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Abstract: Paddy field leveling is an essential step before rice transplanting. During the operation
of a paddy field grader, a common issue is the wrapping of rice straw around the blades, resulting
in a low rice straw burial rate. This study focused on analyzing the operating parameters of a disc
spring–tooth-combined paddy field grader. A soil–straw mechanism simulation model was created
using EDEM 2021 software to simulate the field operation status. Firstly, the single-factor test was
carried out, with the working speed, the working depth of the disc cutter roller, and the rotation speed
of the cutter roller as the factors and the straw-buried rate (SBR) and the machine forward resistance
(MFR) as the test indexes, and the parameter range was optimized. The parameters were optimized
by the response surface method (RSM) and machine learning algorithms. The results indicated that
the genetic algorithm–back propagation (GA-BP) neural network outperformed other optimization
models in terms of prediction accuracy and stability. By utilizing the GA-BP regression model
and RSM model for regression fitting, two sets of optimal parameter combinations were obtained.
Verification experiments were carried out using two sets of parameter combinations. Taking the
average of the experimental results, the simulation results showed that the straw burial rate was
93.47% and the forward resistance was 6487 N for the parameter combinations of RSM, and the straw
burial rate was 94.86% and the forward resistance was 6352 N for the parameter combinations of
GA-BP; the field experiments showed that the straw burial rate was 92.86% and the forward resistance
was 6518 N for the parameter combinations of RSM, and the straw burial rate was 95.17% and the
forward resistance was 6249 N for the parameter combinations of GA-BP. The results demonstrated
that the GA-BP prediction model exhibited better predictive capabilities compared to the traditional
RSM, providing more accurate predictions of the paddy field grader’s field operation performance.

Keywords: discrete element parameter calibration; genetic algorithm; response surface method;
paddy field grader

1. Introduction

Rice straw return to the field is a crucial method of straw utilization, which can realize
the synergistic improvement of soil fertility and rice yield under the premise of reducing
environmental pollution and the waste of agricultural resources [1–4]. Mechanized rice
straw return technology means using a straw return machine to cut off rice straw and
bury it to a certain depth of the soil layer, after the subsequent microbial fermentation
and maturation, the organic matter decomposes into humus to fertilize the soil, which
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plays a significant role in improving the soil aggregate structure [5,6]. Rice straw-returning
machinery frequently encounters issues like high operating resistance and a low straw
burial rate during operation [7]. Therefore, it is crucial to study and analyze the field
working conditions of the paddy field grader.

The discrete element method (DEM) views soil particles as granular bodies. By analyz-
ing the interaction between the machine and the soil system during the working process of
the machine, the optimization and improvement of the working parameters of the machine
can be realized, reducing the test cycles and costs [8–10]. Wang optimized and analyzed
the field return knife roller assembly based on DEM, comparing field experiments and
simulation to verify the reliability of discrete element simulation [11]. Zhang established
the model of rotary tillage knife–soil–wheat straw based on DEM to explore the reliability of
discrete element simulation [12]. Hadi used DEM to simulate the tillage process, optimize
the working parameters of the machine, and improve the tillage speed [13] Chen used
DEM to establish a soil–straw composite model of undisturbed soil under straw mulching
and simulated the working process of soil tillage device [14].

In recent years, the use of artificial neural networks in modeling and solving complex
relationships has become widespread due to their clear advantages in handling decentral-
ized and nonlinear data [15–17]. The traditional RSM analysis method has the problem that
the fitting effect is easily affected by the complexity of the problem and the sample size.
The BP neural network avoids the multicollinearity problem in linear regression through
the multi-layer network structure and can fit more complex nonlinear functions. [18]. Tra-
ditional machine learning models typically rely on large datasets; however, recent studies
have demonstrated that smaller datasets can also be used to develop neural network mod-
els for predictive analysis [19–22]. Najet et al. used response surface methodology, artificial
neural networks, and Simulink models to optimize the operating parameters for extracting
capsaicin, and the results showed that artificial neural network predictions were more
accurate than response surface methodology and Simulink [23]. Fetimi et al. proposed
a methodology based on an optimization method based on merging an artificial neural
network algorithm with PSO for predicting the optimum operating parameters for cation
removal efficiency in aqueous solution [24]. MA applied four machine learning models
and compared them with the response surface method. The results show that GA-BP has a
better fitting effect [25].

