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Abstract: Visual object tracking technology is widely used in intelligent security, automatic driving
and other fields, and also plays an important role in frontier fields such as human–computer interac-
tions and virtual reality. The memory network improves the stability and accuracy of tracking by
using historical frame information to assist in the positioning of the current frame in object tracking.
However, the memory network is still insufficient in feature mining and the accuracy and robustness
of the model may be reduced when using noisy observation samples to update it. In view of the
above problems, we propose a new tracking framework, which uses the attention mechanism to
establish a feature-enhanced memory network and combines cross-attention to aggregate the spatial
and temporal context information of the target. The former introduces spatio-temporal adaptive
attention and cross-spatial attention, embeds spatial location information into channels, realizes
multi-scale feature fusion, dynamically emphasizes target location information, and obtains richer
feature maps. The latter guides the tracker to focus on the area with the largest amount of information
in the current frame to better distinguish the foreground and background. In addition, through the
memory quality selection mechanism, the accuracy and richness of the feature samples are improved,
thereby enhancing the adaptability and discrimination ability of the tracking model. Experiments on
benchmark test sets such as OTB2015, TrackingNet, GOT-10k, LaSOT and UAV 123 show that this
method achieves comparable performance with advanced trackers.

Keywords: object tracking; siamese network; memory network; attention mechanism; spatial
temporal context

1. Introduction

Object tracking is a key task in the field of computer vision, which is widely used
in sports event broadcasting, security monitoring, automatic driving, and robotics [1,2].
Target tracking primarily involves detecting, localizing, and tracking the position and
trajectory of target objects across consecutive images or video sequences. In recent years,
despite the significant progress made in the field of target tracking, challenges such as
changes in target size, interference factors, and occlusion phenomena still lead to a certain
gap between theory and practical application [3,4].

In recent years, most popular object-tracking frameworks based on Siamese networks
primarily rely on target appearance information from the initial frame for tracking. How-
ever, the appearance of the target continues to change during movement. Relying solely
on the static appearance from the initial frame lacks dynamic perception of the target
information, making it difficult to handle appearance changes caused by occlusion and
non-rigid deformation. Therefore, effectively remembering and extracting target infor-
mation is a significant challenge in object tracking. To address this challenge, trackers
should comprehensively utilize multi-frame historical appearance information to construct
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adaptive models, rather than relying solely on previous or initial frames. Based on this,
object-tracking methods based on memory networks are gradually emerging. Some track-
ers utilize online updating techniques [5–10] to update the model using historical frames.
However, this approach requires customized updating mechanisms, which may increase
the complexity of the model and reduce tracking efficiency. On the other hand, some
trackers [11–13] utilize features collected from multiple historical target states during the
tracking process to generate adaptive templates for target modeling. For instance, in the
realm of tracking algorithms, UpdateNet [11] innovatively introduced a template update
network mechanism. This mechanism combines the initial template, accumulated template
information from the preceding frame, and the current frame template to anticipate and
refine the tracking template for the subsequent frame, markedly improving the efficiency
and precision of template updating. In contrast, the methodology proposed by Stark [12]
emphasizes the intelligent fusion of the initial frame template, current frame data, and
dynamically adjusted templates. Updates to the template are initiated solely when the
confidence score, as determined by this system, surpasses a predefined threshold. Mix-
Former [13] designed a score prediction module and selected reliable online templates for
updating according to the predicted scores.

Although the memory mechanism has achieved some success in visual object tracking,
it still has limitations in complex environments. First of all, these methods [5,11] only
obtain dynamic adaptive templates by updating mechanisms, ignoring the mining and
enhancement of effective features. Secondly, some trackers [12,14,15] use the preset thresh-
old to select memory frames, which increases the computational complexity when the
number of frames satisfies the condition is large. Although these mechanisms improve the
robustness of the tracker, they inevitably introduce noise templates that make it difficult
to effectively distinguish between the background and foreground, resulting in tracking
drift. In response to these limitations, three problems are proposed: (1) how to obtain more
diverse and high-quality memory frames and reduce noise samples; (2) how to improve the
feature expression ability of memory frames and dig deep into the effective information;
and (3) how to make full use of time and space context information.

This paper proposes an innovative target-tracking strategy, which combines feature-
enhanced memory network technology and memory quality selection mechanisms to
improve the accuracy and robustness of the tracking process. By enhancing the feature
representation ability of the target memory frame and obtaining a high-quality and di-
versified target appearance feature set, the method further improves the tracker’s ability
to distinguish between the target and the background, there by enhancing the tracker’s
adaptive ability and efficient discrimination ability in a dynamic environment. The main
contributions of this paper are as follows:

• A feature-enhanced memory network is designed to enhance and mine rich spatial
representation of the target through the attention mechanism and aggregate temporal
and spatial context information through cross-attention so that the tracker can better
locate and distinguish the target;

• The online memory quality selection mechanism is proposed and the quality evaluator
is used to judge whether the current frame is suitable for updating memory and
reducing noise interference. For appearance changes, the mechanism can select a
variety of memory frames to enrich the sample set and enhance the adaptive ability of
the tracker;

• The proposed method performs well compared with some advanced methods on
benchmark datasets such as OTB2015, TrackingNet, GOT-10k, LaSOT and UAV 123,
demonstrating the effectiveness of the proposed method.

2. Related Work
2.1. Siamese-Based Trackers

The development of deep learning has greatly promoted the progress of object-tracking
technology. The traditional correlation filtering algorithm is fast but the tracking quality
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in complex scenes is not good. After the introduction of deep neural networks, object
tracking significantly improves the accuracy and robustness by learning deep features.
MDNet [14] achieves leading performance by pre-training deep neural networks to learn
target representation and adapting to specific tracking tasks through online fine-tuning.
Deep learning methods have demonstrated remarkable performance in object tracking,
yet their high computational complexity and relatively slow speed limit their widespread
adoption in real-time applications. To address this challenge, SiamFC [16], a pioneer in
the field of Siamese network tracking, employs a lightweight network architecture that
parallelly processes template and search images while computing their similarity for fast
matching. This design not only simplifies the tracking process but also maintains high
performance, fulfilling the stringent requirements of real-time tracking. As a result, SiamFC
has paved a new way for research in real-time object tracking. Subsequently, object tracking
methods based on Siamese networks [17–25], such as SiamRPN [17] and SiamRPN++ [18],
have introduced region proposal networks and deeper structures to improve the accuracy
and robustness of tracking. The tracking method based on the Siamese network solves
the problem of template matching but some trackers have limited adaptive ability and
are difficult to adapt to the changes in the target in the video sequence. In contrast, we
model the target by using multiple historical frame information, fully exploit the context
information of the target, and improve the adaptive ability of the tracker.

