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Abstract: Over the last decade, a large number of studies have been conducted on heavy metals and
magnetic susceptibility (χlf) measurement in soils. Yet, a global understanding of soil contamination
and magnetic responses remains elusive due to the limited scope or sampling sites of these studies.
Hence, we attempted to explore a pollution proxy on a global scale. Through a meta-analysis of data
from 102 published studies, our research aimed to provide a worldwide overview of heavy metal
pollution and magnetic responses in agriculture soils. We mapped the geographic distribution of
nine heavy metals (Cr, Cu, Zn, Pb, Ni, As, Cd, Mn, and Fe) in agricultural soils and explored their
pollution sources and contributions. Since 2011, The accumulation of heavy metals has escalated,
with industrial activities (31.5%) being the largest contributor, followed by agricultural inputs (27.1%),
atmospheric deposition (22.66%), and natural sources (18.74%). The study reports χlf ranging from
6.45 × 10−8 m3/kg to 319.23 × 10−8 m3/kg and χfd from 0.59% and 12.85%, with the majority of the
samples being below 6%, indicating heavy metal influence mainly from human activities. Pearson’s
correlation and redundancy analysis show significant positive correlations of Pb, Zn, and Cu with χlf

(r = 0.51–0.53) and Mn and Fe with χfd (r = 0.50–0.53), while Pb, Zn, Cu, and As metals were shown
to be key factors of variation in magnetic response. The average heavy metal pollution load index of
2.03 suggests moderate global agricultural soil pollution, with higher heavy metal contamination
in areas of high χlf. Regression analysis confirms soil is considered to be non-polluted below χlf of
26× 10−8 m3/kg and polluted above this threshold, with all contamination factors of metals showing
a linear correlation with χlf (R = 0.72), indicating that a significant relationship between χlf and the
geochemical properties of soils continues to exist on a global scale. This study provides new insights
for large-scale agricultural soil quality assessment and magnetic response.

Keywords: agricultural soil; heavy metal; magnetic susceptibility; RDA; PLI; globe

1. Introduction

Soil contamination by heavy metals (HMs) is a globally acknowledged environmental
concern [1]. Over the last three centuries, industrialization, synthetic chemical production,
rapid urbanization, and intensified agriculture have heightened the exposure of soil to
HMs from human activities, leading to their accumulation [2,3]. Currently, numerous
countries, including the United States, Europe, Australia, China, and India (refs. [4–9]),
report varying degrees of soil HM pollution. Priority pollutants typically include cadmium,
chromium, arsenic, lead, copper, zinc, nickel, and other HMs, known for their toxicity,
bioconcentration, and persistence [10,11]. For example, agricultural soils in northern
Italy and topsoil in Mexican cities have exhibited excessive levels of Pb, Zn, Cu, and
As, surpassing pollution thresholds and threatening human health [12,13]. Influenced
by agricultural soil physicochemical properties, external inputs, and biological factors,
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there are numerous sources of HM enrichment, and the spatial pattern of HMs in soil
shows a high degree of heterogeneity [14]. Therefore, identifying the sources of these
challenges and analyzing their collective accumulation patterns is challenging. Globally,
the primary sources of soil HMs primarily stem from natural sources (e.g., soil parent
materials) and various anthropogenic sources, including metal ore mining and smelting,
agricultural and horticultural practices, sewage sludge treatment, fossil fuel combustion,
the metallurgical industry, electronics, chemical, and other manufacturing sectors, waste
disposal, recreational shooting and fishing, and military operations and training [15]. The
elucidation of the origins of geochemical elements, such as Cr, Cu, Zn, Pb, Ni, As, and
Cd, which are pivotal indicators in particular parent materials, soil action, and processes,
relies on their geochemical behavior within the soil environment [16]. This behavior
encompasses aspects such as mobility, organic complexation, and adsorption by inorganic
colloids, along with the source characteristics including mineral properties, elemental
composition, and susceptibility to weathering, as well as the general environmental context
of the study area [17,18]. The interpretation of these geochemical studies, however, is
markedly challenging in pinpointing sources due to the interplay between anthropogenic
and natural factors [19]. A detailed understanding of the geographic distribution of HM
concentrations across different regions, the identification of source contributions, and the
extensive heterogeneity in soil magnetism are critical for the assessment of the risk of HM
contamination, but much remains to be done in this area.