Currently, there is limited research on optimizing machine parameters using BP neural
networks. This study utilized EDEM simulation software to create a machine simulation
model and simulate the field operational conditions of a disc spring–tooth-combined paddy
field grader for rice straw return to the field. The single-factor test was conducted using a
straw burial rate and the forward resistance of implements as indicators. Various machine
learning regression models were compared for stability and accuracy, with GA-BP used to
establish and optimize the model parameters. RSM and GA-BP were used to optimize the
parameter inversion, resulting the parameter combinations for the field test. This study
offers a foundational reference for the subsequent construction of the prediction model of
machine operating parameters under complex environments in the field.

2. Materials and Methods
2.1. Structure and Working Principle

The disc spring–tine-combined paddy field grader utilized in this research consists
primarily of a suspension device, a power input shaft, left and right gear transmission
boxes, drive shafts on both sides, grass-pressing disc rollers, spring teeth, and rollers. In
operation, the tractor power propels the power input shaft via the universal joint trans-
mission shaft, rotating the left and right transmission shafts, and transferring power to
the left and right gear transmission boxes. The left-side gear box drives the rotation of the
pressure grassland disk roller, burying the rice straw and stubble. On the other hand, the
right-side gear box drives the rotation of the spring elastic gear roller, mixing the slurry
while burying the rice straw. The overall structure and working principle of the machine
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are illustrated in Figure 1. The process of determining the optimal combination of working
parameters for the paddy field grader is depicted in Figure 2.
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2.2. Discrete Element Simulation Modeling

To reduce the test cycle and cost, the discrete element method is usually used to
simulate the operation process of the machine [8–10]. The soil samples were collected from
the experimental field at Jilin Agricultural University, and experimental methods were
used to test and analyze the basic physical properties of the soil. The contact parameters
between materials are difficult to measure through conventional experimental methods.
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This paper sets the contact parameters between soil, cutters, and rice straw based on
previously measured parameters and the related literature [26,27], as shown in Table 1.
The operating conditions of the machine designed in this article are black soil in northeast
China, and the soil type is black soil. The reference literature sets the paddy soil particles
as spherical, and the particle radius is 7 mm [28]. Due to the large soil moisture content
and surface adhesion, considering that the viscous force existing between wet particles
will have an impact on particle movement, the Hertz–Mindlin with JKR contact model
was selected as the model between soil particles and rice straw and between soil and rice
straw [29]. The three-dimensional model of the work equipment was created using Solid
Works 2024 software with equal proportions and then imported into the EDEM software.
To adapt to the size of the equipment, a soil box with a length × width × height of
2000 mm × 2800 mm × 200 mm was set. The straw stubble was modeled using the
Bonding V2 model to accurately simulate its flexible nature [30]. The spherical particles
with a radius of 5 mm were used, and the contact radius was set to 5.5 mm, which was
connected in turn to form the stubble model. A Polygon virtual plane was added above
the soil to generate rice straw, with varying lengths of 100 mm, 200 mm, and 250 mm,
composed of spherical particles with a 5 mm radius connected in sequence; the overall
simulation model is shown in Figure 3.

Table 1. Simulation parameter.

Factors Value

soil–soil restitution coefficient 0.6
soil–soil static friction coefficient 0.5

soil–soil rolling friction coefficient 0.4
soil–machine restitution coefficient 0.6

soil–machine static friction coefficient 0.5
soil–machine rolling friction coefficient 0.04

soil–rice straw restitution coefficient 0.6
soil–rice straw static friction coefficient 0.5

soil–rice straw rolling friction coefficient 0.2
rice straw–rice straw restitution coefficient 0.6

rice straw–rice straw static friction coefficient 0.5
rice straw–rice straw rolling friction coefficient 0.01

rice straw–machine restitution coefficient 0.6
rice straw–machine static friction coefficient 0.3

rice straw–machine rolling friction coefficient 0.01
JKR surface energy 0.15

Agriculture 2024, 14, x FOR PEER REVIEW 4 of 17 
 

 

