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Abstract: Hyperlipidemia is a lipid metabolism disorder that refers to increased levels of total
triglycerides (TGs), cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) and decreased
levels of high-density lipoprotein-cholesterol (HDL-C). It is a major public health issue with increased
prevalence and incidence worldwide. The ability to identify individuals at risk of this disorder
before symptoms manifest will facilitate timely intervention and management to avert potential
complications. This can be achieved by employing metabolomics as an early detection method for
the diagnostic biomarkers of hyperlipidemia. Metabolomics is an analytical approach used to detect
and quantify metabolites. This provides the ability to explain the metabolic processes involved in the
development and progression of certain diseases. In recent years, interest in the use of metabolomics
to identify disease biomarkers has increased, and several biomarkers have been discovered, such
as docosahexaenoic acid, glycocholic acid, citric acid, betaine, and carnitine. This review discusses
the primary metabolic alterations in the context of hyperlipidemia. Furthermore, we provide an
overview of recent studies on the application of metabolomics to the assessment of the efficacy of
traditional herbal products and common lipid-lowering medications.

Keywords: biomarkers; hyperlipidemia; metabolic pathway; metabolites; metabolomics

1. Introduction

Hyperlipidemia is a complex disease defined as an abnormality in lipid metabolism
marked by elevated levels of total cholesterol (TC), triglycerides (TG), and low-density
lipoprotein-cholesterol (LDL-C) and/or decreased levels of high-density lipoprotein-choles-
terol (HDL-C) in the peripheral blood. It is considered a major risk factor for cardiovascular
diseases (CVDs) [1]. Hyperlipidemia can be broadly categorized into two main types
based on its underlying etiology: primary and secondary hyperlipidemia [2]. Primary
hyperlipidemia, also known as familial hyperlipidemia, is a form of hyperlipidemia caused
by genetic abnormalities [3]. Genetic abnormalities can be monogenic or polygenic in
nature. Familial hyperlipidemia is classified into five types according to the Fredrickson
classification: I, II, III, IV, and V, based on the elevated lipoprotein class [4,5]. In contrast,
secondary hyperlipidemia, also known as acquired hyperlipidemia, is a type of hyperlipi-
demia caused by an underlying factor that leads to abnormalities in lipid metabolism and
elevated plasma lipid levels [6]. Hyperlipidemia risk factors can be categorized as modifi-
able or non-modifiable [7]. Modifiable risk factors include the following: a diet that involves
a high consumption of saturated and trans fats; a low intake of fruits, vegetables, and fiber;
certain drugs; alcohol consumption; smoking; metabolic disorders, such as diabetes (both
types 1 and 2) and polycystic ovary syndrome; obesity and weight gain; physical inactivity;
high blood pressure; and poor sleep quality [3]. Non-modifiable risk factors include aging;
sex, where men are generally at a higher risk; genetics, such as a family history of hyperlipi-
demia; endocrine disorders, including hypothyroidism and Cushing’s syndrome; and renal
failure [3,8]. CVDs are a group of diseases that affect the heart and circulatory system. They
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include coronary heart diseases, cerebrovascular diseases, and myocardial infarction [9,10].
According to the World Health Organization (WHO), CVDs are the major causes of mortal-
ity and morbidity globally. They are responsible for approximately one-third of all deaths
worldwide by 2021, representing approximately 20.5 million people [11], which is expected
to increase to 22 million by 2030 [12]. The Global Burden of Disease study reported that
approximately 9.2 million deaths in 2022 were attributed to ischemic heart disease [13].
Although the development of CVDs can be attributed to several factors, atherosclerosis is
the primary cause of CVDs globally [14]. Atherosclerosis is a complex condition involving
a multitude of factors including lipid accumulation, inflammation, endothelial dysfunction,
vascular smooth muscle cell proliferation, and calcification [15]. These processes ultimately
lead to the development of atherosclerotic plaques, which, in turn, lead to a narrowing
of the arteries, decreased blood flow, and an increased risk of cardiovascular complica-
tions [15,16]. Hyperlipidemia is a major health concern that plays an important role in
the development of CVDs and is considered a major risk factor for the development of
atherosclerosis [17,18]. Hyperlipidemia often presents with no obvious symptoms, making
early detection difficult and increasing the risk of serious complications. Hence, there is an
urgent need for the early detection and management of hyperlipidemia to reduce the risk of
the development of CVDs [19]. Metabolomics provides a more comprehensive analysis of
metabolic alterations and offers a tool for the discovery of novel diagnostic biomarkers [20].
This comprehensive approach sheds light on the disease mechanisms, allowing for an
earlier and more accurate diagnosis compared to traditional lipid profiles, which often
focus on a subset of lipid characteristics. Furthermore, metabolomics can detect dynamic
changes in the metabolism, enabling personalized treatment methods that are not possible
using traditional lipid parameters [21]. The initial management of hyperlipidemia involves
the alteration of modifiable risk factors, including a healthy diet, physical activity, smoking
cessation, and weight loss [22]. Lipid-lowering medications are initiated in conjunction
with lifestyle modifications [23,24]. Commonly prescribed lipid-lowering medications in-
clude 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins),
peroxisome proliferator-activated receptor α agonists (fibrates), bile acid sequestrants,
nicotinic acid, and cholesterol absorption inhibitors (Ezetimibe) [25].

