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Simple Summary: In the present meta-analysis of randomized controlled trials, probiotic fermented
milk supplementation appeared to be beneficial in lowering the levels of fasting plasma glucose,
HbA1c, total cholesterol, and C-reactive protein. While these findings are encouraging, they should
be interpreted cautiously, as considerable limitations of the included trials and analyses precluded
solid conclusions.

Abstract: Modulating gut microbiota composition through probiotic administration has been pro-
posed as a novel therapy for type 2 diabetes mellitus (T2DM), and fermented milk is arguably the
most common and ideal probiotic carrier. The present meta-analysis was performed to assess the
effects of probiotic fermented milk supplementation on glucose and lipid metabolism parameters and
inflammatory markers in patients with T2DM using published data from randomized controlled trials
(RCTs). The PubMed, Web of Science, and Cochrane Library databases were searched for relevant
RCTs. A random-effects model was used to generate the weighted mean difference (WMD) and 95%
confidence interval (95% CI). Probiotic fermented milk supplementation reduced the levels of fasting
plasma glucose (MD = −17.01, 95% CI −26.43, −7.58 mg/dL; n = 7), hemoglobin A1c (MD = −0.47,
95% CI −0.74, −0.21%; n = 7), total cholesterol (MD = −5.15, 95% CI −9.52, −0.78 mg/dL; n = 7), and
C-reactive protein (MD = −0.25, 95% CI −0.43, −0.08; n = 3) but did not significantly affect the levels
of HOMA-IR (MD = −0.89, 95% CI −2.55, 0.78; n = 3), triglyceride (MD = −4.69, 95% CI −14.67,
5.30 mg/dL; n = 6), low-density lipoprotein cholesterol (MD = −4.25, 95% CI −8.63, 0.13 mg/dL;
n = 7), high-density lipoprotein cholesterol (MD = 1.20, 95% CI −0.96, 3.36 mg/dL; n = 7), and tumor
necrosis factor-alpha (MD: −0.58, 95% CI −1.47, 0.32 pg/mL; n = 2). In summary, the present findings
provide a crude indication of the potential benefits of probiotic fermented milk supplementation in
improving glucose and lipid metabolism and inflammation in patients with T2DM. However, more
robust evidence is needed to determine the clinical significance of probiotic fermented milk in the
management of T2DM.

Keywords: probiotic; fermented milk; blood glucose; inflammation; meta-analysis

1. Introduction

Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia
resulting from defects in insulin secretion, insulin action, or a combination of both. If left
uncontrolled, the chronic hyperglycemia of diabetes can lead to long-term complications re-
lating to different organs, particularly the eyes, blood vessels, heart, kidneys, and nerves [1].

Biology 2024, 13, 641. https://doi.org/10.3390/biology13080641 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology13080641
https://doi.org/10.3390/biology13080641
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0001-7859-7482
https://doi.org/10.3390/biology13080641
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology13080641?type=check_update&version=1


Biology 2024, 13, 641 2 of 14

According to the International Diabetes Federation, just over half a billion adults aged
20–79 were diagnosed with DM (the vast majority are type 2 diabetes mellitus [T2DM]) in
2021, accounting for 10.5% of the world’s adult population, and this number is projected
to rise by nearly a quarter billion in 2045 [2,3]. Therefore, it is important to find effective
interventions that can prevent DM or delay its progression to complications.

In T2DM, chronic hyperglycemia manifests when insulin secretion fails to compensate
for resistance to insulin action [1]. Apart from the irregular metabolism of glucose, indi-
viduals with type 2 diabetes frequently exhibit dyslipidemia characterized by abnormal
lipid profiles, such as decreased high-density lipoprotein cholesterol (HDL-C), increased
low-density lipoprotein cholesterol (LDL-C), and triglycerides (TGs), which are the risk
factors for cardiovascular disease [4,5]. Moreover, chronic low-grade inflammation is
believed to play a crucial role in T2DM pathogenesis and is intensified in the presence
of comorbid conditions (e.g., obesity, dyslipidemia, and hypertension) to promote the
development of DM complications [6]. T2DM is largely preventable by implementing
lifestyle modifications, such as adopting a healthy diet, maintaining a healthy body weight,
being physically active, being sober, and not smoking. Lifestyle modifications also play a
crucial role in managing T2DM and reducing its complications [7].