used to test and analyze the basic physical properties of the soil. The contact parameters 
between materials are difficult to measure through conventional experimental methods. 
This paper sets the contact parameters between soil, cutters, and rice straw based on pre-
viously measured parameters and the related literature [26,27], as shown in Table 1. The 
operating conditions of the machine designed in this article are black soil in northeast 
China, and the soil type is black soil. The reference literature sets the paddy soil particles 
as spherical, and the particle radius is 7 mm [28]. Due to the large soil moisture content 
and surface adhesion, considering that the viscous force existing between wet particles 
will have an impact on particle movement, the Hertz–Mindlin with JKR contact model 
was selected as the model between soil particles and rice straw and between soil and rice 
straw [29]. The three-dimensional model of the work equipment was created using Solid 
Works 2024 software with equal proportions and then imported into the EDEM software. 
To adapt to the size of the equipment, a soil box with a length × width × height of 2000 
mm × 2800 mm × 200 mm was set. The straw stubble was modeled using the Bonding V2 
model to accurately simulate its flexible nature [30]. The spherical particles with a radius 
of 5 mm were used, and the contact radius was set to 5.5 mm, which was connected in 
turn to form the stubble model. A Polygon virtual plane was added above the soil to gen-
erate rice straw, with varying lengths of 100 mm, 200 mm, and 250 mm, composed of 
spherical particles with a 5 mm radius connected in sequence; the overall simulation 
model is shown in Figure 3. 

Table 1. Simulation parameter. 

Factors Value 
soil–soil restitution coefficient 0.6 

soil–soil static friction coefficient 0.5 
soil–soil rolling friction coefficient 0.4 
soil–machine restitution coefficient 0.6 

soil–machine static friction coefficient 0.5 
soil–machine rolling friction coefficient 0.04 

soil–rice straw restitution coefficient 0.6 
soil–rice straw static friction coefficient 0.5 

soil–rice straw rolling friction coefficient 0.2 
rice straw–rice straw restitution coefficient 0.6 

rice straw–rice straw static friction coefficient 0.5 
rice straw–rice straw rolling friction coefficient 0.01 

rice straw–machine restitution coefficient 0.6 
rice straw–machine static friction coefficient 0.3 

rice straw–machine rolling friction coefficient 0.01 
JKR surface energy 0.15 

 
Figure 3. Discrete element simulation model.



Agriculture 2024, 14, 1283 5 of 17

2.3. RSM Test Design
2.3.1. Single-Factor Test

To analyze the influence of various factors on the working effect of the paddy field
grader, the operating speed of the machine tool, the working depth of the disc cutter
roller, and the rotation speed of the cutter roller were selected as test factors, and the
straw-burying rate and the forward resistance of the machine tool were used as influencing
indicators to conduct a single-factor simulation test; the single-factor experimental design
is shown in Table 2.

Table 2. Single-factor test coding table.

Level Operating Speed (km/h) Buried Depth (mm) Working Speed (r/min)

1 2 160 200
2 2.5 170 220
3 3 180 240
4 3.5 190 260
5 4 200 280

The straw-burying rate refers to the percentage of the total amount of straw remaining
per unit area in the field before the machine is operated and the amount of straw that
is buried deep in the mud per unit area in the same field after the machine is operated.
During the simulation test, the software post-processing function was used in the working
area of the paddy field grader to establish a Grid Bin Group to record the number of all rice
straws M1 in the uncultivated surface. After the machine worked, the number of straws in
the cultivated area M2 was recorded, as shown in Figure 4. The rice straw returning rate
can be obtained from Formula (1).

η =
M1 − M2

M1
× 100% (1)

where η is the rice straw-burying rate, %; M1 is the straw residue per unit area of the field
before the operation, g; and M2 is the straw residue per unit area of the field after operation, g.
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2.3.2. Box–Behnken Test

To analyze the influence of the interaction between various factors on the operation
effect of the paddy field grader, the Box–Behnken test was conducted using the straw-
burying rate and the forward resistance of the machine as test indicators. The test factor
level coding table is shown in Table 3.
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Table 3. Box–Behnken factor level code table.

Level Code Operating Speed (km/h) Buried Depth (mm) Working Speed (r/min)

−1 2 170 240
0 2.5 180 260
1 3 190 280

2.4. Regression Fitting Modeling Based on Machine Learning Algorithm

The RSM is based on multiple linear regression to actively collect data to obtain
a regression equation with better properties. In recent years, with the development of
machine learning, compared with the regression model obtained by the RSM, the use
of modern intelligent optimization algorithms can also perform good regression fitting
and modeling [31]. The neural network structure includes a series of interconnected
neuron layers, which are mainly composed of three layers: input layer, hidden layer, and
output layer. Each layer is connected to another layer by neurons. These neurons transmit
information from one layer to another. In this way, the information reaches the output
layer. The Box–Behnken test results were used as the dataset for BP, GA-BP, and PSO
regression fitting modeling, respectively. The dataset (20 groups) was randomly divided
into a training group (14 groups, 70%), a test group (3 groups, 15%), and a verification
group (3 groups, 15%).