2.2. Memory Networks-Based Trackers

The core goal of a memory network [26,27] is to overcome the inherent limitations
of traditional neural network models in dealing with long-term memory and complex
reasoning tasks (such as automatic question-answering, dialogue systems, etc.). By intro-
ducing an external memory mechanism, the memory network enables the model to store
and effectively use historical information, thus showing higher performance when dealing
with such tasks. Its flexible structure can be adjusted and optimized according to the task,
so it is applied to object tracking and other fields. With the deepening of research, more
and more work has begun to explore how to effectively use memory networks to improve
performance in object-tracking tasks. MemTrack [28] is a classic tracker, which introduces
LSTM to control the update of the template. Because LSTM uses additional storage space,
the storage space is more flexible. However, the accuracy of the tracker is not high, and it is
easy to cause memory loss when performing memory reading. MLT [29] applies the idea
of deep meta-learning to target tracking. This method can use historical frame information
and generate adaptive update weights based on existing tracking templates to achieve
dynamic updates of templates. Zhang et al. proposed a lightweight regression memory net-
work [30], which adopts a single convolutional layer structure, learns and stores the target
appearance memory through convolutional linear regression, and adjusts the parameters
according to the reliable tracking results of each frame to strengthen the memory of the
target appearance changes. In order to make better use of the time and space information
in the target historical frame, STEM [31] developed a memory model of the key–value
structure. The model improves the adaptive ability and distinguishing ability of the tracker
by mining the key–value relationship between the target and the query. Although these
trackers, based on memory networks, improve the adaptive ability, they have limitations in
the selection of memory frame quality and diversity, have a large amount of calculation,
and are susceptible to noise interference. Differently, we use the online memory quality
selection mechanism to screen out high-quality and diverse memory frames for tracking,
which helps to reduce noise interference, reduce error accumulation, and respond more
effectively to target appearance changes.

2.3. Attention-Based Trackers

The attention mechanism holds a pivotal position in the field of object tracking. Specif-
ically, by dynamically adjusting the focus on different regions within an image or video
frame, the attention mechanism enables tracking algorithms to adaptively identify and
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concentrate on the features that are crucial for maintaining stable tracking. This process
not only minimizes the waste of computational resources but also significantly enhances
the ability of tracking systems to handle complex scene variations, such as illumination
changes, occlusions, and rapid movements, thereby reducing the risk of tracking failures.
The CSR-DCF [32] algorithm introduces channel and spatial attention mechanisms and
trains and weights the final response map through the foreground space graph constraint
filter. SiamGAT [33] introduced a novel target perception strategy into the Siamese network
framework and realized the interaction between template features and search features by
cleverly integrating the graph attention mechanism. RASNet [34] skillfully combines three
attention mechanisms to weigh the features in the SiamFC framework, which significantly
improves the discriminative ability of the tracker. EDCF [35] uses an autoencoder network
to focus on target details, combined with context-aware correlation filtering and online
updates. The introduction of a transformer [36] brings global modeling capabilities to
object tracking, improving accuracy and stability. TransT [37] proposed a feature fusion
model based on a transformer, which significantly improves the accuracy of the algorithm
by establishing nonlinear semantic fusion and mining global information of long-distance
feature association to effectively aggregate targets and search regions. The PrDiMP [38]
algorithm innovatively integrates the transformer architecture into the field of target track-
ing and constructs a powerful sequence processing framework, which can make full use of
the rich information of historical frames to enhance the feature expression of the current
search area. This design not only breaks the limitations of traditional tracking methods
in feature extraction but also provides a more comprehensive context-aware capability
for the tracker through the fusion of cross-frame information. While our tracker uses a
transformer-based cross-attention mechanism to improve adaptive ability and discrimina-
tion ability. The study of the above tracker shows that the careful design of the attention
mechanism can improve the accuracy and robustness of the tracking algorithm and verify
its effectiveness. Different from this, our tracker adopts a transformer-based cross-attention
mechanism, which uses historical frames as input to realize the aggregation of temporal
and spatial context information, and enhances the adaptive ability and discrimination
ability of the tracker.

3. Proposed Method
3.1. Overall Architecture

As shown in Figure 1 the tracking framework architecture consists of four key modules:
the feature extraction network module, feature enhancement module, memory quality
selection module, and head network module. The feature extraction network module is
divided into a feature enhancement branch (upper branch) and a search branch (lower
branch). The former deals with a mask-optimized initial template or memory frame and
the latter is used for feature extraction of search frames.

In the tracking initialization phase, the template frame is first preprocessed by the
mask and then enters the feature extraction network to extract its key features. These
features are further enhanced by the feature-enhanced attention mechanism to generate
enhanced template features, which are stored in the memory storage to provide a reference
for subsequent frame tracking. Then, the search branch extracts the features of the search
frame and selects the memory frame features from the memory storage to connect them in
series. The concatenated features and the search frame features are jointly input into the
cross-attention mechanism to generate a fusion feature map with rich context information.
Then, the fusion feature map is classified and regressed through the head network and,
finally, the tracking result map with the target bounding box is output.
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text information at different scales enables the neural network to generate better pixel-level attention 
to advanced feature maps. Cross-Attention: The memory frame feature map is used as input to ag-
gregate temporal and spatial context information. Cls (Classification): Classification branch, respon-
sible for predicting the category of the target. Reg (Regression): Regression branch, responsible for 
predicting the location of the target. 