A growing body of research indicates that the composition of the gut microbiota may
have a role in the onset of type 2 diabetes by influencing insulin sensitivity, intestinal
permeability, energy balance, inflammatory regulation, and glycolipid metabolism [8].
Inflammation, insulin resistance, dyslipidemia, and hyperglycemia can result from gut
microbiota dysbiosis, which can also contribute to increased intestinal permeability and
the entry of bacterial endotoxins into the bloodstream. Furthermore, dysbiosis of the gut
microbiota is one of the most important causal factors in the development of T2DM [9,10].
Modulating gut microbiota composition by administering adequate amounts of live benefi-
cial microbes known as probiotics has been proposed as a potential therapy for T2DM.

Probiotics are commonly administered by consuming probiotic-containing supple-
ments or foods. Dairy products, particularly fermented milk (e.g., yogurt and kefir), are
some of the most common probiotic carriers [11]. Dairy products are often preferred as
carriers over other foods as they contain properties that help the survival and growth of
probiotics in the gut. The high buffering capacity and fat content of dairy products are
believed to protect against harsh conditions in the guts, such as exposure to bile acid, gastric
acid, and digestive enzymes, thereby improving the survival rates of probiotics [11–14].
Moreover, certain dairy-specific constituents have been suggested to promote the growth
of probiotics [13].

A meta-analysis of randomized controlled trials (RCTs) found that probiotic fermented
milk supplementation did not significantly affect glucose metabolism parameters (fasting
plasma glucose [FPG], hemoglobin A1c [HbA1c], and homeostatic model assessment of
insulin resistance [HOMA-IR]) in T2DM [15]. However, there are some caveats regarding
the reliability and validity of their findings. The selection of weighted mean difference
instead of standardized mean difference when continuous outcomes using different mea-
surement scales can be easily converted seems inappropriate. Furthermore, the effects of
probiotic fermented milk supplementation on lipid metabolism and inflammation, which
are important factors in the progression of T2DM and its complications, have not been
quantified. Given these considerations, a meta-analysis of RCTs was performed to pro-
vide up-to-date evidence on the effects of probiotic fermented milk on glucose and lipid
metabolism parameters and inflammatory markers.

2. Materials and Methods

The present meta-analysis was performed and reported according to Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [16]. The
protocol for the present meta-analysis was pre-registered in PROSPERO (CRD42024537840).
Two reviewers (HZ and LMW) independently performed the literature search, data ex-
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traction, study selection, and risk of bias assessment. Any disagreement was resolved
via consensus.

2.1. Literature Search

The PubMed, Web of Science, and Cochrane Library databases were searched for
relevant articles written in English up to 5 April 2024. The complete search strategy for
the three databases is reported in Table S1. Furthermore, the references of relevant review
articles and included trials were hand-searched to identify additional eligible studies.

2.2. Eligibility Criteria and Study Selection

The inclusion and exclusion criteria according to the Population, Intervention, Com-
parison, Outcomes, and Study (PICOS) framework are shown in Table 1. Briefly, RCTs that
enrolled patients with T2DM were included if they investigated the effects of probiotic
fermented milk supplementation on milk on the selected glucose (FPG, HbA1c HOMA-IR)
and lipid (total cholesterol (TC), TG, LDL-C, and HDL-C) metabolism parameters and
inflammatory markers (tumor necrosis factor-alpha (TNF-α) and C-reactive protein (CRP)).

Table 1. Participants, Interventions, Comparisons, Outcomes, and Study (PICOS) design framework.