Metabolomic studies of hyperlipidemic models have identified the potential biomark-
ers that expand our understanding of the mechanisms underlying the pathogenesis and
progression of hyperlipidemia and might enable the diagnosis of hyperlipidemia at an
earlier stage. This review aims to provide an overview of the findings of current animal and
human metabolomics-based studies in the past 10 years in association with hyperlipidemia,
highlight their contributions to the field, and identify possible areas for future applica-
tions. Additionally, despite several recent applications of metabolomics in evaluating
the anti-hyperlipidemic activity of traditional herbal agents and common lipid-lowering
medications, there is still a shortage of reviews that address these findings. Hence, in this
review, we will address the importance of these therapeutic agents and provide a better
understanding of their underlying mechanisms of action.

2. Metabolomics

Metabolomics is the comprehensive analysis of the small molecules called metabolites
produced by biological samples, including cells, tissues, organs, and biofluids, by applying
analytical methods such as mass spectrometry (MS) and Nuclear Magnetic Resonance
(NMR) spectroscopy [26,27]. Metabolites are the intermediate byproducts of metabolic
processes that represent the final downstream products. Thus, any underlying changes in
genomics, transcriptomics, or proteomics can be reflected in metabolic alterations [28]. The
field of metabolomics has evolved rapidly and holds promise for use as a powerful tool
to help understand the interactions within a biological system and enable the search for
metabolic biomarkers that can function as indicators of disease progression or therapeutic
intervention efficacy [26,29]. Metabolomic studies can be divided into two approaches:
untargeted and targeted approaches. Untargeted metabolomics is the comprehensive profil-
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ing of all the detectable metabolites in a sample and is usually intended for the discovery of
new biomarkers. The targeted metabolomics approach mainly focuses on the quantification
of metabolites of interest to validate and further investigate a specific group of metabo-
lites [30,31]. Over the last few years, metabolic profiling has been employed in several
studies to improve our understanding of the pathogenesis of hyperlipidemia. In addition, it
has been applied in various studies to evaluate the potential anti-hyperlipidemic activity of
many agents [32,33]. Metabolomics-based studies focus on the identification of differential
metabolites, as well as the investigation of related metabolic pathways, as any abnormalities
in metabolite levels would reflect these pathways [34]. After identifying a set of significant
metabolites that could serve as potential biomarkers, the next step is to investigate the
relationships between these metabolites and their metabolic pathways. This includes the
study of the synthesis and degradation processes related to alterations in metabolites. By
understanding these connections, we can elucidate the possible mechanisms that lead to
alterations in metabolite levels. This knowledge can also reveal how metabolic dysfunction
contributes to disease development and progression [35,36].

2.1. Metabolomics Techniques

Several analytical methods have been employed in the field of metabolic profiling
to identify and quantify a set of metabolites [37]. The most frequently used analytical
techniques are NMR and MS [38], including ultraperformance liquid chromatography–
tandem mass spectrometry (UPLC-MS/MS) [39], liquid chromatography–mass spectrome-
try (LC-MS) [40,41], liquid chromatography–tandem mass spectrometry (LC-MS/MS),
and gas chromatography–mass spectrometry (GC-MS) [42]. The reproducibility and
non-destructive properties of NMR analysis and the high sensitivity and selectivity of
MS analysis have made these two techniques the most employed in sample analysis in
metabolomics [43–45]. MS is typically coupled with separation techniques such as gas
chromatography (GC) and liquid chromatography (LC). This coupling of MS with GC
and LC allows the separation of metabolites based on their different chromatographic
properties and increases their selectivity, contributing to their superiority in targeted
metabolomics [46]. Other techniques, including Fourier-transform infrared (FTIR) spec-
troscopy [39], Raman spectroscopy [47], and molecularly imprinted polymer (MIP)-based
electrosensors [48], have also been used for the sample analysis. Each analytical technique
has its own advantages and disadvantages, as listed in Table 1. Hence, the choice of
the analytical technique depends on many factors, including the type and amount of the
sample; the concentration and properties of the metabolites detected; the experimental
design; the aim of the metabolomic study; and, more specifically, the question being ex-
plored in the experiment [44,49]. Moreover, although each analytical technique has several
strengths, no single method is considered ideal for the detection of all the metabolites in a
sample. A multiplatform approach that combines analytical techniques provides a more
comprehensive and complementary analysis of the metabolome [50,51]. In the context of
hyperlipidemia metabolomics-based studies, both NMR-based metabolomic research and
MS-based metabolomic research have been conducted to investigate hyperlipidemia and
are discussed in this review. Employing advanced analytical techniques enables the detec-
tion of a wide range of metabolites, which, in turn, provides comprehensive insights into
the pathophysiological processes underlying hyperlipidemia and sheds light on possible
therapeutic targets.

The metabolomic data undergo several steps, as shown in Figure 1. After data acqui-
sition through an analytical method of choice, an extensive amount of complex raw data
is obtained, which is then preprocessed using certain software tools. The data are then
processed and normalized to reduce bias and analyzed using univariate and multivariate
statistical analysis methods to identify the statistically significant metabolites that differen-
tiate between the studied groups. All these steps allow the efficient interpretation of the
data and lead to potentially valuable results [52,53].
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Table 1. Advantages and limitations of the most commonly used analytical techniques
in metabolomics.

