam models and also have no restrictions regarding the space-like or
time-like nature of lower-dimensional building blocks. This allowed us to perform the first
cosmological spin foam calculations that integrate over a lapse-like bulk variable. One
main advantage of this feature is that it allows a direct comparison of the results with the
Regge path integral and with quantum mini-superspace cosmology.

The evaluation of Lorentzian path integrals is very challenging due to the oscillating
nature of the integrands. We have seen that the integrals and sums we consider are either
very slowly converging (Figure 1) or even diverging (Figure 2).

Integrals can be treated by deforming the contour into the complex plane, e.g., follow-
ing the Picard–Lefschetz prescription [12,13]. We do not have such a technique available
for sums, and the theory of discrete harmonic functions does not seem to help. Non-linear
transformations of sequences can, however, accelerate the convergence of series very much
and may also allow the extraction of (anti-) limits from diverging series [42]. Here, we
discovered that the Shanks transforms (and Wynn’s epsilon algorithm) are particularly effec-
tive in dealing with the series at hand, and that these can be applied to sums and integrals.
It also allows the computation of expectation values, which involve divergent series.

The main reason for the effectiveness of these techniques is the simple asymptotic
behavior of the Regge action. It seems particularly important that, in the case of the
sums, the action is linear in the summation variable 16. This is the case for the examples
considered here but does hold also more generally for spin foams [103,104]. We find it
notable that (asymptotically) equidistant area spectra (for (3 + 1) dimensional gravity),
as implemented in spin foams, do lead to an action linear in the summation variable,
whereas (asymptotically) equidistant length spectra would lead to the problems outlined
in Notes17. Keeping this lesson in mind, we hope that the Shanks transform and Wynn’s
epsilon algorithm can be applied to more general gravitational partition functions and
more general real-time path integrals.

We have applied the non-linear series transformation to compute the Regge path
integral and the effective spin foam sums for two kinds of simplicial min-superspace
models, namely, the ball and shell model.

To summarize the results, we first note that the construction of the cosmological
effective spin foam models ensures that a saddle point approximation reproduces the
correct classical cosmological dynamics, within the regime where discretization artifacts
can be neglected [48].18
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We therefore focused on the transition from the Regge path integral to the effective
spin foam sum, that is, the effects induced by implementing the discrete area spectrum.
We considered for the shell model boundary conditions that led to critical points along
Lorentzian data. We found for this class of examples only small differences between the
Regge path integral and the spin foam sum. Indeed, the restriction to Lorentzian critical
points means that we have to choose relatively large scale factors: in the continuum, the
threshold value is aΛ =

√
3/Λ. We did find more significant deviations for a very large

cosmological constant Λ = 100ℓ2
P.

The ball model models a transition from a vanishing scale factor to a finite scale factor
and, therefore, implements the no-boundary proposal.19 The choice of the finite scale factor
is restricted to the regime in which the Regge discretization provides a good approximation
to the continuum dynamics, which is governed by Euclidean critical points. In a previous
work [23], we found that the Regge path integral, in this regime, reproduces very well the
continuum mini-superspace results [8], despite the fact that the ball model describes only
one time step. In both cases, one finds an exponential decay of the path integral. If one
includes hinge irregular configurations into the integral, it does lead to a real partition
function, as is also the case in the continuum.

The introduction of the discrete area spectrum (8) does, however, for the choices with
a larger finite scale factor, lead to large deviations between the effective spin foam sum and
the Regge path integral. The exponential decay (as a function of the outer scale factor) is
very much weakened, and the spin foam sum does acquire significant imaginary terms.

We can thus conclude the following: The examples with Lorentzian critical points
react fairly insensitively to the introduction of a discrete area spectrum. The examples with
Euclidean critical points do lead to significant differences. We provided a heuristic explana-
tion based on the observation that although one can, in principle, apply a deformation of
the “integration contour” also for sums, the discrete analytical continuation is much less
under control than in the continuum.

The construction of our model did involve a number of simplifications, and lifting
these simplifications might affect our conclusions. Future work will address, e.g., the
following:

• We provided heuristic arguments for the choice of a discrete area spectrum in (8) in the
symmetry-reduced model. A similar issue appears for loop quantum cosmology [94].
It would be desirable to have a more rigorous derivation of the spectrum in symmetry-
reduced models. One way to achieve this is to allow for more inhomogeneous bulk
variables and to then integrate out the inhomogeneities and, in this way, to define an
effective model for only symmetry-reduced configurations, that is, to implement a
coarse graining and renormalization process [76,84,108,109].

• We only considered one time step. With the shell model, we can easily incorporate
more time steps, in both the Euclidean and Lorentzian regime. We found that, for
both the Lorentzian and Euclidean regime, the deviations between Regge integral and
spin foam sum got stronger with larger differences between the initial and final scale
factor. It will be interesting to see whether we arrive at the same conclusion if we
incorporate more time steps, and how, e.g., the threshold value beyond which we see
strong deviations in the Euclidean regime changes.