Inclusion Criteria Exclusion Criteria

Participants Adult patients with type 2 diabetes mellitus patients Patients with other types
of diabetes mellitus

Intervention or exposure Probiotics-enriched fermented milk Conventional fermented milk

Comparison Conventional fermented milk or non-dairy controls/placebos

Outcome

Glucose metabolism parameters (fasting plasma glucose,
hemoglobin A1c, and homeostasis model assessment

of insulin resistance)
Lipid metabolism parameters (total cholesterol, triglycerides,

low-density lipoprotein cholesterol,
and high-density lipoprotein)

Inflammatory markers (tumor necrosis factor-alpha
and C-reactive protein)

Study design Parallel or cross-over randomized controlled trial Non-randomized study
(i.e., observational study)

2.3. Data Collection

The following data were extracted from the retrieved articles into a standardized
form: trial authors, year of publication, the mean age of trial participants, countries where
the trials were performed, number of participants, trial intervention, trial duration, and
pre-and post-intervention values of the outcomes.

2.4. Assessment of Risk of Bias in Included Studies

The risk of bias in the included studies was assessed using the Cochrane Risk of Bias
assessment tool [17]. This tool includes the assessment of the method of randomization,
allocation concealment, performance bias, detection bias, attrition bias, reporting bias, and
any other bias.

2.5. Statistical Analysis

The weighted mean difference (WMD) was employed as the summary measure of
effect sizes. WMD was preferred due to variables being reported in different units of
measure. Due to the methodological differences between interventions, a random-effects
model was used to estimate the pooled effect sizes and 95% confidence intervals (CIs). The
mean difference, standard deviation (SD), and sample size from each RCT are required to
estimate the pooled effect sizes. If not available, the SD was calculated from the reported
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standard error (SE), confidence interval (CI), or p-value using the standard equation. For
parallel RCTs, the mean difference was computed by subtracting the mean changes in
glucose and lipid metabolism parameters and inflammatory markers from the baseline
to the endpoint in the placebo group from those in the intervention group. For cross-
over RCTs, the effect sizes were computed by subtracting the mean values of glucose and
lipid metabolism parameters and inflammatory markers at the end of the placebo period
from those reported at the end of the intervention period. Test for publication bias and
subgroup analysis was not performed due to the limited RCTs in each analysis (n ≤ 9 RCTs,
Figures S1–S4). The degree of heterogeneity across the included RCTs was evaluated using
I2 statistics. The I2 values < 25%, 25–50%, and >50% indicated low, moderate, and high
heterogeneity, respectively. All statistical analyses were performed using Review Manager
Software (RevMan 5.3; Cochrane Collaboration, Oxford, England).

3. Results
3.1. Literature Search

A comprehensive overview of the study selection process is presented in Figure 1.
The electronic search across three main databases identified 1784 records. After excluding
non-English articles and screening abstracts or titles, 223 articles were available for full-text
screening. Of these articles, 213 articles were excluded, leaving 10 articles that met the
inclusion criteria [18–27].
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3.2. Characteristics of Included Trials

The characteristics of the included RCTs are summarized in Table 2. More than half of
these RCTs were conducted in Iran [18–21,23–26], while the remaining were conducted in
Denmark [22] and Brazil [27]. All included RCTs were parallel, double-blinded trials. The
duration of the intervention ranged from 6 weeks to 16 weeks. Most trials used conven-
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tional fermented milk containing probiotics (mostly Lactobacillus bulgaricus and Streptococcus
thermophilus) as the control for probiotic fermented milk. Probiotic fermented milk was
conventional fermented milk enriched with additional probiotic strains (mostly Lacto-
bacillus acidophilus La5 and Bifidobacterium lactis Bb12). The daily amount of fermented
milk consumed ranged from 100 g/d to 600 g/d. The daily count of additional probiotics
obtained from probiotic fermented milk ranged from 7.3 × 108 cfu/day to 6.26 × 1010 cfu/d.
One [22] trial used single-strain probiotics, one [19] did not disclose probiotic strain, and
nine [18,20,21,23–27] used multi-strain probiotics. All RCTs asked the participants in the
probiotic fermented milk and control groups to continue their dietary and lifestyle habits.