In the investigation of soil contamination by HMs, researchers often employ a com-
bination of geochemical elemental analysis and environmental magnetic techniques to
determine the extent of contamination in soils and sediments [20–28]. The environmental
magnetic method is simply the study of magnetic mineralogy in natural and man-made
samples by measuring the induced magnetization and remanent magnetic response of
natural and man-made samples when they are exposed to a magnetic field. This approach
not only applies the measured magnetic parameters to pollution screening and monitoring
but also effectively quantifies and characterizes particulate matter from industrial, traffic,
and municipal sources and precisely identifies the source of pollutants while tracking
their development history [29–32]. It significantly contributes to understanding various
soil-related issues, such as sedimentary and diagenetic processes [33–36]. Previous research
has led to the creation of national-scale topsoil magnetic databases in countries including
Australia, Bosnia and Herzegovina, Bulgaria, and France, employing advanced geostatistics
to explore the potential of magnetic features as indicators of specific soil chemical and
physical properties [37–41]. Furthermore, recent studies have increasingly focused on the
semi-quantitative assessment of contamination levels for pollutants like Cu, Pb, Zn, Cr,
V, and Mn using magnetic parameters. For example, Hanesch et al. assessed magnetic
susceptibility in extensive soil areas of eastern Austria to track HM contamination [42].
Nele Delbecque et al. examined 103 soil horizons in Ghent, Belgium, uncovering differences
in anthropogenic and diagenetic contributions in soils and demonstrating that volume-
specific magnetic susceptibility effectively predicts HM enrichment [19]. Similarly, research
in Mexico and Poland has linked magnetic properties to HM concentrations (Fe, Pb, Cu,
Zn, Ni, Cr, and V), providing empirical evidence that anthropogenic Fe/ferromagnetic
minerals contribute to increased magnetic susceptibility values in topsoil, indicative of a
symbiotic relationship [13,43]. Chaparro et al. investigated magnetic screening and heavy
metal pollution in soils from the Marambio Station in Antarctica, offering insights into
the magnetic responses to heavy metal pollution in a unique environment. Their research
revealed a significant reduction in pollution as a result of national remediation efforts.
These studies contribute valuable insights to our understanding of soil contamination and
magnetism [26,44]. In addition to traditional analytical methods, recent advancements
have introduced the use of fuzzy models in magnetic monitoring. For instance, a study
by Chaparro proposed a magnetic index (IMC) that leverages fuzzy clustering, fuzzy
arithmetic, and a fuzzy inference system to analyze relationships between the IMC and
PLI, suggesting a promising approach for broader application in environmental matrices
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such as soils and sediments [45]. The application of magnetic susceptibility measurement
techniques for the characterization of soils and geochemistry has consistently been a focal
point of research. Despite this, the majority of research linking soil HM contamination
to magnetic susceptibility has been limited to small-scale studies or those with restricted
sampling sites, primarily due to constraints in large-scale soil sampling and analysis capa-
bilities. As a result, a comprehensive understanding of this relationship on a global level
remains elusive.

The magnetic parameters mentioned in this study include χlf (low-frequency magnetic
susceptibility) and χfd (frequency-dependent susceptibility). We employed correlation anal-
ysis (CA) to investigate the relationship between magnetic parameters and HMs, discussed
the commonality of HM pollution sources, and combined redundancy analysis (RDA) to
elucidate the impact of different magnetic response sampling points on the accumulation of
HMs in soil. This analysis enabled us to identify the key factors responsible for variations
in magnetic response. In addressing soil pollution sources, source apportionment analysis
frequently estimates the quantity, proportion, and nature of these sources. Researchers
have employed various techniques, including PCA, APCS/MLR, UNMIX, and PMF, for
source identification in HM contamination [33,34,46–51]. Prior research has employed
partition-computing-based Positive Matrix Factorization (PC-PMF) to showcase its efficacy
in conducting source assignment calculations on a large scale [52]. The findings underscore
the considerable benefits of partitioning calculations in scenarios with spatial heterogeneity
from multiple sources. This is of great value in expanding the application of receptor
modeling, especially in large-scale fields. For this study, we reviewed 102 scientific papers
from a database. The vast database of agricultural soils presents significant opportunities
for broadening receptor modeling applications, offering fresh perspectives on the magnetic
and geochemical characterization of soils.

In this study, we summarized the published statistical results with the aim of (1) ex-
ploring the geographic distribution characteristics of agricultural soil HMs, analyzing the
reasons for the geographic differences, and quantifying their regional source contributions
using PC-PMF; (2) characterizing the magnetic properties of soils in the globally delineated
regions to understand the magnetic heterogeneity of the agricultural soil system; (3) reveal-
ing the relationship between different HM concentrations and magnetic susceptibility by
Pearson’s and redundancy analysis (RDA), as well as the factors affecting the magnetic
response differences; and (4) calculating the contamination factor (CF) and pollution load
index (PLI) for each element, establishing the regression equations between the CF and the
logarithmic magnetic susceptibility (lnχlf), and analyzing the differences between the areas
sampled by the high-value and low-value χlf, to determine the magnetic parameter as the
contamination of HM proxies and reveal differences in anthropogenic, diagenetic, and soil
contributions to soil neutralization.

2. Materials and Methods
2.1. Data Extraction

A thorough literature review was performed using the Web of Science and Elsevier
databases, employing search terms such as ‘agricultural soil’ or ‘farmland soil’, ‘heavy
metal’, and individual elements (Cr, Cu, Zn, Pb, Ni, As, Cd, Mn, or Fe) in conjunction
with ‘magnetic susceptibility’. For inclusion in this meta-analysis, studies were required
to satisfy specific criteria: (1) conducted within the timeframe of 2004 to 2023: this period
is chosen to reflect recent heavy metal pollution trends and to ensure comparability of
data from standardized environmental monitoring practices; (2) field studies examining
topsoil at depths of 0–20 cm: focusing on surface soil captures the initial zone of heavy
metal accumulation and dynamics due to human and environmental factors; (3) provision
of detailed information on the study area’s size, latitude and longitude and the number of
soil sampling sites: these details enable researchers to assess the representativeness of the
study area, enhance the reproducibility of the data and contextual analysis, and facilitate
comparisons in similar geographic settings; and (4) a sample size exceeding 30: a larger
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sample size ensures statistical reliability and the generalizability of the findings, reflecting
robust data collection in the area of study (Figure 1). The geographical locations of the
studies included in the meta-analysis are shown in Figure 1.
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Figure 1. Geographical location of the studies included in the meta-analysis.