2.4.1. BP Algorithm

In the training process, the transfer function from the input layer to the hidden layer
is the Sigmoid function, and the transfer function from the hidden layer to the output
layer is linear. The training algorithm adopts the nonlinear damped least squares (LM)
optimization algorithm [32], and the mapminmax function is selected to normalize the
input and output data.

2.4.2. GA-BP Algorithm

The genetic algorithm is used to optimize the initial weights of the hidden layer and
the output layer and the thresholds of the hidden layer and the output layer. The GA-BP
algorithm has greater advantages in global search. Through selection, crossover, mutation,
and other operations, each individual (i.e., a set of BP network parameters) evolves in the
direction of higher fitness until the final standard is reached.

2.4.3. PSO Algorithm

The particle swarm optimization (PSO) algorithm, also known as the particle swarm
optimization algorithm, finds the global optimal solution through the continuous iterative
optimization of the particle swarm in the search space [33]. The PSO optimization algorithm
first randomly generates a set of random solutions (i.e., particle swarm) and determines the
fitness value of the initial particle and the individual extreme value, as well as the group
extreme value through the objective function. The velocity and position of the particles are
updated during the iteration process, and the optimal solution is finally found.

2.5. Data Analysis and Processing

The algorithm running platform of this study is Matlab R2020b software. The pre-
diction performance of the machine learning model is evaluated by the determination
coefficient R2, mean square error (MSE), and mean absolute deviation (MAE). The larger
the R2, the higher the model fitting degree, the lower the MSE and MAE, and the better the
model accuracy and stability.
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3. Results and Discussion
3.1. Analysis of Single-Factor Experiment Results

The single-factor test results were analyzed by taking the operating speed of machine
A, the depth of pressure burial B, and the speed of the knife roller C as the test factors and
the straw pressure burial rate and the forward resistance of the machine as the indicators
(Figure 5). The results show that with the increase in the operating speed of the machine,
the straw burial rate gradually decreases, the reason may be that with the increase in the
operating speed of the machine, the cutter shaft cuts the soil and reduces the effect of burial,
which cannot carry out the straw burial operation in time, resulting in the gradual reduction
in the burial rate, and at the same time, the resistance of the machine to move forward
increases; with the increase in the depth of straw burial, the straw burial rate increases,
the reason may be that with the increase in the depth of straw burial effect increases. The
reason may be that as the depth increases, the effect of the straw burial increases and the
forward resistance of the machine increases; as the knife roller speed increases, the straw
burial rate increases, because as the knife roller speed increases, the contact stroke of the
knife roller and the straw increases, and the burial rate rises, and the forward resistance of
the machine increases.
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3.2. Analysis of Box–Behnken Test Results

Taking the operating speed of machine A, the buried depth B, and the speed of the
knife roller C as the test factors, the straw-burying rate and the forward resistance of the
machine as the indicators, the Box–Behnken test design was carried out and the results were
analyzed. The Box–Behnken test design and results are shown in Table 4, and ANOVO
analysis for SBR and MFR is shown in Tables 5 and 6.

The variance analysis of the BB test results was carried out to explore the influence of
each factor and the interaction of each factor on the response index. The variance analysis
of the straw-burying rate showed that the model p < 0.001, indicating that there was a
significant relationship between the response value and the parameters. Among them,
A (machine operating speed), B (buried depth), C (working speed), AC, BC interaction term,
and A2 all had extremely significant effects on straw compaction rate. The coefficient of
determination of the model, R2 = 0.9872, and the calibrated coefficient of determination,
Adjusted R2 = 0.9707, were close to 1. The model misfit term was 0.0671 (>0.05), indicating
that the model fits well and can be used for subsequent prediction analysis. The variance
analysis of the forward resistance shows that the model p < 0.001, indicating that there is a
significant relationship between the response value and the parameters. Among them, A, B,
and C2 all have extremely significant effects on the forward resistance, and the interaction
terms of C and A2 have significant effects on the forward resistance. The coefficient of
determination, R2 = 0.9450, and the coefficient of determination, Adjusted R2 = 0.8955, are
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both close to 1, indicating that the model is reliable and can be used for the prediction and
analysis of the subsequent combination of working parameters.

Table 4. Box–Behnken test design and results.