3.3. Risk of Bias

The risk of bias assessment is presented in Figure 2. Nearly all RCTs appropriately
generated a random sequence. Only a few RCTs adequately ensured allocation conceal-
ment. Since the outcomes were based on objective measurements (i.e., glucose and lipid
metabolism parameters and inflammatory markers), which were unlikely to be affected
by the lack of blinding, the risks of performance and detection bias were deemed low in
all RCTs. The risk of attrition bias was low as considerable loss to follow-up was not an
issue in all RCTs. The risk of selective reporting was low as all RCTs provided accessible
trial protocols.
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Table 2. Characteristics of the included trials.

Author
Year Country

No.of Participants
in the Probiotics
Group/No. of
Participants in the
Placebo Group

Age in
Intervention
Group
(mean ± SD)

Age in
Control
Group
(mean ± SD)

Treatment
(Bacteria)

Control
(Bacteria)

Duration
(Weeks) Outcomes

Ejtahed(a).
2011 [21] Iran 30/30 50.87 ± 1.40 51.00 ± 1.34

300 g/d probiotic-enriched yogurt
(original culture: Lactobacillus
bulgaricus and Streptococcus
thermophilus; additional culture
(3.98 × 109 cfu/d): Lactobacillus
acidophilus La5 (7.23 × 106 cfu/g on
day 1) and Bifidobacterium lactis
Bb12 (6.04 × 106 cfu/g on day 1))

300 g/d conventional yogurt
(original culture:
Lactobacillus bulgaricus and
Streptococcus thermophilus)

6
TC,
TG,
HDL-C,
LDC-C

Ejtahed(b).
2012 [20] Iran 30/30 50.87 ± 7.68 51.00 ± 7.32

300 g/d of probiotic-enriched
yogurt (original culture:
Lactobacillus bulgaricus and
Streptococcus thermophilus;
additional culture
(3.98 × 109 cfu/d): Lactobacillus
acidophilus La5 (7.23 × 106 cfu/g on
day 1) and Bifidobacterium lactis
Bb12 (6.04 × 106 cfu/g on day 1))

300 g/d of conventional yogurt
(original culture:
Lactobacillus bulgaricus and
Streptococcus thermophilus)

6 FPG,
HbA1c

Mohamadshahi(a),
2014 [24] Iran 22/22 51 51

300 g/d probiotic-enriched yogurt
(original culture: Lactobacillus
bulgaricus and Streptococcus
thermophilus; additional culture
(2.22 × 109 cfu/d): Lactobacillus
acidophilus La5 (3.7 × 106 cfu/d on
day 1) and Bifidobacterium lactis
Bb12 (3.7 × 106 cfu/d on day 1))

300g/d of conventional yogurt
(original culture:
Lactobacillus bulgaricus and
Streptococcus thermophilus)

8
TC,
TG,
HDL-C,
LDL-C

Mohamadshahi(b),
2014 [25] Iran 22/21 53.00 ± 5.9 49.00 ± 7.08

Probiotic-enriched yogurt (original
culture: Lactobacillus bulgaricus and
Streptococcus thermophilus;
additional culture (2.22 × 109

cfu/d): Lactobacillus acidophilus La5
(3.7 × 106 cfu/d on day 1) and
Bifidobacterium lactis Bb12 (3.7 × 106

cfu/d on day 1))

Conventional yogurt (original
culture: Lactobacillus bulgaricus and
Streptococcus thermophilus)

8
FPG,
HbA1c, CRP,
TNF-α,
IL-6
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Table 2. Cont.

Hove, 2015 [22] Denmark 23/18 58.5 ± 7.7 60.6 ± 5.2
300 g/d of Commercial probiotic
yogurt ‘Cardi04’
(Lactobacillus helveticus Cardi04)