  

Figure 1. The architecture of our proposed method. Enhance the spatial location information of the
feature, encode the global information in two spatial dimension directions, and capture the long-
range interaction in different dimension directions. SA-Attention (spatial adaptive attention): SA
Attention embeds accurate position information into the channel and captures long-range interactions
in different dimensional directions. CS-Attention (cross-spatial attention): The fusion of context
information at different scales enables the neural network to generate better pixel-level attention
to advanced feature maps. Cross-Attention: The memory frame feature map is used as input to
aggregate temporal and spatial context information. Cls (Classification): Classification branch,
responsible for predicting the category of the target. Reg (Regression): Regression branch, responsible
for predicting the location of the target.

For subsequent frames in the tracking sequence, the input of the feature enhancement
branch is updated to the tracking result frame of the previous frame. Regardless of the
quality assessment result of the tracking result frame, feature extraction and enhancement
processing will be performed first. However, the enhanced features will be stored in the
memory storage only when the quality judger evaluates the result as True (i.e., judged as
high quality). At the same time, the search branch continues to receive new search frames
as the input for real-time feature extraction and tracking processing.

The feature enhancement module enhances and mines the spatial features of the input
to the feature enhancement branch through spatial adaptive attention and cross-spatial
attention. Following this, it aggregates the enhanced multiple memory frame features
using cross-attention. The aggregated feature map then contains both temporal and spatial
context information of the target. On the other hand, the memory quality selection module
is primarily composed of memory storage, a memory selection mechanism, and a memory
quality evaluator.
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3.2. Feature Extraction

Search Frame feature extraction. The algorithm uses GoogleNet [39] as the feature
extraction network. The structure of the two feature extraction networks, φs and φm, are
similar but not exactly the same, which belongs to the pseudo-twin network structure. The
search branch takes the search frame fi (“i” is the sequence number of the video frame)
as the input and performs feature extraction through the feature extraction network φs.
In order to facilitate the subsequent calculation, the extracted feature reduces the feature
dimension to 512 through a nonlinear convolution layer (defined as hs) and the final
search frame feature map Si ∈ Rc×h×w is obtained. The calculation process is shown in
Formula (1).

Si = hs(φs( fi)) (1)

In Formula (1), si represents the search frame and hs represents the nonlinear convolu-
tion layer.

Memory feature extraction. In the feature enhancement branch, the memory frame
fi−1 is used as the input. In order to eliminate the interference of background information,
we dynamically generate a mask B fi−1 ∈ RH×W according to the tracking or real results
(where the target area is defined by the bounding box, the pixels in the box are marked as
1, and the pixels outside the box are 0); then, we use a convolutional layer φn to embed
the mask into B fi−1 in a specific space. At the same time, the input historical frame mi

is mapped to the same space as B fi−1 through the convolution layer φr. Then, the main
elements of the two are added to suppress the background information of the historical
frame. Finally, we obtain the feature map ∂i ∈ Rc×h×w of the historical frame. In this paper,
the background information marked as 0 is not directly removed because the tracking
results are not necessarily accurate. If the area information marked as 0 is directly and
completely removed by using B fi−1 , the useful information will be lost. The same was as the
search branch, the feature dimension ∂i needs to be reduced to 512 through the nonlinear
1 × 1 convolution layer (expressed as hs). The calculation process is shown in Formula (2).

∂i = hs(φm(φn(Bmi ) + φr( fi−1))) (2)

“+” represents the sum of elements, φm represents the feature extraction network, and
φr and φn represent the two-dimensional convolution operation.

3.3. Feature Enhancement Channel Attention

Traditional channel attention mechanisms primarily focus on the significance of indi-
vidual channels, overlooking the interactions and correlations among them. This constraint
poses a challenge to the model, which weakens the model’s ability to capture detailed and
complex features and fully understand global context information. Although some channel
attention mechanisms perform well on feature representation, they model cross-channel
relationships by dimensionality reduction (such as using 1 × 1 convolution), which reduces
computational and memory consumption and helps to capture cross-channel interactions
but may also lead to the loss of useful information, especially in tasks requiring fine feature
recognition. To delve deeper into the spatial information of targets and enhance the feature
representation ability and prediction accuracy of the model, we integrate spatial adaptive
attention (SA Attention) with cross-space attention (CS Attention). This combination strat-
egy enables the model to more fully understand and utilize the spatial characteristics of the
target, thereby improving its performance.

Spatial adaptive attention (SA Attention). The specific channel dimension of the
input feature map is transformed into a part of the batch dimension. This strategy not
only ensures the integrity of each piece of channel information but also optimizes the
computational efficiency and effectively reduces the processing cost. According to Figure 2,
firstly, the input feature map ∂i ∈ Rc×h×w is mapped to M sub-feature maps along the
channel dimension (i.e., the depth dimension of the feature map) and its shape is re-adjusted
to Groupx ∈ RC/M×H×W . Through the above dimension reconstruction, we can perform
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operations on each independent sub-feature map separately, which enables spatial semantic
features to be evenly assigned to each feature group.
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This approach essentially bypasses the common dimensionality reduction steps in
traditional convolution operations, thereby maintaining richer feature information. Then,
the Groupx is averaged in the horizontal and vertical directions for each group, as shown
in Formulas (3) and (4), and the feature maps xh and xw in both directions are obtained.
The average distribution in the horizontal and vertical directions can be captured from
the feature map, providing location-aware information. Then, the information in the
horizontal and vertical directions is combined by the splicing operation, so that the model
can consider the importance of different directions in the feature map at the same time.
Then, the model can adaptively learn the complex relationship between features through
the 1 × 1 convolution layer and fuse the attention features in height and width to obtain
the fusion feature map hw ∈ R(C/M)×(H+W)×1. The process is shown in Formula (5).

xh = GAPh(Groupx) (3)

xw = GAPw(Groupx) (4)

hw = ϕ(xh ⊕ xw) (5)

“⊕” represents the Concat operation. GAPh represents the adaptive average pooling
operation along the vertical direction. GAPw represents the adaptive average pooling oper-
ation along the horizontal direction. φ represents the 1 × 1 convolution operation and then,
the fused feature map is re-divided along the (H + W) dimension and the channel attention
maps Xh ∈ R(C/M)×H×1 and Xw ∈ R(C/M)×1×W are obtained by feature transformation;
through the feature transformation operation, the model can better understand and utilize
the information in different directions in the feature map. Then, Xh and Xw are used to map
the attention weights to the range of [0, 1] by using the sigmoid activation function and the
attention weights in the horizontal and vertical directions are obtained, which indicates the
importance of the corresponding position. Finally, the obtained weights are multiplied by
the input feature map Groupx and the features of each position are weighted and combined
to achieve feature fusion and adjust the importance of features according to the attention
allocation. The process is shown in Formula (6). The above operation embeds the accurate
position information into the channel to capture the long-range interactions in different
dimensional directions and finally obtains the weighted feature map Gx ∈ RC/M×H×W .