No. A B C Straw-Burying Rate (%) Machine Forward Resistance (N)

1 −1 −1 0 89.33 5647
2 1 −1 0 86.77 7196
3 −1 1 0 95.03 6206
4 1 1 0 92.55 7251
5 −1 0 −1 87.57 6047
6 1 0 −1 88.92 7467
7 −1 0 1 95.77 6704
8 1 0 1 90.01 7420
9 0 −1 −1 87.04 6273

10 0 1 −1 93.71 6977
11 0 −1 1 95.01 6477
12 0 1 1 96.8 7294
13 0 0 0 92.4 6426
14 0 0 0 92.63 6457
15 0 0 0 92.34 6046
16 0 0 0 93.05 6498
17 0 0 0 92.91 6351
18 0 0 0 93.7 6374
19 0 0 0 92.51 6449
20 0 0 0 92.82 6362

Table 5. ANOVO of Box–Behnken test on SBR.

Source Mean Square Degree of Freedom Sum of Square p-Value

Model 17.15 9 154.3100 <0.0001
A 11.1600 1 11.1600 0.0001
B 49.7000 1 49.7000 <0.0001
C 51.7700 1 51.7700 <0.0001

AB 0.0016 1 0.0016 0.9428
AC 12.6400 1 12.6400 <0.0001
BC 5.9500 1 5.9500 0.0012
A2 22.6100 1 22.6100 0.1605
B2 0.5560 1 0.5560 0.1998
C2 0.0001 1 0.0001 0.9885

Residual 0.2951 10 2.9500
Lack of fit 0.5271 3 1.5800 0.1265
Pure error 0.1956 7 1.3700

Sum 19 157.2600

Utilizing Design-Expert 13.0 software, the regression model can be analyzed to obtain
the effect of the interaction of factors on SBR and MFR, in which the regression model of
SBR and each significant parameter can be described as Equation (2), and the regression
model of MFR and each significant parameter can be described as Equation (3). Taking the
maximum straw burial rate and the minimum forward resistance as the target values, the
regression equation was solved to obtain a set of parameter combinations: the machine
operating speed is 2.1 km/h, the buried depth is 185 mm, and the rotation speed of the
knife roller is 275 r/min.

SBR = 92.80 − 1.18A + 2.49B + 2.54C + 0.02AB − 1.78AC − 1.22BC
−2.22A2 + 0.3488B2 − 0.0038C2 (2)
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MFR = 6370.38 − 591.25A + 266.87B + 141.38C − 126.00AB − 176.00AC
+28.25BC + 179.44A2 + 25.19B2 + 359.69C2 (3)

Table 6. ANOVO of Box–Behnken test on MFR.

Source Mean Square Degree of Freedom Sum of Square p-Value

Model 513,400 9 4,620,000 <0.0001
A 2,797,000 1 2,797,000 <0.0001
B 569,800 1 569,800 0.0010
C 159,900 1 159,900 0.0349

AB 63,504 1 63,504 0.1553
AC 123,900 1 123,900 0.0574
BC 3192.25 1 3192.25 0.7375
A2 22.6100 1 22.6100 0.0413
B2 147,200 1 147,200 0.7493
C2 2900.16 1 2900.16 0.0009

Residual 591,400 10 268,800
Lack of fit 26,878.76 3 130,000 0.1775
Pure error 19,820.84 7 138,700

Sum 19 4,889,000

3.3. Machine Learning Regression Model
3.3.1. Model Comparison

The regression fitting modeling of the data is carried out by three algorithms, and the
R2, MSE, and MAE of the model are compared to determine the most suitable regression
model for the optimization of the working parameters of the disc spring–tooth-combined
paddy field grader. The key parameter settings of the three algorithm models are shown in
Table 7, and the model comparison results are shown in Table 8.

Table 7. Key parameter settings.

Model Parameter Values

BP
training steps 50
learning rate 0.001

number of neurons in the hidden layer 9

GA-BP
iteration times 200
population size 100

number of neurons in the hidden layer 9

PSO
learning rate 0.6

Initialize the population number 50
iteration times 100
inertia factor 0.1

Table 8. Model comparison.