300 g/d of probiotics-free
acidified milk 12

FPG,
HbA1c,
HOMA-IR,
TC,
TG,
HDL-C,
LDL-C, CRP,
TNF-α

Ostadrahimi,
2015 [26] Iran 30/30 no no

600 g/d of probiotic-enriched kefir
(original cultures: Streptococcus
thermophilus; additional cultures
(2.88 × 1010 cfu/d): Lactobacillus
casei (1.5 × 107 cfu/g on day 1),
Lactobacillus acidophilus
(2.5 × 107 cfu/g on day 1), and
bifidobacterium lactis (8 × 106 cfu/g
on day 1))

600 g/d of conventional fermented
milk (original cultures:
Streptococcus thermophilus)

8

FPG,
HbA1c,
TC,
TG, HDL-C,
LDL-C,

Bayat, 2016 [19] Iran 20/20 54.1 ± 9.54 46.95 ± 9.34 150 g/d of probiotic yogurt
(not reported) Dietary advice (not applicable) 8

FPG,
HbA1c,
TC,
TG,
LDL-C,
HDL-C, CRP

Alihosseini, 2017 [18] Iran 30/30 Not reported Not reported

600 g/d of probiotic-enriched kefir
(original cultures: Streptococcus
thermophilus; additional cultures
(2.88 × 1010 cfu/d): Lactobacillus
casei (1.5 × 107 cfu/g on day 1),
Lactobacillus acidophilus La5
(2.5 × 107 cfu/g on day 1), and
bifidobacterium lactis Bb12
(8 × 106 cfu/g on day 1))

600 g/d of conventional fermented
milk (original cultures:
Lactobacillus bulgaricus and
Streptococcus thermophilus)

8 HOMA-IR

Tonucci, 2017 [27] Brazil 23/22 51.83 ± 6.64 50.95 ± 7.20

120 g/d of probiotic fermented goat
milk (original culture
(6.26 × 1010 cfu/d): Streptococcus
thermophilus; Lactobacillus
acidophilus La5 (7.72 × 107 cfu/g on
day 1) and Bifidobacterium lactis
Bb12 (4.45 × 108 cfu/g on day 1))

120 g/d of conventional fermented
goat milk (original culture:
Streptococcus thermophilus)

6

FPG,
HbA1c,
HOMA-IR,
TC,
HDL-C,
LDL-C
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Table 2. Cont.

Mirjalili, 2023 [23] Iran 36/36 54.5 ± 8.0 58.1 ± 9.8

100 g/d of probiotic-enriched
yogurt (original culture:
Lactobacillus bulgaricus and
Streptococcus thermophilus;
additional culture (7.3 × 108 cfu/d):
Lactobacillus acidophilus La5 and
Bifidobacterium lactis Bb12
(7.3 × 106 cfu/d on day 1))

100 g/d of conventional yogurt
(original culture:
Lactobacillus bulgaricus and
Streptococcus thermophilus)

12

FPG,
HbA1c,
TC,
TG,
HDL-C,
LDL-C



Biology 2024, 13, 641 9 of 14

3.4. Glucose Metabolism Parameters

Seven RCTs (n probiotic fermented milk/n control = 183/177) each were included in
the analyses of FPG and HbA1c, while three [18,22,27] RCTs were included in the analysis
of HOMA-IR (n probiotic fermented milk/n control = 76/70). Probiotic fermented milk
supplementation significantly reduced the levels of FPG (MD = −17.01, 95% CI −26.43,
−7.58, p = 0.0004; Figure 3A) and HbA1c (MD = −0.47, 95% CI −0.74, −0.21, p = 0.0005;
Figure 3C) but did not significantly affect HOMA-IR levels (MD = −0.89, 95% CI −2.55, 0.78,
p = 0.30; Figure 3B). High heterogeneity was observed for HOMA-IR (I2 = 75%), whereas
low heterogeneity was observed for other outcomes (All I2 ≤ 19%).
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3.5. Lipid Metabolism Parameters