In order to explore the regional differences in the distribution of HMs in more detail,
the world was divided into 12 regions based on the United Nations Statistics Division [53].
These regions are based on similar socio-economic parameters of countries belonging to
the same region. This meta-analysis synthesized a total of 429 independent observations
from 102 studies (Table 1).

Table 1. Number of country groups and reports used for meta-analysis. The exact link for Our World
in Data’s region definitions is: https://ourworldindata.org/world-region-map-definitions.

Region Abbreviation for Region or Country Number of Records

Australia and New Zealand ANZ 18
Europe EU 71
Africa AF 26

Northern America—USA USA 36
Rest of America ROA1 21

Central America—Caribbean CA 14
Middle East ME 15

Southern America—Brazil BR 25
Southern Asia—India IN 37

Northern China NC 79
Southern China SC 70

Rest of Asia ROA2 17
World - 429

2.2. PC-PMF Model

Positive Matrix Factorization (PMF), developed by Paatero and Tapper in the early
1990s [54], is a factorization method that quantifies the contribution of source composition to
a given sample F. Central to the PMF model is establishing a chemical mass balance between
the concentrations of various species and their source profiles, as detailed in Equation (1).
In this equation, P denotes the number of factors, F signifies the species within each source
profile, and G represents the mass contribution of each factor to individual samples. Our

https://ourworldindata.org/world-region-map-definitions


Agriculture 2024, 14, 702 5 of 20

analysis employed specific equations, in line with Environmental Protection Agency (EPA)
PMF5.0 guidelines, to assign HMs to their respective sources.

Xij = ∑p
k=1 GikFik + Eij (1)

where Xij is the matrix of sample concentrations; Gik is the contribution of each factor to
any given sample; Fij is the matrix of P-source chemical compositions; and Eij is the matrix
of residues for each sample. The contributions of the factors and the objective function
‘Q’, which is essential for minimizing the PMF model, are derived from these profiles and
defined as follows:

Q =
n

∑
i=1

m

∑
j=1

(
Eij

Uij

)2

(2)

where Q is the sum of the squares of the differences between the original dataset (Xij) and the
PMF output (Gij Fij) weighted by the measurement uncertainty (Uij). For a comprehensive
understanding of the PMF receptor model, further details can be found in Paatero et al.
and Brown et al. [55].

PC-PMF is a computational method developed from the PMF model, introduced by
Jin Wu et al., and it possesses substantial advantages when dealing with large-scale or
geographically dispersed datasets. Previous research has utilized Partitioned Computation
of Positive Matrix Factorization (PC-PMF) to demonstrate its effectiveness in extensive
source allocation calculations [52]. In this model, data are divided into several partitions or
subsets, each representing a different geographical area or type of data. The PMF model
is then applied independently to each subset, which helps in better understanding the
regional characteristics or contributions of local sources. The world was segmented into
12 countries and regions following the United Nations Statistics Division (Table 1). This
segmentation facilitated the examination of HM sources in each of the 12 sub-regions
and the entire region collectively. The contribution of primary sources in each zone to
the overall study area was ascertained by computing each zone’s contribution and then
applying a weighting based on the ratio of the number of reports in each zone to the total
global document count. The weighting calculation formula is

Gk = ∑n
i=1 Gmk

Am

A
(3)

where Gk is the contribution of the kth source factor to the whole region, Gmk is the
contribution of the kth source factor to the mk region, Am is the number of reports in the mk
region, and A is the number of reports in the whole study region. This calculation method
was proposed by Jin Wu [52], whose study weighted and summed the area of each region
as a proportion of the entire study area, and our calculation method is slightly different
in that weighting, and summing the number of documents in each region as a proportion
of the total number of documents globally is a more accurate method due to the uneven
distribution of sampling points in our study.

2.3. Multivariate Statistical Analysis

The Pearson correlation coefficient is a statistical method used to measure the strength
and direction of the linear relationship between two quantitative variables. Typically repre-
sented by r, its value ranges from −1 to +1, with values closer to 1 or −1 indicating a stronger
relationship [56]. Based on this principle, we examined the correlations of 11 variables (Cr,
Cu, Zn, Pb, Ni, As, Cd, Mn, Fe, χlf, and χfd) through Pearson correlation analysis, aiming to
cluster environmental elements with analogous distribution patterns and discern metals of
distinct origins based on their links to potential sources [13,24,25,29,30,33,36,37,44,57].

Redundancy analysis (RDA) is a widely used multivariate technique in environmen-
tal statistics, integrating aspects of Principal Component Analysis (PCA) and Canonical
Correlation Analysis (CCA). In order to understand the relationship between the mobility
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(response variable) of metals (classes) in soil, sediment, waste, and road dust and their
total concentration and physicochemical properties, redundancy analysis (RDA) has been
successfully applied in environmental research [58–63]. It effectively explores the relation-
ships between environmental variables and elemental composition, enabling researchers
to pinpoint and quantify key environmental factors. The resulting ordination diagram
displays the HMs as vectors whose magnitude and angle indicate the statistical significance
and magnitude of the correlation with the ordination axis or another vector [55]. In this
study, since the χlf data conformed to a normal distribution we employed the quartile
method to categorize sampling points into four groups based on χlf intensities: Q1 (0–25%),
Q2 (25–50%), Q3 (50–75%), and Q4 (75–100%). See Table 2 for specific sampling point
groupings. Our analysis utilized a range of heavy metal elements. We constructed a linear
model with HMs (Cr, Cu, Zn, Pb, Ni, As, Cd, Mn, and Fe) as explanatory variables and the
categorized χlf (Q1, Q2, Q3, Q4) as response variables. This model sought to uncover the
principal factors influencing magnetic response and elucidate how heavy metal elements
impact these variations.