Model
R2 MSE MAE

SBR MER SBR MER SBR MER

BP 0.8645 0.9399 1.1385 14,406.5899 0.6157 78.6879
GA-BP 0.9814 0.9601 0.1394 10,681.5752 0.2281 50.3941

PSO 0.8624 0.9477 1.1031 12,531.1535 0.5486 66.0054

As shown in Table 4, the comparison results of the three machine learning regression
models R2 are GA-BP > PSO > BP, where GA-BP is a combination of the genetic algorithm
and the BP neural network, PSO is a particle swarm optimization algorithm, and BP is a
traditional error back propagation algorithm. In terms of the algorithm search strategy,
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PSO has a stronger global search ability, GA-BP combines the global search of genetic
algorithm with the local search of BP, while BP relies more on the local search, which is one
of the reasons why the fitting effect of GA-BP is better than PSO and BP. To evaluate the
advantages and disadvantages of the algorithms more comprehensively, it is also necessary
to analyze them in combination with the MSE and MAE of the model. The comparison
results of the MSE of the model of the three algorithms are GA-BP < PSO < BP, and the
comparison results of the MAE are GA-BP < PSO < BP. The MSE reflects the accuracy of
the model, and the MAE reflects the stability of the model. The fact that the GA-BP is
better than the other algorithms in both indexes indicates that the model fitted by it is both
accurate and stable at the same time, and the GA-BP combines the genetic algorithm and
BP neural network, which gives it the ability to search for the global optimal solution as
well as carry out detailed local tuning, which may be the reason why it has the best overall
performance. The MSE of PSO is inferior to GA-BP but superior to BP, which indicates that
its fitting accuracy is better but its MAE is larger than that of GA-BP, and its stability is
slightly poorer than that of GA-BP. PSO relies on the population to iteratively search for the
global optimum but is unable to carry out detailed local tuning, which may cause its model
accuracy to be inferior to that of GA-BP. This may lead to its model accuracy not being as
good as GA-BP and its stability being slightly worse; meanwhile, BP relies too much on
local search and easily falls into the local optimum, so its model accuracy and stability are
both worse.

3.3.2. GA-BP Parameter Optimization

To obtain a more accurate GA-BP prediction model, the trial-and-error method was
used to study the number of hidden layer neurons, population size, and iteration number
of the model. Table 9 shows the influence of different numbers of neurons on the accuracy
of the model. With the increase in the number of neurons, the accuracy of the model
increases first and then decreases. Table 10 shows the influence of different population
sizes on the accuracy of the model. With the increase in population size, the accuracy of the
model increases first and then decreases. Table 11 shows the influence of different iterations
on the accuracy of the model. As the number of iterations increases, the accuracy of the
model increases first and then decreases. The results show that when the number of hidden
neurons is 9, the population size is 150, and the number of iterations is 200, the model has
higher accuracy and better prediction ability.

Table 9. Effect of the number of neurons on the accuracy of the model.

Value
R2 MSE MAE

SBR MER SBR MER SBR MER

3 0.8180 0.8269 1.7049 38,777.4200 0.9739 124.8300
4 0.8422 0.8296 1.5617 54,210.8800 0.9190 151.3200
5 0.9149 0.8369 0.7147 39,771.5900 0.5411 141.4400
6 0.9045 0.8872 0.7203 28,001.9100 0.5606 126.7800
7 0.9392 0.8826 0.4457 22,984.2700 0.3949 96.7060
8 0.9357 0.9059 0.5056 23,214.9600 0.3449 98.8310
9 0.9677 0.9701 0.2609 9520.4390 0.2615 57.6210

10 0.9235 0.8943 0.4807 27,517.5100 0.4005 102.0500
11 0.9003 0.8834 0.7077 28,375.1100 0.5014 115.2600
12 0.8706 0.8897 0.6581 22,633.1100 0.4786 107.7600
13 0.8606 0.8716 0.8225 30,916.0500 0.6006 100.1100
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Table 10. Effect of population size on model accuracy.

Value
R2 MSE MAE

SBR MER SBR MER SBR MER

25 0.8325 0.8597 1.2412 35,402.22 0.7804 107.5754
50 0.9389 0.8997 0.4503 27,862.13 0.4843 119.3024
75 0.8608 0.9225 1.1332 18,955.8 0.6646 78.8395
100 0.9206 0.9264 0.6238 18,222.21 0.3652 88.5078
125 0.9119 0.9113 0.6929 16,788.64 0.4636 96.9820
150 0.9765 0.9701 0.2094 5652.656 0.2564 56.8173
175 0.8986 0.9044 0.7971 23,358.52 0.4933 87.8477
200 0.8385 0.9275 1.2696 17,722.82 0.5367 71.7827

Table 11. Effect of different iterations on the accuracy of the model.