Analytical Technique Advantages Limitations References

Nuclear Magnetic
Resonance (NMR)

spectroscopy

- Simple sample preparation
- Short analysis time
- Robustness
- High reproducibility
- Non-destructive
- Can be applied on a variety of

samples, including intact tissues
- High throughput method

- Lower sensitivity compared to MS
- Requires larger sample volume
- NMR spectrometers are more

expensive compared to
mass spectrometers

- Challenges in data interpretation
and integration across platforms

[46]

Liquid
chromatography–mass
spectrometry (LC-MS)

- High selectivity
- High sensitivity (picomolar and

nanomolar levels)
- Needs small amounts of sample

volume (a few microliters)
- Higher resolution compared to NMR
- Sample derivatization is not needed
- Suitable for analysis of wide range

of metabolites, such as
thermolabile metabolites

- Destructive technique
- Requires tissue extraction from

tissue samples
- Additional chromatography time
- Limited libraires available

[44,54]

Gas
chromatography–mass
spectrometry (GC-MS)

- High selectivity
- High sensitivity
- Needs small amounts of sample

volume (a few microliters)
- Higher resolution compared to NMR

Large spectral libraries

- Destructive technique
- Requires tissue extraction from

tissue samples
- Additional chromatography time
- Not suitable for non-volatile and

thermolabile metabolites
- Requires chemical derivatization

[44,54]

Fourier-transform infrared
(FTIR) spectroscopy (less

common)

- Rapid analysis
- Molecular fingerprints
- Good predictive model
- High specificity

- Does not identify metabolites [39]
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2.2. The Need for Biomarkers in Hyperlipidemia

The primary focus of metabolic profiling is the identification of the biomarkers that
are the biological indicators of normal physiological, pathological, or therapeutic re-
sponses [36,55]. These biomarkers have notable benefits not only in disease diagnosis
but also in disease progression, classification, and treatment response monitoring [56].
Biomarkers can be categorized into several types based on their intended applications,
such as predictive, prognostic, monitoring, and diagnostic [55]. The traditional clinical
markers of hyperlipidemia (TC, TG, LDL-C, and HDL-C) are routinely used as screening
tools to evaluate cardiovascular risk and to monitor the response to lipid-lowering therapy.
However, these markers have been proposed to have low sensitivity and specificity [29,57]
and fail to fully capture the risk of CVDs [58,59]. This amplifies the necessity for the
discovery of the sensitive and specific biomarkers that could enable the early detection of
hyperlipidemia. Metabolomics-based biomarkers have the potential to detect diseases at an
early stage, even in the asymptomatic phase, because metabolite changes and disruptions
can develop at a very early stage of the disease development [44].

3. Metabolomics for the Identification of the Potential Biomarkers Associated
with Hyperlipidemia

Understanding the changes within the body’s metabolic system is crucial, because
hyperlipidemia is a systemic disease that influences the metabolism of various endogenous
metabolites [60]. While the current clinical markers of hyperlipidemia may provide a
general idea of the disease state, the growing need for novel biomarkers that can detect
abnormalities in the body’s metabolic processes and address the underlying pathophys-
iological mechanisms has inspired the use of metabolomics in research [21]. In the last
ten years (2014–2024), several metabolomics studies have been conducted on a variety of
biological samples, encompassing both tissues and various biofluids. The detailed search
strategy for the articles included in this review is summarized in Table 2. The primary
objectives of these studies were twofold: to discover the metabolic biomarkers indicative of
hyperlipidemia and to elucidate the intricate metabolic alterations that occur during the
development of this condition. In this review, we provide a concise overview of the findings
of published articles, focusing primarily on the discovery of biomarkers in different sample
types. Among these studies, three were human metabolomics studies and the remainder
were animal metabolomics studies. A synopsis of metabolomic studies for the discovery
of the candidate biomarkers associated with hyperlipidemia is presented in Table 3. The
common differential metabolites among different sample types identified by human and
animal metabolomics studies are represented using a Venn diagram (Figure 2).

Table 2. Strategies applied in the search for metabolomic-based studies on hyperlipidemia.

Methodology

Databases Google Scholar, PubMed, and ScienceDirect

Terms used in the search process “hyperlipidemia” AND (“metabolomics” OR “metabolic profiling”) AND (“tissue” OR
“plasma” OR “serum” OR “urine”) AND (“biomarker” OR “potential biomarker”)

Included articles Articles focusing on biomarker identification and metabolite level alteration in
hyperlipidemia

Filters Articles published from 2014 to 2024

3.1. Blood-Based Metabolomics

The discovery of blood-based biomarkers is of great interest because they offer a
convenient and minimally invasive tool for the early diagnosis of the disease [61,62].
Metabolomics studies in hyperlipidemic models have consistently shown elevated levels of
TC, TG, and LDL-C in animals [33,63] and human subjects [64,65], as well as the depletion of
HDL-C levels [63,65]. Over the years, several clinical studies have employed a metabolomic
approach to advance the understanding of hyperlipidemia. In 2016, a clinical trial was
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conducted to analyze serum samples from 71 patients with hyperlipidemia and 100 healthy
individuals using an UPLC-MS approach [21]. A total of 37 metabolites, including many
lipids and fatty acids, were identified (Table 3). In addition, 11 metabolic pathways were
found to be associated with hyperlipidemia, for example, linoleic acid metabolism and
glycerophospholipid metabolism, which are considered the most important metabolic
pathways [21].