Table 2. Table shows grouping of soil magnetic susceptibility sampling points.

Group of χlf Q1 Q2 Q3 Q4

Range (×10−8 m3/kg) 6.45~112.39 112.39~159.18 159.18~214.21 214.21~319.23

The statistical analyses, including Pearson correlation and RDA, were conducted using
the R software (version 3.6.1).

2.4. Contamination Assessment and Regression Analysis

The contamination factor (CF) is an environmental metric used to assess the level of
pollution in soil, sediment, or water. It quantifies how much a particular contaminant’s
concentration in the environment exceeds the background or baseline concentration of that
substance. It is calculated using the following equation [64]:

CF =
Cheavymetal

Cbackground
(4)

where CHM is the concentration of the first metal in the soil, and Cb is the background value
of the soil based on the data reported from different regions as detailed in Table A1.

The pollution load index (PLI) is a measure used to provide a cumulative indication
of the overall level of pollution or contamination in a given area, typically soil or sediment.
It is calculated by aggregating the contamination factors (CFs) of multiple pollutants. The
PLI for the soil samples was determined using the CF values of specific HM, including Cd,
Cr, Cu, Pb, and As, following this formula [64]:

PLI = n
√

(CF HM1 × CFHM2 × CFHM3 . . . × CFHMn) (5)

where HM1, HM2. . .HMn represent specific HM contaminants; specifically, n = 5 (Pb, Cu, Zn,
Cd, As). As the classification standards by Liu et al. (2016) are more detailed and comprehensive,
we decided to adopt these in our research: PLI ≤ 1, non-pollution; 1 ≤ PLI ≤ 2, slight pollution;
2 ≤ PLI ≤ 3, moderate pollution; and PLI ≥ 3, heavy pollution [65].

Then, we explored the relationship between log-normal low-frequency magnetic sus-
ceptibility (lnχlf) and the contamination factor (CFHM) for these metals using a segmented
linear regression model. This model incorporated a total of 6 variables: magnetic variables
lnχlf, CF variables CFCd, CFCr, CFCu, CFPb, and CFAs. In this study, data analysis was
conducted using Origin software (Version 2023, OriginLab Corporation, Northampton,
MA, USA) and results were assessed at a 0.05 significance level. For each heavy metal, the
optimal breakpoint (BPi) was determined to distinguish between the approximate regres-
sion level (CFi = γi) and the increasing regression trend (c), by maximizing coefficients of
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statistical interpretation and conducting significance testing (p < 0.05). log-normal magnetic
susceptibility thresholds (lnχlf, thres) were calculated to identify potentially uncontami-
nated samples (where lnχlf ≤ lnχlf, thres). This involved setting the magnetic susceptibility
threshold (lnχlf, thres) to eBPmin and rounding to the nearest integer, with BPmin chosen
as [19]:

BPmin = min[BPCd, BPCr, BPCu, BPPb, BPAs] (6)

3. Results
3.1. Geographical Content and Source of HMs

Table 3 presents the total database of global agricultural soil HM contents after remov-
ing the outliers, the arithmetic and geometric mean contents of HMs were Fe > Mn > Zn >
Cr > Cu > Ni > Pb > As > Cd in descending order, and our results coincide with the global
HM review studies of soil in 2001 and 2011 [66,67].

Table 3. Comparison of this study with other global review studies of soil heavy metals (mg/kg).

Cr Cu Ni Pb Zn As Cd Mn Fe

2001 [66] 42 13-24 18 25 62 4.7 0.35 437 -
2011 [67] 59.5 38.9 29 27 70 6.83 0.41 488 22,979

This study

Mean 64.84 43.57 35.54 32.52 74.23 10.69 0.58 523.24 22,495.7
Min 3.73 2.77 1.52 1.98 2.17 0.36 0.01 40.59 102
Max 795.63 565 337.65 362.20 625.23 71.27 9.6 2459.91 75,235
SD 86.32 136.46 47.64 64.44 100.96 10.34 0.97 221.48 16,245.52

3.1.1. Geographical Distribution Characteristics of HMs

The collected data show the global geographical distribution of HMs as shown in
Figure 2. It is particularly noteworthy that HM concentrations in the Indian region are
generally higher compared to other countries and regions [68–70]. Zn demonstrates min-
imal variation across different areas, whereas the highest concentrations of Cr, Cu, and
Zn are observed in India, corroborating the findings of Adimalla et al. [8]. Additionally,
Mn and Ni are present in notably high concentrations in India. Ni and Pb exhibit little
regional variation, with the most elevated levels recorded in Africa. In contrast, the United
States shows the highest concentrations of Cd and As, aligning with the reports of HM
pollution in other scientific literature [4]. Soil HM concentrations in the United States are
notably higher compared to other industrially developed regions such as Europe. As a
leading global economy, the extensive industrialization and urbanization in the United
States have led to substantial industrial and traffic emissions, predominantly involving
metals like Pb, Cd, Cr, and Zn [71]. India, currently an emerging economy, is undergoing
a period of rapid development. However, in comparison to certain developed countries,
India exhibits relative deficiencies in waste treatment and management, leading to an
increased influx of HM into the soil [8,72,73]. Consequently, the concentrations of HM
in Indian soils are typically elevated, particularly for Zn and Cr, as depicted in Figure 2.
The prevalence of HM contamination in India may be partly attributed to inherently high
local background levels, often observed in regions with naturally higher concentrations
of specific HM in the earth’s crust. India’s crustal background levels are notably higher
than in other areas, contributing significantly to the elevated HM concentrations in its soils.
Africa, rich in mineral resources, is a key global producer of various metals and minerals.
In some African countries, unregulated mining activities, compounded by inadequate local
legal and regulatory frameworks, have resulted in elevated concentrations of Pb, Ni, and
Cd [74].