Value
R2 MSE MAE

SBR MER SBR MER SBR MER

100 0.8589 0.8251 1.2827 42,743.3500 0.7841 137.2596
150 0.8847 0.8892 1.1515 21,678.3500 0.7043 95.9713
200 0.9862 0.9667 0.0853 6979.6340 0.1622 61.7603
250 0.8804 0.9168 0.9402 20,344.9900 0.595 80.3930
300 0.8562 0.8214 1.2565 43,864.0800 0.7221 174.7358

3.3.3. Inversion of Parameters in GA-BP-GA

For the unknown nonlinear function, it is difficult to find the extreme value of the
function only through the input and output data of the function. Therefore, combined with
the nonlinear optimization ability of the genetic algorithm, the established neural network
model is used as the fitness function of the genetic algorithm to optimize the operating
speed of the machine, the depth of the burial, and the speed of the knife rollers by taking the
maximum straw compaction rate and the minimum machine resistance as the optimization
objectives. The number of evolutionary iterations of the genetic algorithm was set to 200,
the population size was set to 150, the selection function was set to normGeomSelect, the
coefficient was set to 0.6, the crossover coefficient was set to 2, and the mutation coefficient
was set to 0.1.

Figure 6 shows the fitness curve with the evolutionary generations. Initially, the GA
utilizes its population search property to make the fitness of the selected individuals plum-
met; subsequently, the GA carries out multiple crossover and selection processes, and the
fitness of the selected individuals generates a small positive change, gradually approaching
the target value; when the 27th selection generation is carried out, the fitness curve shows
a state of convergence, which indicates that the difference between the predicted value
and the target value is minimal. Through several selection cycles, when the number of
evolutionary iterations reaches the target value of 150, the GA stops the selection and
derives the individual with the closest fitness. After optimization, a set of machine working
parameter combinations was obtained: machine operating speed is 2 km/h, buried depth
is 190 mm, and working speed is 270 r/min.
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3.3.4. Model Evaluation

Using the optimized model, as shown in Figure 7, the MSE of the model is selected
for performance evaluation. From the diagram, it can be seen that the MSE of the model
shows a downward trend during the training process, which indicates that the effect of
model fitting training data is gradually improving with the training. The best performance
is obtained when training to the third step. At this time, the neural network training is
basically completed, which shows that the convergence speed of GA-BP training is fast
and stable, and the model can be used in the experiment. The training, verification, and
testing performance of GA-BP in this study is shown in Figure 8. It can be seen from the
figure that the correlation coefficient of training, verification, testing, and all data is close to
1, indicating that the model has a strong fitting effect and good generalization ability. The
correlation coefficients of the data are very close, indicating that there is no obvious over-
fitting or under-fitting. GA-BP performed very well in this study and obtained a model
with high precision and strong generalization ability, which can be used for subsequent
experimental research.
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3.3.5. Experimental Verification

The parameter combinations obtained by RSM and GA-BP were used for simulation
and field trials to verify the accuracy of the obtained parameter combinations, and three
replicated trials were conducted. The field test site was the experimental field of Jilin
Agricultural University. After 24 h of irrigation and soaking, the test was carried out after
the operation plot met the standard requirements of a ‘burying grass and burying stubble
tillage machine’. During the test, using a tractor as a power source to drive the paddy field
grader, the pull meter was used to measure the forward resistance of the machine, and
the average value of the stable operation stage of the machine was taken as the forward
resistance of the machine. The straw-burying rate was calculated by measuring the straw
mass ratio floating on the surface before and after the operation in the unit area. The
key parameters of the operating machine are shown in Table 12. The field test effect is
shown in Figure 9. Taking the average of the experimental results, the simulation results
showed that the straw burial rate was 93.47% and the forward resistance was 6487 N for
the parameter combinations of RSM, and the straw burial rate was 94.86% and the forward
resistance was 6352 N for the parameter combinations of GA-BP; the field experiments
showed that the straw burial rate was 92.86% and the forward resistance was 6518 N
for the parameter combinations of RSM, and the straw burial rate was 95.17% and the
forward resistance was 6249 N for the parameter combinations of GA-BP. The experimental
results show that the parameter combination optimized by GA-BP shows a more accurate
prediction performance.

Table 12. Machine operating key parameters.