An analysis of the plasma samples from 125 children divided into groups with dif-
ferent cholesterol levels was performed using 1H-NMR in a prospective cross-sectional
controlled study [66]. Elevated levels of tyrosine, glutamic acid, ornithine, lysine, alanine,
creatinine, oxoglutaric acid, and creatine were detected in the blood of the high and border-
line cholesterol-level groups (Table 3). Of the identified differential metabolites, tyrosine
and glutamic acid were found to have the highest importance at different cholesterol lev-
els. The elevation of the non-essential amino acid tyrosine is suggested to stimulate liver
metabolism and increase lipid synthesis, whereas a positive correlation between glutamic
acid and cholesterol could be linked to increased visceral fat accumulation, which is consid-
ered a risk factor for dyslipidemia. The findings of this study emphasize the involvement
of carbohydrate and amino acid metabolism in lipid metabolism and hypercholesterolemia.
Moreover, high levels of ornithine were detected in this study. Another study on the
hypercholesterolemia metabolic profile consistently revealed elevated ornithine levels in
the plasma of Wistar male rats (Table 3), as well as numerous disturbances in the metabolic
pathways resulting from the high-cholesterol feeding, including impairments in the tri-
carboxylic acid (TCA) cycle and beta-oxidation; changes in the lipid metabolites affecting
glycerophospholipids, sphingolipid species, and free polyunsaturated fatty acids; elevated
levels of glucogenic and ketogenic amino acids; and alterations in bile acid and vitamin
D levels, all of which shed light on the underlying metabolic changes in hypercholes-
terolemia [67]. In another study, ultraperformance liquid chromatography–quadrupole
time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was used by Wu et al. to analyze the
serum and urine samples of a high-fat diet (HFD)-induced hyperlipidemia rat model [68].
A total of nineteen potential biomarkers associated with hyperlipidemia were identified,
as represented in Table 3, nine of which were altered in the serum of HFD rats, including
elevated levels of succinic acid, cholic acid, C16 Sphinganine, and Sphinganine and lower
levels of five unsaturated fatty acids (stearidonic acid, linoleic acid, 8,11-eicosadiynoic acid,
eicosapentaenoic acid, and docosahexaenoic acid (DHA)). Lower levels of unsaturated fatty
acids have been reported to be indicators of increased peroxidation and oxidative stress. In
addition, one observation in this study was the elevated levels of succinic acid in the serum
of HFD rats, which can be attributed to increased fat catabolism, which, in turn, disturbs
the TCA cycle and leads to abnormal energy metabolism. This is consistent with the find-
ings of a human experiment reporting metabolic changes in TCA cycle intermediates in
hyperlipidemic subjects in fasting and postprandial states, reflecting a clear disturbance in
energy metabolism in hyperlipidemia [69].

A metabonomic approach was used to investigate the metabolic changes that oc-
cur during hyperlipidemia development at nine time points. An analysis of the plasma
samples from 90 mice divided into high-fat diet and control groups at nine time points
was conducted using the NMR analytical method [70]. Eleven differential metabolites
were identified as potential biomarkers, as shown in Table 3, including glycerol, glucose,
betaine, glutamate, arginine, and leucine, which were significantly altered in the plasma
of hyperlipidemic mice from the beginning to the end of the experiment. In addition, a
correlation analysis between the altered metabolites and previously identified biomarkers
using the GC-MS method [71] revealed a strong correlation between valine and C22:6.
These findings reported the associations of alanine, aspartate, and glutamate metabolism
and of D-glutamine and D-glutamate metabolism, as well as arginine biosynthesis, in the
pathophysiological process of hyperlipidemia.

Previous studies have demonstrated that amino acid levels are usually altered during
the development of hyperlipidemia. A recent study focused on the role of eight amino
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acids in hyperlipidemia, using an LC-MS-based targeted metabolomic approach [63]. It
was found that the serum levels of alanine, arginine, lysine, methionine, serine, tyrosine,
and valine were significantly lower in the hyperlipidemic rats than in the healthy group
(Table 3). This imbalance in amino acid metabolism has been reported to be related to the
consumption of proteins owing to the metabolic perturbations induced by hyperlipidemia.
In particular, a disturbance was observed in glucose metabolism, which was reflected in the
lower levels of valine, while an abnormal energy metabolism was linked to the depletion
of alanine and serine and an altered lipid metabolism, which was illustrated by the lower
levels of tyrosine and methionine and oxidative stress, which was suggested to be linked to
depleted levels of lysine and arginine.

3.2. Urine-Based Metabolomics

In addition to being a noninvasive approach, urine samples can be collected in large
quantities, making them one of the most preferred biofluids for biomarker discovery [72].
The disturbance of fatty acid, amino acid, and nucleoside metabolism in diet-induced
hyperlipidemia has been reported in a urinary metabolomic-based study [73]. In this study,
urine samples from eight diet-induced hyperlipidemia rats and eight healthy controls were
analyzed using ultraperformance liquid chromatography coupled with quadrupole time-of-
flight synapt high-definition mass spectrometry (UPLC Q-TOF/HDMS), and 16 candidate
biomarkers were identified. Among the identified biomarkers, the levels of octadecanamide,
oleamide, tryptophan, ursodeoxycholic acid, creatinine, ascorbalamic acid, 3-methyluridine,
indole-3-carboxylic acid, and tryptophyl-tyrosine were higher, while the levels of citric acid,
adenosine 2′,3′-cyclic phosphate, 3-O-methyldopa, proline, 1-methyladenosine, pheny-
lalanine, and 5-methylcytosine were lower than those in the healthy controls, as shown
in Table 3. The findings of this study elucidated the pathophysiological mechanisms
underlying diet-induced hyperlipidemia.

As mentioned earlier, a study by Wu et al. identified 19 metabolites as the biomarkers
of hyperlipidemia, which are mainly involved in amino acid, energy, lipid, and nucleotide
metabolism [68]. Of these biomarkers, 10 were altered in the urine samples of HFD rats.
Higher levels of DHA, 3-methyluridine, uridine, L-isoleucine, and phenyl lactic acid
were observed in the HFD rats, whereas the levels of hippuric acid, taurine, L-cysteine,
norepinephrine, and L-carnitine were lower than those in the healthy controls.