Bowen posited that for an element mined more than ten times, its natural cycling rate
should be considered a potential environmental pollutant [75]. Consequently, metals like
Cd, Cr, Pb, and Zn represent significant ecological risks, as their extraction rates greatly
exceed their natural cycling rates. In conclusion, the levels of these HMs vary considerably
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across different regions, influenced predominantly by a combination of natural background
factors, such as soil physicochemical properties, and human activities, including mining,
transportation, and industrial and agricultural practices. In addition to natural conditions,
the economic structure, social dynamics, and environmental policies of each country and
region play crucial roles in determining the types and distribution of HMs in agricultural
soils, thereby influencing the accumulation of these metals.
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3.1.2. Quantifying the Source Contributions of HMs Using PC-PMF

The predominant sources of HMs are anthropogenic and lithogenic [76]. In order
to derive quantitative insights into the contributions of various sources, essential for
effective pollution control, we employed the partition-computing-based Positive Matrix
Factorization (PC-PMF) model. This approach enabled us to identify the principal sources
of HMs and accurately quantify their respective contributions.

The results from each of the 12 sub-datasets in the Positive Matrix Factorization
(PMF) receptor model were analyzed, as depicted in Figure 3. The model’s execution
and the subsequent analysis of results were guided by methodologies established in prior
research [33,46,47,52,77,78]. This study identified four primary emission sources: industrial,
agricultural, atmospheric deposition, and natural sources. These sources are known to
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account for the majority of HM emissions and are distinguishable by their respective metal
signatures. Hence, they were chosen as the main contributors to HM emissions. Source
identification was corroborated using a multifaceted counterfactual method (referenced
in [52]), rather than relying on a single factor. To differentiate between natural and an-
thropogenic sources of contamination, background soil values specific to each region were
employed. Table A1 elaborates on these environmental background values.
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The predominant factors for uncontaminated HM emissions are natural sources, which
may be further impacted by anthropogenic activities, leading to increased anthropogenic-
related emissions. Building on this, our analysis of the 12 sub-datasets identified several
potential human-related sources, including local non-ferrous metal industries, agricultural
activities, and transportation emissions, as illustrated in Figure 4a. The results indicate the
average contributions of various factors to HM emissions across the 12 regions. According
to the partition-computing-based Positive Matrix Factorization (PC-PMF) model, indus-
trial activities contribute 31.18% to global HM emissions, followed by agricultural inputs
(27.56%), atmospheric deposition (23.16%), and natural sources (18.1%). These findings
align with those from the PMF model, as detailed in Figure 4b,c, thereby affirming the
PC-PMF model’s accuracy in source apportionment. Nevertheless, the contribution from
individual sources varied markedly across different regions. Figures 3 and 4 reveal that
in certain regions, industrial activities significantly contribute to HM emissions, predom-
inantly in areas of economic development or rapid growth. Notably, in Europe (36.2%),
Southern China (38.4%), Northern China (34.2%), the USA (33.4%), the Caribbean (31.2%),
and the Middle East (30.5%), industrial emissions play a substantial role in the contam-
ination of soil and water bodies with HMs. The expansion of industries, particularly in
sectors like heavy industry and mining, results in the release of substantial quantities of
waste containing toxic HMs, including lead, mercury, cadmium, and arsenic. Agricultural
activities are identified as significant contributors to soil pollution in India (32.9%), North
China (32.6%), Africa (30.3%), and the Caribbean (30.3%), primarily due to chronic sewage
irrigation and inappropriate fertilizer use. In these regions, agricultural irrigation often
employs inadequately treated industrial and domestic wastewater, leading to the accu-
mulation of HMs and other hazardous chemicals in the soil [48,49,79]. Furthermore, the
excessive or improper application of fertilizers exacerbates soil contamination, particularly
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with fertilizers containing elements like cadmium, lead, and mercury. This accumulation
not only diminishes soil biological activity but also presents a severe risk to crop safety and
human health [59,61,80]. The formation of soil matrices, comprising the original materials
and processes involved in soil development, is acknowledged as a significant source of HM
contamination in soils, notably in Africa (31.7%) and Australia and New Zealand (28.8%).
In these regions, soils inherently possess elevated concentrations of HMs, including lead,
cadmium, and arsenic. This phenomenon is commonly linked to geological activities,
such as volcanic eruptions and rock weathering. These natural processes facilitate the
liberation of HMs from the soil matrix, leading to their accumulation in the topsoil [65].
Atmospheric deposition related to transportation has been identified as the principal cause
of soil pollution in Brazil (33.1%), India (37%), South America (31.3%), and China (30.1%).
The rapid urbanization and escalating number of motor vehicles in these regions contribute
to substantial tailpipe emissions [81,82]. These emissions encompass a variety of pollutants,
including nitrogen oxides and particulate matter, which, when transported atmospherically,
are ultimately deposited in the soil. This process significantly elevates the concentration of
hazardous substances in the soil [67]. This increase in national motor vehicle numbers and
the escalating issue of tailpipe emissions necessitate targeted interventions.
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3.2. Magnetic Parameters