Gx = sigmod(Xh)× sigmod(Xw·P)× Groupx (6)
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“×” represents the element multiplication operation, P represents a reshape operation,
which reshapes the weights to the same dimension as the input Groupx for weighting, and
Sigmoid is an activation function.

Cross-space attention (CS Attention). SA attention ignores the importance of interac-
tion between the entire spatial locations and the receptive field of 1 × 1 kernel convolution
is limited. Therefore, in order to increase the receptive field, one of the group feature maps
Groupx is used to obtain a larger receptive field feature G3 through a convolution operation
with a convolution kernel size of 3 × 3,which can be used to capture local cross-channel
interactions and expand the feature space.

As shown in Figure 3, the input of cross-spatial attention is the feature graph
Gx ∈ RC/M×H×W with location information obtained by SA attention and the feature
graph G3 ∈ RC/M×H×W with a larger receptive field. Firstly, Gx is group-normalized to ob-
tain gx, which helps to improve the scale of features and facilitate subsequent calculations.
The gx and the global spatial information are encoded by the two-dimensional adaptive
average pooling operation, respectively.
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In order to improve the computational efficiency, the natural nonlinear function Soft-
max of the two-dimensional Gaussian mapping is used to fit the above linear transformation
at the output of the two-dimensional global average pooling to obtain the attention weights
X11 and X21. Among them, two branches perform shape conversion operations while
performing pooling operations and convert them into corresponding dimensional shapes
for subsequent calculations, as shown in Formulas (7) and (8).

X11 = Sm(GAP(gn(Gx)) (7)

X21 = Sm(GAP(G3)) (8)

GAP is the average pooling, gn represents the group normalization, and Sm represents
the softmax function. Remodeling gx with G3 obtains gx1, G31. The reshaping operation
here is to obtain the same shape as the attention weight matrix X11 and X21 for subsequent
matrix calculations. Then, the matrix multiplication between the two sets of attention
weights X11 and X21 and the features G31 and gx1 is calculated, respectively, and the
results are added to obtain the final weight. The first spatial attention map is obtained by
multiplying X21 with gx1, which collects spatial information of different scales at one stage
and then the second spatial attention map is obtained by multiplying X11 with G31, which
retains the whole accurate spatial location information. Finally, the output feature maps
in each group are added to generate a set of two spatial attention weight values and then
the Sigmoid function is used to capture the pixel-level pairwise relationship to obtain the
attention weight after feature fusion. This is then multiplied with the input, highlighting
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the global context of all pixels, and the final feature map fm ∈ RC×H×W is obtained. The
calculation process is shown in Formulas (9) and (10).

Weight = sig((X11 ⊗ gX1) + (X21 ⊗ G31)) (9)

fm = Groupx × Weight (10)

Among them, ⊗ represents the matmul matrix multiplication operation, sig represents
the activation function Sigmod function, and “+” represents the matrix addition operation.

3.4. Cross-Attention Mechanism Based on Temporal Context

Cross-attention is a technique widely used in deep learning, especially when dealing
with tasks with multiple input sequences or channels. It can establish associations between
different input sequences or channels, capture long-distance dependencies, and improve
the expression and generalization ability of the model. However, some transformer-based
cross-attention only considers a single pixel or local information. Although it improves
the tracking accuracy, it has low computational efficiency and is susceptible to noise
interference, which affects the tracking stability. In order to enhance the tracker’s resistance
to scene changes, we take the historical frame (that is, memory frame) information into
account and use the appearance information of the target in different time series to improve
the tracker’s adaptive ability.

As shown in Figure 4, the multiple memory frame feature maps selected by the
memory selection mechanism are connected in series to obtain the key and value of the
joint memory frame feature map after series, which are recorded as K ∈ R512×(625×t) and
V ∈ R512×(625×t), respectively. The process is shown in Formula (11).

K = V = Concat(F0, Fb1, · · · , Fi−1) (11)
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Here, the Concat in the above formula represents a concatenation operation. Then,
joint memory frame feature map and the search area feature is calculated to obtain the
correlation between the two.

Firstly, the value Q ∈ R512×625 is obtained according to the feature Si of the search area
and then the similarity between the obtained key K of the joint memory feature map and
the Q of the search area is calculated to obtain a similarity matrix W ∈ R625×625×t. Then, W
is input into the Softmax function. The original similarity score matrix is converted into a
probability distribution matrix B, where each probability represents the similarity between
the pixels of the search area and the concatenated features at that pixel. The calculation
process is shown in Formula (12).

B = so f tmax(KQT) (12)
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Finally, the matrix B is multiplied by the V of the joint memory frame feature to
obtain F and the key information required for tracking is extracted from the memory frame.
Then, F is connected with the features Si of the search area along the channel dimension
to generate the final composite feature map FS ∈ R512×25×25. The calculation process is
shown in Formulas (13) and (14).

F = V ⊗ B (13)

Fs = F ⊕ Si (14)

The memory frame information of the target contains the appearance information of
the target in different time sequences, that is, the time context information. This contextual
information is fused as the input of cross-attention and the required target information is
extracted by calculating the similarity with the search frame, which improves the adaptive
ability of the tracker. This cross-attention method based on time context has a certain
robustness in target occlusion or changing scenes.