Many metabolomic studies have linked the pathogenesis of hyperlipidemia to inflam-
mation, oxidative stress, and ongoing amino acid metabolism. Elevated circulating lipid
levels have been linked to oxidative stress and an imbalance in the oxidant/antioxidant ca-
pacity ratio [74]. Abnormally high lipid and fat catabolism could lead to excessive fatty acid
levels in the blood circulation, surpassing the albumin-binding capacity. Hence, elevated
free fatty acid levels are associated with oxidative stress and mitochondrial dysfunction [74].
These changes were documented in a clinical trial employing UPLC-Q-TOF/MS technology
to analyze the urine samples from 60 hyperlipidemic patients compared with 60 normal
control participants [64]. This study identified 22 differential metabolites as the poten-
tial biomarkers of hyperlipidemia pathogenesis. The selected biomarkers were mainly
associated with amino acid metabolism, energy metabolism, oxidative stress, nucleotide
metabolism, steroid hormone metabolism, inflammatory reactions, and the metabolism of
intestinal flora. Four metabolic pathways were reported to be closely involved in hyperlipi-
demia development with high impact values: alanine, aspartate, and glutamate metabolism;
arginine and proline metabolism; lysine degradation; and phenylalanine metabolism. Of
the 22 potential biomarkers shown in Table 3, metabolites, mainly L-glutamine, L-proline,
N-acetylglutamic acid, glutaric acid, and phenylacetic acid, were involved in the metabolic
pathways with the highest impact value.

3.3. Tissue-Based Metabolomics

The use of biofluid samples for metabolic profiling could be considered a more con-
venient approach for the investigation of a disease and the discovery of biomarkers, yet
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tissue-based metabolic profiling could offer greater clarity on the altered metabolic pro-
cesses and detailed insights into the mechanisms of disease pathogenesis [75]. A recent
study conducted multi-organ metabolomic analysis using an MS platform (LC-MS/MS
and GC-MS) in HFD-fed apolipoprotein E-deficient (ApoE−/−) mice [76]. Significantly
altered levels of 70 metabolites in the aorta, 181 metabolites in the heart, 145 metabolites in
the liver, and 172 metabolites in the plasma were observed in HFD-fed ApoE−/− mice
compared with those in wild-type mice (Table 3). The findings of this study revealed the
possibility that metabolome reprogramming in early hyperlipidemia occurs in multiple
tissues. In addition, of the upregulated altered metabolites, several metabolites were specif-
ically upregulated in each analyzed tissue. The metabolites observed in the heart and
plasma samples were considered the most unique, indicating that the unique metabolites
in a certain tissue cannot be transported and shared with other tissues. This confirmed the
hypothesis that metabolic reprogramming exhibits tissue specificity.

By employing mass spectrometry imaging (MSI), alterations in the metabolites in the
liver of a high-lipid rat model were investigated [77]. While blood TG levels were higher in
the early stages of hyperlipidemia, a decrease in TG levels was observed at a later stage.
This decrease was suggested to be either a consequence of liver adaptation to a high-lipid
diet or natural regulation of hepatic lipid metabolism. In addition, as shown in Table 3,
differences in metabolite levels in the rat liver were observed at different stages of the
experiment. Moreover, most differential metabolites were elevated in the hyperlipidemia
group, which suggests that high lipid levels in the liver may have led to the accumulation
of metabolites.
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Table 3. Summary of metabolomic studies reporting alterations in differential metabolites associated with hyperlipidemia.

Sample Type Analytical Technique Statistical Details Sample Source Potential Biomarkers References

Human (2016) UPLC-MS
Orthogonal partial least

squares discriminant
analysis (OPLS-DA),
t-test (p value of 0.05

or less)

Serum
↑

1-(sn-glycero-3-phospho)-1d-myo-inositol,
Gamma-Glutamyl-beta-cyanoalanine, Uric acid, Beta-D-Galactose,
Acetyl-N-formyl-5-methoxykynurenamine, P-Cresol, Azelaic acid,
N-[(3a,5b,7a)-3-Hydroxy-24-oxo-7-(sulfooxy)cholan-24-yl]-glycine,

2-Phenylethanol glucuronide, Murocholic acid, Sphingosine 1-phosphate,
LysoPC(18:3(6Z,9Z,12Z)), LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)),

LysoPC(18:3(9Z,12Z,15Z)), LysoPC(16:1(9Z)),
LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)), 14,15-Epoxy-5,8,11-eicosatrienoic acid,
LysoPC(20:3(5Z,8Z,11Z)), LysoPC(16:0), LysoPC(22:5(7Z,10Z,13Z,16Z,19Z)),
LysoPC(22:4(7Z,10Z,13Z,16Z)), LysoPC(15:0), LysoPC(18:0), LysoPC(P-18:0),

Linoleic acid, PC(18:0/20:5(5Z,8Z,11Z,14Z,17Z)), Oleic acid,
SM(d18:0/16:1(9Z), PC(18:0/18:4(6Z,9Z,12Z,15Z)), Chenodeoxycholic acid,

and PE(14:1(9Z)/14:1(9Z)).

[21]

↓ 4-Hydroxybenzaldehyde, Testosterone sulfate, LysoPC(14:0),
LysoPC(18:1(11Z)), LysoPC(P-16:0), and Maslinic acid.