Parameters Value

Machine size (L × W × H)/mm 3068 × 1004 × 1175
Working width/mm 2800

Number of discs 34
Number of spring teeth 76

Matching traction power requirement/kw ≥66
Hydraulic cylinder extension/mm 100

Diameter of the grass pressure disk/mm 500
Depth of burial/mm ≥160
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4. Discussion

Compared with the traditional analysis method based on RSM, using the GA-BP algo-
rithm to analyze and process the data. Despite its higher computational complexity and
algorithm intricacy, the GA-BP model exhibits robust generalization capabilities. It can
effectively address the nonlinear relationships between variables, consequently enhancing
the accuracy of numerical simulations [15]. From the theoretical basis of the two models, the
RSM experimental analysis method is based on statistical experimental design, constructing
an approximate model (usually a quadratic polynomial model) to analyze and optimize
the relationship between the response variable and independent variables. Its effectiveness
relies on the accuracy of the response surface model and may not be suitable for complex
systems with strong nonlinear relationships. GA-BP is a black box model. The model
construction process involves the steps of population initialization, selection, crossover,
and mutation of the genetic algorithm. The neural network training process optimizes
model parameters and network structure to achieve optimal prediction performance. The
GA-BP algorithm primarily focuses on analyzing data, especially in cases where the data
relationships are unknown or exhibit a high degree of nonlinearity. Researchers in the
field have utilized neural network models to compare the RSM analysis method for data
analysis, with results demonstrating that the neural network model offers superior predic-
tive capabilities. [23]. In this study, the key statistical indicators such as the determination
coefficient (R2), mean absolute error (MAE), and mean square error (MSE) of the model
prediction were used. The results showed that the GA-BP model showed the smallest error
values in both MAE and MSE, indicating that the GA-BP model had significant advantages
over the RSM method in terms of prediction accuracy and stability. These results align with
previous research conducted by MA [25]. However, there are few related studies on the
processing of complex data in the process of discrete element simulation operation param-
eter optimization. This study investigates the feasibility of utilizing GA-BP model data
to analyze test results of disc spring–tooth-combined paddy field graders by comparing
various neural network machine learning models and RSM analysis methods. The results
demonstrate that the neural network method can be used in the field of working parameter
prediction. This method can provide a reference for the optimization of related working
parameters in other fields. Figure 10 shows the comparison between the measured values
and the predicted values of the two models of GA-BP and RSM. The evaluation index of the
GA-BP model in the figure is better than that of RSM in terms of model accuracy, stability,
and fitting degree. It shows that the GA-BP algorithm has achieved a better fitting effect
in this study and can construct a model with higher accuracy and smaller error, which is
consistent with the research results of Bu and Nanvakenari [34,35].
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5. Conclusions

In this study, through the comparison of different neural network machine learning
models and RSM analysis methods, the feasibility of using GA-BP model data to analyze
the test results of disc spring–tooth-combined paddy field grader is explored. The test
results show that the neural network method can be used in the field of working parameter
prediction. This method can provide a reference for the optimization of related working
parameters in other fields. The main conclusions are as follows:

(1) The discrete element software is used to establish a simulation model to simulate
the straw-burying process of the disc spring–tooth-combined paddy field grader.
The single-factor test was carried out, and the operating speed of the machine, the
operating depth of the burying mechanism, and the speed of the knife roller were
used as the test factors. The straw-burying rate and the forward resistance of the
machine were used as indicators to optimize the range of test factors. The BB test was
carried out, and the data were fitted and analyzed by RSM to explore the influence of
the interaction of various factors on the operation effect.

(2) Three machine learning regression models are compared: standard back propagation
neural network (BP), back propagation neural network optimized by genetic algo-
rithm (GA-BP), and particle swarm optimization algorithm (PSO) to evaluate their
performance in the prediction of working parameters of disc spring–tooth-combined
paddy field grader. The evaluation criteria include the determination coefficient (R2),
mean absolute error (MAE), and mean square error (MSE). The results show that the
GA-BP model has the lowest error value in both MAE and MSE indicators, and its R2

value is closest to 1, indicating that the model is superior to BP and PSO models in
terms of prediction accuracy and stability. The GA-BP regression model will be used
as a prediction model for the working parameters of the disc spring–tooth-combined
paddy field grader.

(3) The optimized GA-BP model is used for parameter inversion, and the parameter
combination obtained by GA-BP and RSM models is compared. The analysis results
show that the GA-BP model is superior to the RSM model in terms of model accuracy,
stability, and data fitting. The results validate the feasibility of using the GA-BP model
to optimize the working parameters of the machine, and this method can provide a
reference for the optimization of related working parameters in other fields as well as
the calibration of discrete element simulation parameters.
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