Seven [19,21–24,26,27] RCTs (n probiotic fermented mlik/n control = 183/177) each
were included in the analyses of TC, LDL-C, and HDL-C, while six [19,21–24,26] RCTs
(n probiotic fermented milk/n control = 160/156) were included in the analyses of TG.
Probiotic fermented milk supplementation reduced the levels of TC (−5.15, 95% CI −9.52,
−0.78 mg/dL; Figure 4A) but did not significantly affect the levels of TG (−4.69, 95% CI
−14.67 mg/dL; Figure 4B), LDL-C (MD = −4.25, 95% CI −8.63, 0.13 mg/dL; Figure 4C),
and HDL-C (1.20, 95% CI −0.96, 3.36 mg/dL; Figure 4D). Low heterogeneity was observed
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for TC (I2 = 18%), whereas low-to-moderate heterogeneity was observed for other outcomes
(All I2 ≥ 32%).
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Figure 4. Forest plot for the effect of probiotic fermented milk on (A) total
cholesterol [19,20,22–24,26,27], (B) triglycerides [19,20,22–24,26], (C) low-density lipoprotein-
cholesterol [19,20,22–24,26,27], and (D) high-density lipoprotein-cholesterol [19,20,22–24,26,27].

3.6. Inflammatory Markers

The meta-analysis of three [19,22,25] showed a significant reduction in CRP (n probiotic
fermented milk/n control = 64/59) by 0.25 mg/L (95% CI −0.43, −0.08 mg/L; Figure 5A)
without heterogeneity (I2 = 0%). Two [22,25] RCTs were included in the analyses of TNF-α
(n probiotic fermented milk/n control = 44/39). No significant difference in TNF-α levels
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was observed between probiotic and placebo users (MD: −0.58, 95% CI −1.47, 0.32, p = 0.21;
Figure 5B), with considerable heterogeneity (I2 = 66%, p = 0.09).
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4. Discussion

Modulating gut microbiota composition through probiotic administration has been
proposed as a novel therapy for type 2 diabetes mellitus (T2DM), and fermented milk
is arguably the most common and ideal probiotic carrier. In the present meta-analysis
of RCTs, probiotic fermented milk supplementation the levels of fasting plasma glucose,
hemoglobin A1c, TC, and CRP but did not significantly affect the levels of HOMA-IR, TG,
LDL-C, HDL-C, and TNF-α.

The effects of probiotic fermented milk supplementation on glucose metabolism pa-
rameters (FPG, HbA1c, and HOMA-IR) have been previously observed in a meta-analysis
of RCTs [15]. However, the present meta-analysis differs from the previous meta-analysis in
some important aspects. First, although the previous and present meta-analyses included
almost the same amount of RCTs (six RCTs vs. seven RCTs) for the same glucose parameters,
we found that probiotic fermented milk supplementation reduced the levels of FPG and [28]
HbA1c, which was different from the null effect of the supplementation on both parameters
observed in the previous analysis. Second, the previous meta-analysis used the standard-
ized mean difference (SMD) rather than WMD, which was used in the present meta-analysis.
The variation in the selection of the measure of effect size could, to a certain extent, explain
the discrepancy in the findings between both meta-analyses. The main difference between
WMD and SMD is that the former measure of effect size is applied in meta-analysis when
the studies reported having the same measurement scales and expressed in units of the
measurement scales (e.g., mg/dL). In contrast, the latter measure of effect size is applied
in the meta-analysis when the studies used different measurement scales and expressed
in units of SD, making the overall intervention effect difficult to interpret. In our case,
while not all RCTs used the same measurement scales, the scales can be easily converted to
each other. Therefore, the selection of SMD in the previous meta-analysis is not justified.
Third, the previous meta-analysis did not investigate the effects of probiotic fermented milk
supplementation on lipid metabolism parameters and inflammatory markers, which are
important factors in the progression of T2DM and its complications. Although the effects of
probiotic fermented milk supplementation on lipid metabolism parameters and inflamma-
tory markers in T2DM have not been quantified, meta-analyses of RCTs have reported the
effects of probiotic fermented milk on lipid metabolism parameters [29] and inflammatory
markers [28] in general participants (i.e., not restricted to T2DM). The reduced levels of TC
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and CRP with the supplementation and the lack of supplementation effect on the levels
of LDL-C, TG, and TNF-α observed in the present meta-analysis are consistent with the
previous meta-analysis in general participants.