Human (2023) 1H-NMR

Partial least squares
discriminant analysis

(PLS-DA),
Mann–Whitney U test

(FDR-adjusted
p value < 0.05), variable
importance in projection

(VIP) score ≥ 1

Plasma ↑ Tyrosine, glutamic acid, ornithine, lysine, alanine, creatinine, oxoglutaric acid,
and creatine. [66]

Human (2019) UPLC-Q-TOF/MS
PLS-DA, VIP > 1, t-test

(p value < 0.05) Urine

↑

Prolylhydroxyproline, N-acetyltryptophan, L-Isoleucine, L-Homocystine,
5-Oxoproline, N-acetylglutamic acid, Betaine, Hydroxyphenylacetylglycine,

Phenylacetic acid, Glutaric acid, Homovanillic acid sulfate,
Dihyroxy-1H-indole glucuronide I, Porphobilinogen, Cortexolone,

and Deoxyguanosine.
[64]

↓ L-Proline, N-phenylacetylphenylalanine, L-Glutamine, Glycocholic acid,
2-Phenylglycine, Caproic acid, and Sebacic acid.
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Table 3. Cont.

Sample Type Analytical Technique Statistical Details Sample Source Potential Biomarkers References

Rat (2014) UPLC-Q-TOF/MS
OPLS-DA, VIP > 1.5,
independent sample
t-test (p value < 0.05)

Serum
↑ Succinic acid, Cholic acid, C16 Sphinganine, and Sphinganine.

[68]
↓ Stearidonic acid, Linoleic acid, 8,11-Eicosadiynoic acid, Eicosapentaenoic acid,

and DHA.

Urine
↑ DHA, 3-methyluridine, uridine, L-isoleucine, and phenyllactic acid.

↓ Hippuric acid, taurine, L-cysteine, norepinephrine, and L-carnitine.

Mice (2020) 1H-NMR

Principal component
analysis (PCA), OPLS,

VIP > 1, t-test (p value <
0.05)

Plasma
Eleven metabolites (glycerol, glucose, leucine, arginine, betaine, lysine, glutamine,

glutamate, valine, alanine, and choline) had regular changes within nine points
during the study.

[70]

Rat (2020) LC-MS

One-way analysis of
variance (ANOVA)

followed by
Turkey–Kramer multiple

comparison test

Serum ↓ Alanine, arginine, lysine, methionine, serine, tyrosine, and valine. [63]

Rat (2016)

GC-MS, LC-MS, and
Capillary

electrophoresis-mass
spectrometry (CE-MS)

PCA, PLS-DA,
OPLS-DA, Welch’s

t-test (p value < 0.05),
Benjamin

Hochberg FDR
correction

Plasma

↑

PE (O-36:4), PC (18:1/16:0), PC (35:2), LPE (16:0), LPE(18:0), LPE (18:1), LPE
(18:2), LPC (15:0) sn-1, Glycocholic acid, Cholic acid, Deoxyvitamin D3,

Dihydroxy-oxo-vitamin D3, Trinorvitamin D3 carboxylic acid, Oleoylcarnitine,
Linoleoyl carnitine, Propanoylcarnitine, Cytosine, Cholesterol, Lysine, Glycine,
Acetoacetate, Citric acid, Pyranoses, l-Serine, Glyceric acid, Acetyl-l-carnitine,

Propionyl-l-carnitine, NG,NG-dimethyl-l-arginine, Kynurenine, Ornithine,
Betaine, Isoputreanine, Nx-Acetylspermidine, Asparagine, 5-Hydroxylysine,

Histidine, N-methyl-l-histidine, and Cytidine. [67]

↓

Arachidonic Acid, PE (P-19:1), PE-NMe2 (16:0/20:4), PE (P-38:6), PC (15:0), PC
(34:4), PC (20:4/16:0), PC (36:4), PC (37:4), PC (20:4/18:0), PC (18:2/20:4), PC
(40:5), PC (40:7), PC (40:8), PC (42:10), LPC (16:0), LPC (17:0), LPC (18:0) sn-1,
LPC (P-18:1) sn-1, LPC (19:0) sn-2, LPC (20:4) sn-2, LPC (22:5) sn-1, LPC (22:6)

sn-1, SM (32:1), SM (33:1), SM (34:2), SM (34:1), PI-Cer (40:1), Carnitine,
Linoleoyl taurine, Leucyl-proline, Bilirubin, 2-Ketoisocaproic acid,

D-Galactopyranoside, Glycerol, Arginine, and Cysteine–homocysteine
disulfide.
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Table 3. Cont.

Sample Type Analytical Technique Statistical Details Sample Source Potential Biomarkers References

Rat (2014) UPLC-Q-
TOF/HDMS

OPLS-DA, ANOVA
followed by t-test for
multiple comparisons

(p < 0.05)

Urine

↑
Octadecanamide, Oleamide, Tryptophan, Ursodeoxycholic acid, Creatinine,

Ascorbalamic acid, 3-Methyluridine, Indole-3-carboxylic Acid, and
Tryptophyl-tyrosine. [73]

↓ Citric acid, Adenosine 2′,3′-cyclic phosphate, 3-O-Methyldopa, Proline,
1-Methyladenosine, Phenylalanine, and 5-Methylcytosine.

Rat (2023) GC-MS and
LC/MS/MS

Welch’s two-sample
t-tests (p value ≤ 0.05)

Aorta
↑ 30 differential metabolites.

[76]

↓ 40 differential metabolites.

Heart
↑ 122 differential metabolites.

↓ 59 differential metabolites.

Liver
↑ 67 differential metabolites.

↓ 78 differential metabolites.

Plasma
↑ 97 differential metabolites.

↓ 75 differential metabolites.