3.5. Memory Quality Selection Mechanism
3.5.1. Quality Evaluator

Online updates are crucial in memory networks to capture changes in targets and
backgrounds. However, the introduction of noise templates will lead to model degradation
and tracking drift. Therefore, it is necessary to determine which frame can be updated.
Although the introduction of dynamic information improves adaptability, it may also
bring noise. Some trackers judge the reliability of the tracking results by designing an
evaluation mechanism, which is usually evaluated based on criteria such as confidence
score or maximum response to determine whether to update it. However, these standards
are risky. To this end, a quality evaluator is introduced to integrate multiple standards to
output a score to determine whether the current frame is updated, as shown in Figure 5.
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Before using the quality estimator, we first need to obtain the relevant information,
which mainly includes the target bounding box Bn in the N frame, the response vector Rn,
the tracking result frame Sr, and the initial template frame Fr. Among them, the target
bounding box Bn = [xn, yn, wn, hn], [x, y] represents the coordinate information of the upper
left corner and [w, h] represents the length and width of the bounding box, respectively.
The bounding box information of a single target provides the location and size information
of the target and the bounding box of multiple consecutive frames can be used to determine
the motion state of the target. For the response vector Rn, the confidence score SRt in object
tracking is defined as the maximum value R of the response graph in the target bounding
box, as shown in Formula (15).

SRt = Max(R) (15)
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In order to overcome the instability of the confidence score in the model prediction,
the convolutional layer is used to dig deep into the response map of the input data to obtain
the discriminant vector Rn, as shown in Formula (16).

Rn = Conv(R, W) (16)

W represents the parameters of the convolutional layer. In order to improve the
discriminative power of the Conv model, two appearance scores are defined to measure
the difference between the tracking result and the initial frame positive sample. One of the
scores is based on MetricNet to calculate the Euclidean distance Sa between the tracking
result Sr and the template frame Fr, reflecting the appearance difference between the two,
see Formula (17).

Sa = ∥(M(Sr; W)− M(Fr, W )∥ 2 (17)

Among them, W is the CNN network parameter, M is the MetricNet network, and the
second is a density-based score Sal , as shown in Formula (18). This score provides a stable
similarity evaluation when the appearance of the target changes dramatically because
the LOF-based calculation takes into account the reachable distance I of multiple positive
samples, reflecting multiple aspects of the appearance of the target. Combining the two
appearance scores Sa and Sal can obtain more stable appearance information.

Sal = LoF(M(Sr; M), M(I, W)) (18)

Finally, the target result tracking box information Bn, discriminant vector (SRt, Rn) and
appearance cues (Sa, Sal) are aggregated into a sequential matrix Wt,and the three-stage
cascaded LSTM model is used to further mine the tracking state in this information. If it is
True, it can be stored in memory for subsequent tracking. If it is False, it cannot be stored
in memory.

Multilevel Long Short Term Memory Recurrent Neural Network (LSTM). By intro-
ducing gating mechanisms and memory cells, LSTM can selectively retain and update
information and effectively capture long-term dependencies in sequences. Here, LSTM is
used for cascading to deeply mine the timing information of the input matrix and enhance
the model’s ability to process sequence data.

After obtaining the sequence feature Wt in the previous section, it is input into the
cascaded LSTM and the time step is gradually reduced to extract the sequence information
more finely and focus on the nearest frame, so as to better capture the short-term dynamic
changes, avoid paying too much attention to the historical information far away, and
improve the response-ability and prediction accuracy of recent events. The processed result
is input into two fully connected layers together with the appearance score to obtain a
binary score, which is used to determine whether the current memory frame is suitable
for updating.

3.5.2. Memory Selection Strategy

The memory selection strategy plays a central role in filtering and screening the key
features of the target. Under the background noise and occlusion interference in complex
scenes, the target features are often blurred and unstable. Therefore, efficient extraction
and utilization of target information has become the key to tracking.

In the tracking task, for the current frame Fm, we fix the first frame F1 (providing
accurate target state) and the previous frame Fm−1 (closest to the current frame, high
feature similarity) and the remaining frames are selected from the memory pool according
to the following strategy to assist tracking. First, the remaining candidate frames in the
memory pool are divided into M − 2 non-overlapping segments Fb1, Fb2, Fb3, · · · , Fb(m−2)
and the intermediate frame are selected as the key frame, as shown in Formula (19). This
strategy not only integrates the change information of the target between consecutive
frames and effectively avoids the risk of under-fitting but it also filters the noise and
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instability factors, greatly reduces the number of frames processed by the algorithm, and
reduces the time cost. This method significantly improves the stability and accuracy of
tracking and provides an efficient and reliable solution for object tracking in complex
scenes, where ∆j ∈ [0, 1) and j ∈ {1, 2, · · · , M − 2}. In our experiments, M is set to 7 and

we simply set
{

∆i =
1
2 |1 ≤ i ≤ M − 2|

}
.

bj =

⌊⌊
i − 1

M − 2

⌋
× (j + ∆j)

⌋
(19)

3.6. Head Network

The traditional anchor point method is limited by the preset anchor point set and
lacks flexibility. By removing this limitation, the anchor-free prediction head significantly
improves the adaptability to the various sizes and shapes of the target. In this paper, it
is introduced into the tracker to enhance the flexibility and accuracy of tracking. The
classification branch distinguishes the target from the background by the features of the
temporal cross-attention output Fs and the anchor-free regression branch directly predicts
the target bounding box. The classification branch combines the classification response
maps Rcls ∈ R1×H×W and centrality response maps Rctr ∈ R1×H×W to obtain the fi-
nal classification response and the regression branch generates the regression response
Rreg ∈ R4×H×W to jointly improve the tracking performance. According to the predicted
target position in the regression response graph, the result frame with the target result
tracking box is generated.

4. Experiment

The experiment was conducted on a server equipped with 6 NVIDIA GeForce RTX
3090 graphics cards, a configuration that ensures high performance and computational
efficiency for the experiment. The proposed tracker is evaluated on five benchmarks:
OTB2015 [40], UAV123 [41], LaSOT [42], TrackingNet [43], and GOT-10k [44]. The key
information of the dataset used in our experiment is listed in detail in Table 1.

Table 1. The dataset-related information used to test the performance of the tracker mainly includes
the number of videos, the number of frames, and the number of challenge types in the dataset.