The exact mechanisms for the beneficial effects of probiotic fermented milk on glucose
and lipid metabolism and inflammation in T2DM are likely multifactorial and not fully
elucidated. The most likely mechanistic explanation for such benefits is the change in
the composition of the host gut microbiota towards balance after the administration of
probiotics. Dysbiosis (imbalance) of gut microbiota composition is common in patients with
T2DM. Dysbiosis can lead to elevated intestinal permeability, allowing bacterial endotoxins
to enter the circulation, eventually leading to inflammation, insulin resistance, dyslipidemia,
and hyperglycemia [9,10]. Probiotics can balance intestinal microbiota equilibrium by pro-
moting short-chain fatty acid (SCFA)-producing bacterial growth and inhibiting the number
of harmful bacteria [30,31]. The activation of G-protein-coupled receptors on L-cells by
SCFAs triggers the release of glucagon-like peptide-1 and peptide YY, leading to enhanced
insulin secretion, reduced glucagon secretion, and improved lipid metabolism. SCFAs can
decrease intestinal permeability and circulating endotoxins, alleviating inflammation and
oxidative stress [30,32–34].

While the present findings are encouraging, their robustness and clinical implications
are hampered by several caveats. First, there was a lack of RCTs that compared probiotic
fermented milk with probiotic-free control, as nearly all RCTs compared probiotic fermented
milk and conventional fermented milk. This approach made it difficult to assess the true
effect of probiotic fermented milk supplementation because conventional fermented milk
per se contains probiotics (although in lower amounts than probiotic fermented milk). If this
is truly the case, the lack of supplementation effect observed for most investigated outcomes
(i.e., HOMA-IR, TG, LDL-C, HDL-C, and TNF-α) could have been due to suboptimal control
selection. Second, all RCTs asked the participants in the intervention group to supplement
their habitual diet with probiotic fermented milk, while those in the control group were
asked to continue their habitual diet. Given that the habitual diet was not controlled in
those RCTs and that diet could modify gut microbiota composition, glucose and lipid
metabolism, and inflammatory response, any imbalance in dietary intake of both groups
could have biased the effect of probiotic fermented milk supplementation. Based on several
RCTs [21–23,26–29] that performed dietary intake analyses, it appeared that the difference
in intake of energy and nutrient intake in both groups before and after the intervention
was not significant in most cases, although the imbalance in polyunsaturated fatty acid
intake before the intervention was observed [22,23]. Third, the lack of included RCTs in
each analysis (even the largest analyses only included seven RCTs) reduced the robustness
of the overall findings and precluded the ability to fully evaluate the potential source of
heterogeneity and effect modifiers through meaningful subgroup analyses. Consequently,
many important issues regarding probiotic administration, particularly the potential dose-
dependent, species-specific, and strain-specific effects, could not be assessed with the
current datasets. Finally, The present meta-analysis was not adequately powered to assess
the potential publication bias due to the low number of included RCTs. Therefore, the
potential publication bias could not be fully ruled out.

5. Conclusions

In summary, the present findings provide a crude indication of the potential benefits
of probiotic fermented milk supplementation in improving glucose and lipid metabolism
and inflammation in patients with T2DM. Unfortunately, no solid conclusions can be made
based on these findings due to the considerable limitations of the included trials and
analyses. More robust evidence is needed to determine the clinical significance of probiotic
fermented milk in the management of T2DM.
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