Rat (2023) MSI

PLS-DA, volcano plot,
VIP > 1, fold
change > 1.5

or <0.75, p value < 0.05

Liver
PA (20:3-OH/i-21:0), PA (20:4-OH/22:6), PG (20:5-OH/i-16:0), PG (22:6-2OH/i-13:0),
PG(O-18:0/20:4), PGP (18:3-OH/i-12:0), PGP(PGJ2/i-15:0), SM(d18:0/18:1-2OH),

and TG (14:0/14:0/16:0) showed differences through the entire experimental period.
[77]
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4. Metabolomics as a Tool for the Investigation of the Activity of Therapeutic Agents
4.1. Conventional Anti-Hyperlipidemic Drugs

Several lipid-lowering agents function through different mechanisms to regulate lipid
levels. Statins are considered first-line agents for hyperlipidemia and are among the most
frequently used lipid-lowering drugs [24,78]. Statins are competitive inhibitors of the rate-
limiting enzyme of cholesterol synthesis, HMG-CoA reductase [79]. HMG-CoA reductase
converts HMG-CoA to mevalonate, and, by blocking this enzyme, statins can reduce the
hepatic synthesis of cholesterol, subsequently increasing the expression of LDL-C receptors
and promoting the uptake of circulating LDL-C into hepatocytes, all of which contribute
to lipid-lowering effects [79,80]. In recent years, metabolomic studies have focused on the
underlying metabolic alterations induced by statin administration to provide profound
insights into their mechanisms.

The mechanism underlying the effects of simvastatin on the gut microbiota and
metabolic profiles has recently been investigated. Using ultrahigh-performance liquid
chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry
(UHPLC-Q-TOF MS/MS)-based metabolomics, the serum metabolites after the simvastatin
treatment in rats with diet-induced hyperlipidemia were analyzed [81]. Six endogenous
metabolites (m-coumaric acid, DL-phenylalanine, 3-(2-hydroxyphenyl) propionic acid,
L-tyrosine, linoleic acid, and 9-(R)-hydroxyoctadecadienoic acid) were altered following
the simvastatin administration. The simvastatin treatment affected the metabolism of
amino acids and unsaturated fatty acids and the functions of gut microbial metabolism.
Moreover, the affected metabolic pathways showed a strong correlation with the altered
gut microbiota investigated in this study. In 2022, another study focused on the metabolic
signature of simvastatin by performing an LC-MS/MS metabolomic analysis of 1332 par-
ticipants treated with simvastatin and 6200 participants not treated with statins [82]. A
total of 321 metabolites were significantly altered by the simvastatin treatment. In addition,
among these metabolites, 313 were considered novel and previously unpublished in asso-
ciation with simvastatin treatment. The findings of this study illustrate that simvastatin
treatment has a more complex metabolic signature, affecting various metabolic pathways,
including lipids, amino acids, peptides, nucleotides, carbohydrates, cofactors, vitamins,
and xenobiotics. Another study reported the effects of simvastatin on hyperlipidemia,
specifically on hepatic lipid metabolism and the composition of the intestinal microbiota
in rats [83]. The promising outcomes of simvastatin treatment include decreased blood
and hepatic cholesterol levels, enhanced lipid metabolism, and beneficial modifications to
the composition of the gut microbiota in hyperlipidemic rats. In hyperlipidemia, certain
metabolites display altered levels. Among the metabolites that increase in response to
disease are linoleic acid, arachidonic acid, and DHA. The metabolic abnormalities linked to
hyperlipidemia are reflected in these variations in metabolite concentrations, which also
offer insights into the causes of the disease and possible targets for treatment [83].

A multi-omics investigation involving fecal- and plasma-based metabolomic analyses
of atorvastatin administration in HFD rats was conducted [84]. The ability of atorvas-
tatin to improve high plasma lipid levels was reported to occur through the regulation of
propanoate metabolism and glycine, serine, and threonine metabolism in feces and the
plasma metabolome. Additionally, atorvastatin affected pantothenate and CoA biosyn-
thesis and valine, leucine, and isoleucine biosynthesis in the plasma metabolome. These
alterations were attributed to the effects of atorvastatin on intestinal microbes, mainly by
increasing the abundance of Bacteroides.

Based on the findings of the metabolomic-based studies of statins, the lipid-lowering
activity of statins may be attributed to their role in the regulation of the gut microbiota and
several metabolic pathways with amino acid metabolism and fatty acid metabolism, which
are commonly influenced by statin administration.
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4.2. Traditional Herbal Products in Hyperlipidemia Treatment

Although several lipid-lowering drugs with different mechanisms of action are avail-
able on the market, problems associated with their side effects and lack of efficacy have
limited their use [85]. Several studies have focused on testing natural agents as alternative
treatments for the prevention and treatment of hyperlipidemia [86]. Although several
herbal agents have been reported to exhibit lipid-lowering activity, the exact mechanism
of action of these agents remains unclear. Metabolomics offers a tool for evaluating the
efficacy of natural products and elucidating their mechanisms of action [87].

Yellowhorn tea (YT), a tea obtained from the leaves of the traditional Chinese medicinal
(TCM) herb Xanthoceras sorbifolium Bunge, is known for its lipid-lowering effects [88].
Liver-based untargeted metabolomics was performed using LC-MS/MS to determine the
underlying metabolic changes in YT in HFD-induced hyperlipidemic mice [32]. A total
of 21 metabolites were selected as potential biomarkers, and the administration of YT
reversed the abnormal levels of 12 of these metabolites back to normal, demonstrating
the role of YT in the amelioration of HFD-induced hyperlipidemia, oxidative stress, and
inflammation. The YT extract was found to alleviate hyperlipidemia, possibly through
the regulation of three metabolic pathways, including glycerophospholipid metabolism,
vitamin B6 metabolism, and nicotinate and nicotinamide metabolism.