Magnetic susceptibility is a useful proxy for estimating the concentration of ferrimagnetic
minerals in soil, as outlined in previous studies. In the data we collected, χlf varied from
6.45 × 10−8 m3/kg to 319.23 × 10−8 m3/kg, with an average value of 72.56 × 10−8 m3/kg
(Figure 5). Meanwhile, the sample standard deviation is 119.21 × 10−8 m3/kg. The total
magnetic susceptibility (χlf), encompassing ferrimagnetic, antiferromagnetic, and para-
magnetic minerals [21,25,83,84], was observed to be highest in AF, followed by the USA
and IN, with ANZ, ME, and ROA1 exhibiting lower levels (Figure 5). The detection of
superparamagnetic (SP) particles in soil is inferred from χfd measurements. The χfd varied
between 0.59% and 12.85%, with an average value of 3.87% and a standard deviation of
5.32%. The highest average value, exceeding 6%, was observed in BR, followed by CA and
ME (Figure 5).
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Previous research indicates that soil χfd exceeding 6% suggests a substantial presence
of superparamagnetic particles, which are sub-ferromagnetic minerals formed through pe-
dogenesis. A high χfd generally denotes that the magnetic particles originate predominantly
from natural weathering and soil formation processes, with minimal human interference.
Conversely, reduced χfd, particularly below 6%, points to a greater influence of human ac-
tivities on the magnetic particles [24]. In the studies we collected, 76.4% of the samples had
χfd below 6%, signifying that the magnetic particles in these soils are primarily affected by
human activities. Soil formation typically produces secondary magnetic minerals, leading
to simultaneous increases in χlf and χfd. Magnetic particles resulting from human activities
are often associated with HMs. Nonetheless, it has been proposed that χfd may decrease
in contaminated soils, while χlf increases [85]. The correlation between χlf and χfd in the
samples we collected was not substantial (as indicated in Figure 6a), aligning with previous
research findings [21,26,28]. Consequently, we suggest that anthropogenic activities may
modify the magnetic properties of soil in certain areas without necessarily introducing
HM contamination.
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3.3. Correlation between Magnetic Susceptibility and HMs
3.3.1. Pearson’s Correlation Analysis

Figure 6a shows Pearson’s correlation coefficient (PCC) between soil HMs and mag-
netic parameters, revealing a positive correlation across all HMs and χlf. Specifically, a
moderate positive correlation was noted with Cu (r = 0.53, p < 0.001), Zn (r = 0.51, p < 0.001),
and Pb (r = 0.51, p < 0.001). Ni, As, Cd, and Mn were weakly correlated with χlf (r of
0.26–0.38, p < 0.001). It can be seen that the χlf is a potentially effective indicator for the
detection of HMs in soil, particularly for Cu, Zn, and Pb. HMs and magnetic minerals
can be concurrently enriched in soils through similar geochemical processes, influenced
by both natural and anthropogenic factors, resulting in a notable correlation between
them, suggesting their coexistence in soils influenced by human activities. The study con-
cludes that the presence of Cu, Zn, and Pb in soil is predominantly due to anthropogenic
sources [52,77,78]. The χfd showed a positive correlation with Fe (r = 0.50, p < 0.001) and Mn
(r = 0.53, p < 0.001). The weak correlation between χfd and HM concentrations implies that
these elements are largely from anthropogenic origins. In contrast, a significant positive
correlation between χfd and HMs suggests that these elements predominantly originate
from natural soil-forming processes [86,87]. Consequently, the predominant sources of
the seven other HMs (Cr, Cu, Zn, Pb, Ni, As, and Cd) in soil are various anthropogenic
activities, such as industrial production, motor vehicle exhaust emissions, and agricultural
inputs, which generate substantial amounts of magnetic particulate pollutants. Fe and Mn
are mainly sourced from natural soil-forming processes [67].

In the correlation analysis of HMs, Zn demonstrated a notably strong positive corre-
lation with Cu (r = 0.78, p < 0.001) and Pb (r = 0.77, p < 0.001). This suggests that Cu, Zn,
and Pb share similar geochemical behaviors and contamination sources, primarily linked
to transportation. Additionally, there was a significant positive correlation between Cr
and Ni (r = 0.61, p < 0.001), as well as between Fe (r = 0.50, p < 0.001) and Mn (r = 0.53,
p < 0.001) (Figure 6a), indicating that these metal pairs may originate from similar sources.
In contrast, other HMs showed weaker or no correlations, pointing to different sources of
contamination. It is crucial to recognize that the interactions among HMs are intricate and
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influenced by a multitude of factors; therefore, Pearson’s coefficient alone may not yield a
comprehensive understanding of these relationships [57].