A further advantage of introducing more time steps (and eventually performing
the refinement limit) is that the refinement limit can also restore time reparametrization
invariance. This has already been demonstrated for the classical dynamics in [48]. We
expect that this will also resolve ambiguities for the path integral measure, as has been
illustrated in [110–112]. Here, it will be particularly interesting to study the role of the
irregular hinge configurations, e.g., whether it will be necessary to include these in order
to achieve time reparametrization invariance. With the time reparametrization invariance
restored, one can derive a Hamiltonian constraint and the effective spin foam partition
function (when defined to include the sum over positive and negative lapse variables) will
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satisfy this constraint [110,113,114]. (Note that the ball model does automatically satisfy a
so-called post-constraint equation [113,114]).

Other interesting extensions to the model presented here include the addition of matter
and the study of the possibility of a singularity resolution. A simple dust action has already
been considered in [48,82]. In a similar vein, it will be highly interesting to add more
geometric variables that, e.g., describe anisotropies [115].

These efforts will lead to partition functions that involve the summation of several or
even many variables. Let us note that, e.g., the Shanks transformation can be generalized
to examples with more than one summation variable. One can, e.g., organize the multiple
sums into one sequence [116]. A possible organization principle for path integrals is to
integrate or sum first over all configurations whose actions evaluate to a value in a certain
small range. This seems particularly promising, as the Regge gravitational action shows a
simple asymptotic behavior when all bulk areas or edge lengths are scaled large [103,104].

Author Contributions: B.D. and J.P.-A. contributed equally to all aspects of the article. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by NSERC grant RGPIN-2023-03541. Research at Perimeter
Institute is supported in part by the Government of Canada through the Department of Innovation,
Science, and Economic Development Canada and by the Province of Ontario through the Ministry of
Colleges and Universities.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author/s.

Acknowledgments: JPA is supported by an NSERC grant awarded to BD. Research at Perimeter
Institute is supported in part by the Government of Canada through the Department of Innovation,
Science, and Economic Development Canada and by the Province of Ontario through the Ministry of
Colleges and Universities.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Regge Actions for the Ball and Shell Model

Here, we will provide a more detailed account of the Regge actions for the ball and
shell model.

The action for the ball model has the following form:

±ı (8πG)S±
Ball = ne

√
±Ablk δ±blk + nt

√
± Abdry δ±bdry − Λnτ

√
±Vσ , (A1)

where the various geometric quantities are given by√
± Ablk =

√
sl

4
√

2

√
± sl + 8sh ,

δ±blk = 2π ∓ 6
nτ

ne
ı log∓

−sl + 8sh ∓ ı8(sl + 8sh)
√

±
sh

sl+8sh

sl + 24sh

 ,

√
± Abdry =

√
3

4
sl ,

δ±bdry = π ∓ 2ı log∓

(√
sl ∓ ı2

√
6√± sh√

± sl + 24sh

)
,

√
±Vσ =

√
2

48
s3/2

l
√
± sh . (A2)

The variable sl gives the squared length of the edges in the boundary of the 600-cell, and sh
gives the (signed) squared height of the four-simplices, into which the 600-cell is divided.
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We can replace sl and sh by the (signed) area squares Abdry and Ablk, using the relations in
(A2). We then obtain the action as a function of this area (squares).

We have for the shell model

±ı (8πG)S±
Shell = ne

√
Ablk δ±blk + nt

(√
±Abdry1 δ±bdry1

+
√

±Abdry2 δ±bdry2

)
− Λnτ

√
±V4-frust , (A3)

where we have now

√
± Ablk =

√sl1 +
√sl2

4
√

2

√
± (

√
sl2 −

√
sl1 )

2 + 8sh ,

δ±blk = 2π ∓ 6
nτ

ne
ı log∓

−(
√sl2 −

√sl1 )
2 + 8sh ∓ ı8((√sl2 −

√sl1 )
2 + 8sh)

√
±

sh
(
√sl2−

√sl1 )
2+8sh

(
√sl2 −

√sl1 )
2 + 24sh

 ,

√
± Abdry1

=

√
3

4
sl1 ,

√
± Abdry2 =

√
3

4
sl2 ,

δ±bdry1
= π ∓ 2ı log∓

 (
√sl1 −

√sl2 )∓ ı2
√

6√± sh√
± (

√sl2 −
√sl1 )

2 + 24sh

 , δ±bdry2
= π ∓ 2ı log∓

 (
√sl2 −

√sl1 )∓ ı2
√

6√± sh√
± (

√sl2 −
√sl1 )

2 + 24sh

 ,

√
±V4-frust =

√
2

48
(
√

sl1 +
√

sl2 )(sl2 + sl1 )
√
± sh . (A4)

Here, sl1 and sl2 give the squared edge lengths in the inner and outer boundaries of the shell,
respectively. The variable sh is the (signed) height square in the four-dimensional frusta,
which build up the shell. We can again replace these variables by the (signed) squared
areas Abdry1 and Abdry2 as well as Ablk.