Dataset Number of Videos Number of Frames Number of
Challenge Types

OTB2015 [40] 100 59 k 11
UVA123 [41] 123 113 k 12
LaSOT [42] 1400 3.5 M 14

TrackingNet [43] 30,643 14.43 k 15
GOT-10k [44] 10,000 1.5 M 6

4.1. Construction of the Training Model Architecture

Training stage. The modules required for training the proposed network mainly
include three main parts: backbone network, neck network, and head network. The
following is the introduction to each module:

The backbone network is divided into two branches: feature enhancement and query,
both based on fine-tuning InceptionV3. The core of the Neck network is AdjustLayer,
which effectively reduces the amount of calculation and promotes feature fusion. The head
network is responsible for classification and regression and generates the output required
for tracking.

4.1.1. Training Details

Training stage. The training set of the FQ-track contains five datasets, which are
ILSVRC VID [45], ILSVRC DET [45], LaSOT, GOT-10k, and COCO [46]. In order to ensure
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fair and reliable data, we solely utilized the GOT-10k dataset for model training and
subsequently conducted evaluations of the trained model on the test set of GOT-10k. The
tracker stochastic gradient descent (SGD) training network trains 20 Epochs. The whole
training process takes about 25 h. The model adopts a phased learning rate adjustment
strategy in the training phase. In the early stage of training, the learning rate first increased
linearly from 0.01 to 0.08 to quickly adjust the model weight, subsequently, the learning
rate was smoothly attenuated from 0.08 to 0.000001 in the subsequent 19 rounds to achieve
fine-tuning of the model and improvement in the generalization ability.

4.1.2. Loss Function Correlation

In the training phase of the tracker, three loss functions are used, which are classifica-
tion loss (FocalLoss), center point loss (SigmoidCrossEntropyCenterness), and regression
loss (IOULoss), aiming to accurately guide the model to track the target stably and accu-
rately in continuous video frames.

Classification Loss (FocalLoss): It alleviates sample imbalance as classification loss,
enhancing model discrimination for target categories by dynamically weighting difficult
vs. easy samples. The calculation process is shown in Formula (20).

FL(pt) = −αt(1 − pt)
γ log(pt) (20)

Here, pt is the prediction probability of the model for category t, αt is the weight of
category t, and γ is the focusing parameter.

Center Point Loss (Sigmoid Cross-Entropy Centerness): Sigmoid cross-entropy loss
guides the model to learn the target center position, ensuring accurate center point offset
prediction. The calculation process is shown in Formula (21).

SCELossctr =

B
∑

i=1

HW
∑

j=1
BCEwith_logits(predij, labelij)·maskij

max

(
B
∑

i=1

HW
∑

j=1
maskij, 1

) ·weight (21)

“B” is the batch size. “HW” is the height of the feature map multiplied by the width.
predij is the predictive centrality logits on location (i, j). Lableij is the true centrality label on
position (i, j). BCEwith_ log its denotes the use of a binary cross entropy function with logits
and maskij is a binary mask used to ignore the loss of background or unlabeled regions,
weight is a hyperparameter used to weight the loss.

Regression loss (IOU Loss): The IoU between prediction and target boxes is optimized
as the loss function for accurate bounding box regression. The calculation process is shown
in Formulas (22) and (23), as follows:

IOUij =
interij

unionij
(22)

IOULossreg =
∑B

i=1 ∑N
j=1
[
− log(IOUij + ε)

]
·maskij

max(∑B
i=1 ∑N

j=1 maskij, 1)
·weight (23)

Among them, interij is the intersection area of the jth prediction box and the target box
in the ith sample and unionij is their union area. “B” is the batch size, “N” is the number of
prediction boxes in each sample, IOUij is the IOU value of the jth prediction box and the
target box in the ith sample, maskij is a binary mask used to ignore the loss of background
or unlabeled regions, and weight is a hyperparameter used to weight the loss.
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Finally, we add the above three loss functions together to obtain the overall loss
function, which is used for backpropagation to optimize the model parameters. The
calculation process is shown in Formula (24):

TotalLoss = FL(pt) + SCELossctr + IOULossreg (24)

4.2. Compare with a State-of-the-Art Tracker

OTB2015 [40]: As an important benchmark in the field of visual tracking, the OTB2015
dataset provides strong support for evaluating and improving tracking algorithms. OTB2015
provides a variety of evaluation indicators to measure the performance of tracking algo-
rithms, including the Precision, Success Rate, and Average Overlap. The tracking algorithm
designed in this chapter verifies the effectiveness of the designed algorithm by comparing
it with nine advanced trackers on the OTB2015 dataset, including SiamAttn [9], MD-
Net [14], SiamRPN++ [18], SiamFC++ [19], SiamCAR [20], DaSiamRPN [23], SiamBAN [25],
SiamGAT [33] and Ocean [47]. As shown in Figure 6, it can be seen that FQ-Track (the
abbreviation of the tracker proposed in this chapter) achieves better performance than other
classic trackers. Compared with SiamGAT, the success rate and accuracy were increased
by 1.8% and 3%, respectively. Compared with DaSiamRPN, the success rate and accuracy
were increased by 7% and 7.1%, respectively.
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GOT-10k [44]: The GOT-10k dataset has the characteristics of being large-scale, highly
diverse, and a fair evaluation. It has been widely used in the research and evaluation of
target tracking. Many advanced tracking algorithms have been tested and evaluated on
this dataset and achieved significant performance improvements. The tracking algorithm
designed in this chapter is also tested and evaluated on the GOT-10k dataset and compared
with other advanced tracking balls. As shown in Table 2, FQ-Track has a 0.7% and 7.2%
improvement in the average overlap rate and success rate threshold of 0.75 compared
with SiamGAT [33] and a 1.4% improvement in the average overlap rate compared with
STEM [31]. Compared with DiMP [7], the average overlap rate, a success rate threshold
of 0.50 and a success rate threshold of 0.75 were improved by 2.3%, 0.4%, and 6.8%,
respectively.