3.3.2. Redundancy Analysis

In order to further understand the association between χlf intensity and HM concen-
trations at different sampling points, the χlf intensity as a function of indicator variables
was investigated using the statistical method redundancy analysis (RDA). In this study, the
main comparative analysis was used to classify the soil χlf sampling sites into four groups
based on the quartile method, Q1, Q2, Q3, and Q4, to investigate the indicative roles of the
sampling sites with different χlf intensities in the accumulation of HMs. The results of the
RDA showed that the elements of Pb, Zn, Cu, and As were the key factors that contributed
to the differences in the response of the different intensities of the χlf (Figure 6b). The
first and second axes explained 42.18% and 24.12% of the variance of the four subgroups,
respectively (Figure 6b). The positive correlation between Ni and Cu at the Q4 sampling
site, along with the acute angle between the Q3 sampling site and both Pb and As, suggests
that Pb, As, and Cu significantly affect the magnetic response of sites Q3 and Q4. This pat-
tern indicates that the Q3 and Q4 sites likely experience substantial industrial and mining
activities. Conversely, the Q2 sampling site, being close to Zn and forming an obtuse angle
with other metals, reveals that Zn notably influences the magnetic response at this location.
The prevalence of Q2 sites in agricultural countries hints at severe agricultural pollution.
Furthermore, the correlation matrix shows a strong association of χlf with Pb, Zn, and Cu,
confirming the metals present at the Q2, Q3, and Q4 sampling points are highly sensitive
to the χlf. Similarly, the Q1 sampling site is observed to have a positive correlation with
both chromium Cr and Cd and lies proximate to Fe. Considering the negligible correlation
between Fe and χlf as presented in Figure 6a and the fact that the majority of soil Fe(H)
oxides possess weak magnetic properties (being either antiferromagnetic or paramagnetic),
it is likely that the Fe observed here primarily originates from soil-forming processes rather
than anthropogenic sources. In general, the ferromagnetic form accounts for a lower content
in soils, typically less than 1% [66], reinforcing the pedogenetic perspective of Fe’s presence
in these sampling sites. These observations suggest that the enhanced accumulation of Cr
and Cd at the Q1 sampling points can be ascribed to natural soil composition rather than
industrial contributions. This implies that the spatial distribution of certain heavy metals is
largely influenced by the underlying geological matrix, reiterating the natural origin of Cr
and Cd in the Q1 site as shown in Figure 6b.

3.4. Magnetic Susceptibility Indicates HM Contamination
3.4.1. Evaluation of Pollution Indices of HMs

The pollution index (PI = CF) and pollution load index (PLI) regression analyses were
employed to assess HM pollution across 12 regions (Figure 7). We divided the regions
into two groups and noticed a significant difference in CF values between areas with high
χlf (Q3–Q4) and low χlf (Q1–Q2). Generally, regions with high PI scores corresponded to
high χlf (Q3~Q4), except for CA. Regions such as the EU, AF, USA, NC, IN, CA, and SC
exhibited high CF scores, ranging from 1.62 to 3.41, with an average of 2.69 (the standard
deviation is 0.58), correlating with high χlf and indicating substantial HM enrichment. This
suggests a considerable ecological risk, primarily attributed to Cd, As, and Cu (Figure 7).
Notably, three communities had CF values above 2, indicative of moderate pollution,
while AF’s average CF value exceeded 3, signaling poor soil quality and severe HM risk. In
contrast, ANZ, ROA1, ME, BR, and ROA2 formed low-scoring communities, with CF scores
between 0.93 and 1.53 and an average of 1.24 (the standard deviation is 0.23), denoting
mild pollution.
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Our findings reveal moderate artificial enrichment of Cr (average CF = 1.53) and Cu
(average CF = 1.98) in soil, whereas Cd (average CF = 3.61), Pb (average CF = 2.27), and As
(average CF = 2.32) exhibit significantly higher enrichment. The pollution load index (PLI)
for five metal elements exhibited an average value of 2.03 (the standard deviation is 0.77),
which signifies a moderate degree of agricultural soil contamination on a global scale [64,65].
Among various HM contaminants, Cd demonstrates the most significant enrichment
(Figure 7). This accumulation in the environment poses a considerable threat to ecosystems
and adversely impacts human health. In regions with significant industrial contributions,
such as the EU, IN, SC, and the USA, elevated CF values of Cd, As, Pb, and Cu were noted.
The origin of these HMs can be traced to human activities like non-ferrous metal processing,
mining, smelting, and agricultural inputs. It is worth mentioning that in Africa, cadmium
levels are highly localized due to mining, road traffic, and agricultural additives. However,
besides such human activities leading to elevated magnetic susceptibility (Q3~Q4), the
pedogenesis of tropical soils in Africa is also a significant factor. For instance, in tropical
regions of Africa, iron primarily exists in the form of laterites with high microbial activity,
which may increase the abundance of superparamagnetic particles, consequently resulting
in higher soil magnetic susceptibility values [74]. Therefore, future research should delve
deeper into the specific impacts of these pedogenic processes on magnetic susceptibility,
for a more accurate understanding and assessment of the relationship between magnetic
response and heavy metal pollution. This will contribute to enhancing the precision of
studies and specific applications in geographical regions.

3.4.2. Regression Analysis of PLI and χlf

Figure 8 presents the segmented linear regression model linking log-normal mag-
netic susceptibility with the pollution index (CF). At the threshold of lnχlf = 3.26 or
χlf = 26 × 10−8 m3/kg, the CF values for all HMs remain stable. However, above spe-
cific thresholds—3.26 χlf > 43 × 10−8 m3/kg (lnχlf > 3.78) for Cd, χlf > 26 × 10−8 m3/kg
(lnχlf > 3.26 ) for Cr, χlf > 37 × 10−8 m3/kg (lnχlf > 3.61) for Cu, and
χlf > 28 × 10−8 m3/kg (lnχlf > 3.32) for Pb and As—the correlation between CF and
logarithmic χlf becomes significant (see Table 4 and Figure 8). For χlf = 26 × 10−8 m3/kg
(lnχlf = 3.26), HM concentrations in soil approximate natural background levels or indi-
cate low pollution. Conversely, a threshold of χlf = 26 × 10−8 m3/kg may distinguish soil
layers with natural HM content from those artificially enriched with magnetic particles and
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trace metals (χlf > 26 × 10−8 m3/kg). For samples exceeding this threshold, all CFs show a
significant positive correlation (r = 0.489–0.673, p < 0.001, Figure 8), although deviations
from the fitted confidence intervals are noted for individual HMs (Figure 8).
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only when r was reported (p < 0.05). The red line typically denotes a regression line, and the blue
circles represent individual data points.