Notes
1 Ref. [40] considers the amplitude for a four-simplex and [41] applies a refining 1-4 Pachner move to each of the five boundary

tetrahedra of the four-simplex. This does lead to five bulk tetrahedra but no bulk triangles.
2 The smaller the parameter, the stronger the suppression.
3 Recent work [53,54] has, however, shown that the continuum limit of the (linearized) Area Regge dynamics leads to (linearized)

general relativity, with a correction (second order in the lattice constant) given by the square of the Weyl curvature.
4 These frusta can be subdivided into 4-simplices, but this introduces additional edge lengths. In this model, we fix these additional

edge lengths by demanding that the frusta are piecewise flat building blocks [48]. Frusta, which, however, have a cubic instead of
a tetrahedral base, have also been used in [84] in the context of restricted spin foam models.

5 In [85,86], these are dubbed local causality condition. However, one can argue that, even to points violating these conditions, one
can assign a well-defined future and past. We thus prefer the notion of irregular light cone structure.

6 In case the triangulation has a boundary, one has a (Gibbons–Hawking–York) boundary term [89]. This boundary term has the
same structure as the bulk term; the only difference is that the deficit angles are replaced by extrinsic curvature angles. The latter
are computed in the same way as the deficit angles; one only needs to replace the flat angle with the flat half-angle, or some other
choice if one considers corners.

7 See [23] for an extensive discussion on the analytical continuation of this action and the resulting Riemann surface.
8 In the continuum model, one finds two Euclidean critical values for a positive imaginary lapse. These two values correspond

to an evolution that remains in one hemisphere of the de Sitter sphere and an evolution that crosses the equator and therefore
involves both hemispheres. Using only one time step in the discrete model, we only see the first case; to see the second solution,
one needs at least two time steps.

9 In the continuum, one again finds two solutions corresponding to the solution not crossing or crossing the equator of the
Lorentzian de Sitter space. Discretely (with only one time step), we only find the solution that does not cross the equator.

10 One actually has Aspace−like = ℓ4
Planckγ2 j(j + 1) only for space-like areas in a space-like tetrahedron. For space-like areas in a

time-like tetrahedron, one rather has Aspace−like = ℓ4
Planckγ2 j(j − 1) and the condition j ≥ 1 [43]. The equidistant spectrum is a

compromise, where we do not need to distinguish between these two types of space-like areas.
11 We observed that an action that asymptotes to a quadratic growth in the summation variable might be harder to treat. The reasons

are pseudo saddle points, which can appear because of the interplay between the frequency of the oscillations in the amplitude
and the discretization of the variable, which defines the density with which the amplitude is probed. See Figure 12 for an
example of a pseudo saddle point. With a quadratic growth of the action in the summation variable, such pseudo saddle points
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will appear and can lead to the partial sums exhibiting a staircase like behavior, that is, oscillating around one value for a certain
range of the cut-off, but then suddenly changing to oscillations around another value if this cut-off crosses a threshold value
corresponding to a pseudo saddle point. Such a behavior is not well approximated by series of the form (16), and Wynn’s epsilon
algorithm has to be expected to fail in capturing the infinite sum.

12 The path integral includes a priori integrals over the scale factors at each time step and over a lapse at each time step. After a
variable transformation, the action can be made to be quadratic in a variable related to the scale factors, and this variable can be
integrated out. The lapse variables are gauge-fixed, leaving only a global lapse parameter to be integrated over.

13 The discrete analytical continuation can be uniquely specified if one provides the function values for positive real integers and
positive imaginary integers. Trying different choices for the values of the function for positive imaginary integers, we always
found directions in the positive complex half-plane in which the discrete analytical continuation diverges.

14 In the plots, we translate again the boundary areas to scale factors squared by comparing the three volumes in the simplicial
model with the three volumes of the spatial hypersurfaces in the mini-superspace model (see [48]).

15 There is no classical solution, but we do have a saddle point along Euclidean data. We refer to the position of this saddle point as
“classical value”.

16 See Note 11.
17 See Note 11.
18 In contrast, the works [34,38,39], which aimed to extract cosmological dynamics from the EPRL model [5,6], had to focus on this

question and did not include a (lapse-like) bulk variable.
19 Here, we find that the cases with Euclidean critical points lead to an exponentially suppressed amplitude (consistent with [8,23]).

Note that we decided to sum over the hinge irregular configurations with a choice of (complex) Regge action, leading to
exponentially suppressed amplitudes. We expect to find a different result if we implement the opposite choice. Finding an
exponentially suppressed amplitude is compatible with the findings of [105], which apply a saddle point approximation for the
one-simplex amplitude expressed as an integral over continuous parameters. On the other hand, [40] does find a non-suppressed
amplitude for a discretization given by one (not further subdivided) simplex. The reason is the so-called vector geometries, which
are thought to describe degenerate configurations [106]. It is still open whether such vector geometries should be allowed in the
spin foam path, integral or not [107].
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