Hawthorn extract, a TCM product, has been reported to exhibit lipid-lowering activ-
ity [89,90]. Two studies investigated the metabolic changes following hawthorn administra-
tion in HFD-hyperlipidemic rats using a metabolomics approach. Using a GC-MS analysis,
the administration of hawthorn ethanol extract was observed to partially modulate the dis-
turbance in metabolic pathways induced by the development of hyperlipidemia [91]. Of the
15 identified potential biomarkers associated with hyperlipidemia, the hawthorn ethanol
extract elevated the levels of threonine, aspartic acid, glutamine, mannose, inositol, and
oleic acid in the adipose tissue of HFD rats. Recently, another study assessed the efficacy of
four different polar parts of the hawthorn using LC-MS plasma-based metabolomics [33].
A total of 22 potential biomarkers of hyperlipidemia were selected, which mainly included
amnio acids, lysophosphatidylcholines, unsaturated fatty acids, and cholic acid. The most
effective fraction ameliorated a disordered metabolism by regulating lipid metabolism, en-
ergy metabolism, oxidative stress, and amino acid metabolism and restored the biomarker
levels to normal levels.

An untargeted urine metabolomic analysis of the effect of Citri Reticulatae Chachiensis
Pericarpium (CRCP) in HFD-induced hyperlipidemic rats using an UPLC-Q-TOF/MS anal-
ysis demonstrated that the lipid-lowering activity of CRCP occurs mainly by significantly
restoring the levels of 5-L-glutamyl-taurine, 5-aminopentanoic acid, cis-4-octenedioic acid,
and 2-octenedioic acid back to normal, compared to the elevated levels observed in HFD
rats [92]. These findings suggest that CRCP exerts its hypolipidemic effect through the
regulation of taurine and hypotaurine metabolism, fatty acid biosynthesis, and arginine
and proline metabolism [92].

Ilicis Rotundae Cortex (IRC), the dried bark of Ilex rotunda Thunb, is used in TCM
for the treatment of CVDs. The lipid-lowering activity of the bioactive components in
IRC has recently been reported [93,94]. A study conducted using ultraperformance liquid
chromatography–quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-
MS/MS)-based metabolic profiling in HFD rats explored the anti-hyperlipidemic activity
of the IRC extract [95]. The altered levels of 62 metabolites were observed, including
23 differential metabolites in the plasma, 26 in the urine, and 15 in the cecum content. These
metabolites included amino acids, glycerophospholipids, sphingolipids, fatty acids, and
bile acids. The results showed that the IRC lipid-lowering effect occurred mainly through
the partial reversal of the disturbance of bile acid metabolism, linoleic acid metabolism,
arachidonic acid metabolism, taurine and hypotaurine metabolism, glyoxylate and dicar-
boxylate metabolism, glycerophospholipid metabolism, the synthesis and degradation of
ketone bodies, sphingolipid metabolism, and riboflavin metabolism.
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5. Limitations and Future Applications

Metabolomics is widely used in clinical and basic studies owing to its applications
in disease diagnostics, therapeutic efficacy evaluation, and pathological processes. How-
ever, there are still various challenges and limitations to current metabolomic studies in
hyperlipidemia. This current review includes a diverse range of experiments aimed at
identifying a potential biomarker using mainly untargeted metabolomics strategies to
better understand the disease. Even though the number of studies exploring biomarkers in
hyperlipidemia models is limited and considered one of the biggest challenges in this topic,
the existing research provides valuable insights into potential diagnostic and therapeutic
targets. Moreover, there is variation in the methodologies, such as the protocols used for
the sample preparation, in the experimental design, and in the techniques used across
metabolomic studies. In addition, there are challenges from the generalizability of the
findings, because most clinical metabolomics studies on hyperlipidemic subjects have been
conducted on certain populations and relatively small sample sizes. While existing studies
provide valuable insights into hyperlipidemia and the activity of lipid-lowering agents,
expanding the research to more diverse populations using larger and more representa-
tive samples could enhance the generalizability of the findings and further facilitate the
validation of novel biomarkers.

Precision medicine is an innovative approach that tailors therapeutic strategies based
on an individual’s genetic characteristics and environmental and lifestyle factors [96]. Since
changes in the genomic, transcriptomic, and proteomic levels are reflected as metabolic
alterations, metabolomics has emerged as a useful approach that facilitates the application
of precision medicine in various diseases [97,98]. As part of future work, hyperlipidemia
research could benefit from a precision medicine approach, employing the findings of the
metabolomics studies conducted on hyperlipidemia models.

6. Conclusions

Hyperlipidemia is a major public health concern. It is a significant risk factor for
cardiovascular diseases and other health complications. In this review, we examined the
key metabolites related to hyperlipidemia. These metabolites can be used as indicators in
metabolomic investigations of hyperlipidemia and may be a focus of future studies. By
examining metabolomics-based studies on hyperlipidemia, we identified the key path-
ways that are consistently affected under hyperlipidemic conditions. Lipid metabolism,
energy metabolism, the TCA cycle, and amino acid metabolism are the disrupted metabolic
pathways impacted by hyperlipidemia. Furthermore, metabolomics has emerged as a
useful approach for investigating the metabolic mechanisms underlying the lipid-lowering
activity of therapeutic agents. This review provides insights into the treatment of hyperlipi-
demia. To further enhance our understanding, additional research is needed to determine
whether the identified differential metabolites can be utilized as diagnostic tools and to
elucidate the molecular mechanisms underlying the changes in metabolite levels during
metabolic disorders.
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