Electronics 2024, 13, 3221 15 of 21

Table 2. On the GOT-10k test benchmark, we conducted a performance evaluation and comparison
of our proposed tracker against various state-of-the-art methods, focusing on the metrics of Average
Overlap (AO) and Success Rate (SR) at thresholds of 0.5 and 0.75. The data values presented in the
table reflect the performance of each method, with higher values indicating superior performance.
To differentiate intuitively, the top three outstanding results are highlighted in red, blue, and green
colors, respectively.

Tracker AO (%) SR (0.5, %) SR (0.75, %)

ECO [48] 31.6 30.9 11.1
SiamFC [16] 34.8 35.3 9.8

SiamRPN [17] 36.7 42.5 10.3
SiamRPN++ [18] 51.7 61.6 32.5

SiamCAR [20] 56.9 67.0 41.5
SiamRAAN [49] 0.579 0.685 0.447
SiamFC++ [19] 59.5 69.5 47.9

Ocean [47] 61.1 71.1 47.3
DiMP [7] 61.1 71.7 49.2

STEM [31] 62.0 72.1 -
ATOM [6] 63.4 40.2 55.6

SiamGAT [33] 62.7 74.3 48.8
OURS 63.4 72.1 56.0

LaSOT [42]: Experiments on LaSOT dataset. The LaSOT dataset contains more than
1400 video sequences and the total number of frames exceeds 3.5 million. The LaSOT
dataset mainly evaluates the performance of the tracker through success rate, accuracy,
and normalization accuracy. As shown in Table 3, FQ-Track achieves 61.4%, 64.0%, and
69.1% in success rate, accuracy, and normalized accuracy, respectively. Compared with ten
comparable trackers, our tracker has the best performance in success rate, accuracy, and
normalized accuracy.

Table 3. On the LaSOT dataset, the proposed tracker has undergone a performance comparison with
classic trackers introduced in recent years, focusing on metrics such as success rate (AUC). We have
highlighted the top three outstanding results in red, blue, and green, respectively. In this comparison,
the size of the data in the table directly reflects the actual effectiveness of each tracker, with higher
values indicating superior performance.

Tracker Suc. (%) Prec. (%) Norm. Prec. (%)

MDNet [14] 39.7 37.3 46.0
SiamADT [50] 50.6 51.1 -

SiamRPN++ [18] 49.5 49.3 57.0
GlobaTrack [51] 51.7 52.8 59.7
SiamBAN [25] 51.4 52.1 59.8

ATOM [6] 51.4 50.5 57.7
SiamCAR [20] 51.6 52.4 61.0

Ocean [47] 52.6 52.6 61.0
SiamGAT [33] 53.9 53.0 63.3
SiamSRT [52] 55.6 57.3 64.8

OURS 61.3 63.9 69.1

UVA123 [41]: The UAV123 dataset contains 123 carefully selected video sequences
taken by drones under different environmental conditions, so they capture a variety of
natural and man-made scenes observed from the drone’s perspective. The particularity
of this perspective makes the dataset full of challenges, such as fast motion, perspective
change, occlusion, target loss, and small target tracking. In this chapter, the proposed tracker
is compared with seven advanced trackers. The results are shown in Table 4. It can be seen
that the FQ-Track tracker achieves a success (AUC) score of 0.64, which is still significantly
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better than the recent competitors SiamBAN [25], SiamCAR [20], SiamRPN++ [18], and
ECO [48] running at real-time speed.

Table 4. On the UAV123 test set, we compare the proposed tracker with a series of relatively advanced
trackers in terms of success rate (AUC). To clearly demonstrate the advantages, we highlighted the
top three outstanding results in red, blue, and green, respectively. The larger the numerical value in
this table, the more exceptional the tracking performance.

ECO [48] Spiking
SiamFC++ [53]

SiamRPN++
[18]

SiamCAR
[20]

SiamBAN
[25] ATOM [6] DiMP [7] OURS

52.5 0.578 61.2 61.4 63.1 64.3 65.4 64.0

TrackingNet [43]: TrackingNet is a large dataset designed to evaluate single-target
tracking algorithms. It contains more than 30,000 video sequences, each of which is labeled
with a bounding box of the tracking target. These video sequences cover a wide range
of scenes and conditions, including indoor and outdoor environments, different lighting
conditions, motion patterns, target size changes, occlusion, and other challenges. Therefore,
TrackingNet provides a very challenging test platform for tracking algorithms, which can
comprehensively evaluate the performance of the algorithm in real scenarios. The proposed
tracker is compared with other state-of-the-art trackers on the TrackingNet dataset and
the results are shown in Table 5. The tracking results of our tracker improved by 0.9%,
3.3%, and 1.5%, respectively, in terms of success rate, normalization accuracy, and accuracy
compared with TrDiMP.

Table 5. On the TrackingNet test benchmark, we conducted a performance evaluation of the proposed
tracker against various outstanding methods, focusing on metrics such as success rate. To visually
demonstrate the advantages, we highlighted the top three outstanding results using red, blue, and
green colors. The data in the table directly reflect the performance of each method, with higher values
indicating better results.

Tracker Suc. (%) Prec. (%) Norm. Prec. (%)

SiamFC [16] 57.1 53.3 66.3
ATOM [6] 70.3 64.8 77.1
D3S [54] 72.8 66.4 76.8

SiamRPN++ [18] 73.3 69.4 80.0
DiMP [7] 74.0 68.7 80.1
KYS [55] 74.0 68.8 80.0

STEM [31] 74.6 70.7 81.6
SiamFC++ [19] 75.4 70.5 80.0

PrDiMP [38] 75.8 70.4 81.6
AutoMatch [56] 76.0 72.6 -

TrDiMP [57] 78.4 73.1 83.3
OURS 79.3 76.4 84.8

4.3. Ablation Studies

The influence of the channel attention mechanism based on feature enhancement:
In order to verify the effectiveness of the channel attention mechanism based on feature
enhancement, this chapter compares the tracker performance with and without the mecha-
nism on the OTB2015 and LaSOT datasets. The results are shown in Table 6.



Electronics 2024, 13, 3221 17 of 21

Table 6. Comparison results of trackers with and without the feature-enhanced channel attention
mechanism on OTB2015 and LaSOT. W represents the use of the memory quality selection mechanism
and W/O represents no use. The larger the data value in the table, the better the effect.

Dataset W/0 Feature-Enhance W Feature-Enhanced

OTB2015 success (%) 71.7 72.4
OTB2015 precision (%) 91.4 94.0

LaSOT success (%) 60.4 61.0
LaSOT precision (%) 63.0 63.7

Compared with the tracker without a feature enhancement channel attention mecha-
nism, the success rate and accuracy of the tracker using this mechanism are increased by
0.7% and 2.6% on OTB2015 and 0.6% and 0.7% on LaSOT, which effectively proves the
effectiveness of the feature enhancement strategy.

The influence of the memory quality selection mechanism on the performance of
the tracker: In order to verify the effectiveness of the quality evaluators and the memory
selection mechanism proposed in this chapter, this chapter verifies the performance of the
tracker using the memory quality selection mechanism and the tracker without the memory
quality selection mechanism in the OTB2015 dataset. The comparison results are shown in
Table 7.

Table 7. Comparison results of trackers with and without the memory quality selection mechanism
on OTB2015, W represents the use of the memory quality selection mechanism, and W/O represents
no use.

Dataset W/0 Memory Quality
Selection W Memory Quality Selection

OTB2015 success (%) 72.4 72.8
OTB2015 precision (%) 94.0 95.1

Compared with the tracker without a memory quality selection mechanism, the tracker
with this mechanism not only improves the success rate by 0.4% but also improves the
accuracy by 1.1%. Through ablation experiments, we clearly see this improvement and
fully demonstrate the effectiveness of the new method.

The influence of the number of memory frames on the tracking results: The selection
of the number of memory frames in the object tracking algorithm based on the feature-
enhanced spatial-temporal memory network is critical to the tracking results. In order to
verify the influence of the number of memory frames on the performance of the tracker, a
set of experiments was performed on OTB2015, as shown in Table 8.

Table 8. Comparison of trackers with different numbers of context features on OTB2015.

Dataset/Number of Frames 3 4 5 6 7 8

OTB2015 success (%) 71.4 71.6 71.6 72.0 72.4 70.9
OTB2015 precision (%) 91.6 92.4 93.2 93.8 94.2 92.5

The experimental results clearly reveal the specific law of the tracker performance
changing with the number of memory frames: the initial performance increases with
the increase in the number of frames and reaches the optimal at 7 frames and then the
performance decreases with the increase in the number of frames, which verifies the key
influence of the number of memory frames on the tracking effect.

After in-depth analysis, the following conclusions can be drawn when the number of
memory frames is small, the feature information contained is not enough to support the
tracker for effective object tracking, resulting in poor performance. When the number of
memory frames is too large, too many memory frames may contain noisy data, which will
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interfere with the normal operation of the tracker and reduce its performance. Therefore,
it can be inferred that the number of memory frames has an important influence on the
performance of the tracker. Too few or too many memory frames may adversely affect the
performance of the tracker. In order to obtain the best tracking effect, it is necessary to find
a balance point in the number of memory frames that can ensure the richness of feature
information and avoid the interference of noise.

4.4. Visual Analysis of Tracking Process

Visual results analysis: The visualization of our proposed algorithm is shown in
Figure 7. The representative video sequence frames in the OTB2015 dataset are selected to
prove the effectiveness of the algorithm. In the Basketball video sequence, that is, the first
line in the figure, when the target’s motion appearance changes, it will be disturbed by the
background information, resulting in inaccurate tracking. Compared with other trackers,
ours tracker shows better performance. The green box in the figure is the tracking result
bounding box of the tracker in this chapter and the red box is the real value bounding box.
In the Bird1 video sequence, when the target suddenly disappears or similar objects appear,
other trackers are prone to drift or tracking failure but our tracker can still track accurately.
In the Coke video sequence, when the target moves, our tracker can track the target more
accurately and continuously than the Ocean and SiamCAR trackers. In the Human3 video
sequence, our tracker can continue to accurately track the real target box compared to
other trackers in the background clutter or sudden disappearance scene. In summary, it
can be concluded from the diagram that our tracker shows competitive performance with
advanced trackers in the case of appearance deformation, disappearance, and similar object
interference caused by target motion.
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5. Conclusions

In this paper, a novel tracking framework is proposed. By introducing spatial adaptive
attention and cross-space attention mechanism, the spatial representation of the target is
effectively enhanced and cross-attention is used to aggregate temporal and spatial context
information to improve the adaptability of the tracker to the appearance deformation of the
target. At the same time, the proposed memory quality selection mechanism can reduce
the influence of noise, enrich the diversity of target features, and improve the adaptability
and discrimination ability of the model. Experiments on several challenging benchmark
datasets show that this method achieves comparable performance to advanced trackers.

Although the method proposed in this paper improves the performance and robust-
ness of the tracker to a certain extent when dealing with complex scenes such as fast
motion and occlusion of the target, these improvements have not completely conquered
all challenges. Specifically, with the improvement in tracking accuracy, the computa-
tional complexity of the algorithm increases accordingly, resulting in a certain limitation in
tracking speed. At present, it can only reach the processing rate of 35 frames per second
(fps), which may constitute a certain bottleneck in the application scenarios with high
real-time requirements.

It is particularly, it is worth noting that in extremely complex scenes, such as extremely
cluttered background, unusual target motion speed, or experiencing large deformation, the
tracker may still face the risk of tracking failure. This is mainly because although our model
has achieved initial results in improving the richness and accuracy of feature extraction,
these advances are still incremental improvements and have not yet reached a fundamental
breakthrough. As the key cornerstone of tracking performance, the accuracy and richness
of features still have a broad space for further improvement, which is also an important
direction to be overcome in our future research work.

Looking forward, we will focus on refining attention mechanisms, especially integrat-
ing multi-modal data (vision, sound, and text) with a transformer to enhance tracking
adaptability. This multi-dimensional environment offers detailed context for trackers, boost-
ing their perception and understanding. By leveraging the self-attention in transformer,
we will improve tracking accuracy and robustness in complex scenarios, advancing future
tracking technologies.
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