Table 4. Piecewise function regression mathematical diagnostic model.

HM BPi χlf Thresholds Regression Equation Correlation Coefficient

Cd 3.78 43 CFCd = 0.63 ln (χlf ) − 0.23 0.673
Cr 3.26 26 CFCr = 0.67 ln (χlf ) − 2.52 0.556
Cu 3.61 37 CFCu = 1.24 ln (χlf ) − 1.31 0.571
Pb 3.32 28 CFPb = 0.93 ln (χlf ) − 0.98 0.467
As 3.32 28 CFAs = 0.57 ln (χlf ) + 1.21 0.483
PLI 3.26 - PLI = 0.81 ln (χlf ) − 0.83 0.721

In fact, the magnetic diagnostic criteria for heavy metal pollution in agricultural soil
are only qualitative (semi-quantitative) standards. The determination coefficients of the
magnetic diagnostic model for pollution factors and the pollution load index (PLI) range
from 0.467 to 0.721, indicating a certain level of error inherent in the model itself [88]. In
soil magnetism studies, human interventions and land management practices like plowing,
irrigation, earthworks, and construction can redistribute magnetic particles in the soil,
potentially obscuring the correlation between χlf and surface soil HM concentration [19].
This redistribution underlines the significant impact of anthropogenic activities and soil
disturbance on the soil’s physical and chemical properties. Moreover, the extent of the cor-
relation between χlf and specific HMs provides insights into soil contamination sources. For
instance, the correlation coefficient (r = 0.673) between CFCd and logarithmic susceptibility
indicates that 67.3% of Cd variability is attributable to human factors [85]. Similarly, the
variability of Cr (r = 0.556), Cu (r = 0.571), Pb (r = 0.489), and As (r = 0.527) is respectively
associated with anthropogenic influences, accounting for 55.6%, 57.1%, 48.9%, and 52.7%
of their variability. This link to human activities is corroborated by the pollution load index
(PLI) with an r of 0.721 (Figure 8), suggesting that the PLI can explain approximately 72%
of χlf variation and is indicative of the total HM pollution load (r = 0.72) [58,65]. More
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specifically, correlating perceived χlf with geochemical soil properties enables the identi-
fication of variations in anthropogenic activities and soil lithology. Elevated χlf suggests
a higher concentration of magnetic materials in the soil, which may indicate potential
contamination sources. To accurately assess pollution, one can initially use the magnetic
susceptibility measurement method, followed by measuring other magnetic parameters
for evaluation [27,89]. This understanding aids in discerning the nature of human impacts,
such as from non-ferrous metal smelting and traffic emissions. Although χlf cannot quantify
specific metal contamination, it is useful for identifying areas with relatively high HM
contamination. This technique can be utilized in other urban areas to evaluate the overall
environmental impact on soil communities. Furthermore, it offers a rapid and sensitive
approach for assessing soil quality over extensive areas. These findings further solidify χlf
as a critical indicator in soil environmental research.

4. Conclusions

This study synthesized global heavy metal and magnetic susceptibility data, conduct-
ing a systematic meta-analysis to explore the geographical distribution of agricultural soil
heavy metal contents and their magnetic susceptibility, along with quantitative source
analysis of the heavy metals. Finally, a comprehensive analysis was conducted to explore
the correlation between magnetic susceptibility and HM contamination in agricultural soils.
The results are as follows:

1. There are significant regional differences in the global distribution of HMs, which are
relatively high in India, the USA, Africa, etc. Additionally, the PC-PMF model reveals
global variations in pollution sources, with the industry being the primary contributor
(31.5%). Effective soil management policies can be formulated by considering regional
variations in source contributions.

2. The total magnetic concentration of the agricultural soils in different regions varied
significantly, and the χfd ranged from 0.59% and 12.85%, with the majority of the
samples being below 6%, suggesting that magnetic particles in the soils are mainly
influenced by human activities.

3. Pearson’s correlation analysis showed that soil magnetic susceptibility was signifi-
cantly and positively correlated with specific heavy metals, such as Pb, Zn, and Cu
with χlf (r = 0.51–0.53) and Mn and Fe with χfd (r = 0.50–0.53), and combined with
the RDA analysis, it was determined that Pb, Zn, Cu, and As were the key factors
influencing the differences in soil magnetic response.

4. The global agricultural soil HM contamination assessment indicated a moderate
level of soil contamination, with a PLI of 2.03. A significant positive correlation was
observed between magnetic susceptibility (χlf) above 26× 10−8 m3/kg and both heavy
metal concentration and the PLI (r = 0.72), affirming χlf as a robust predictor of HM
contamination. These insights are crucial for developing effective soil management
strategies and conducting large-scale soil quality assessments.
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Appendix A

Table A1. The table shows environmental background data for 12 regions or countries.

Region Cr Cu Ni Pb Zn As Cd Mn Fe

ANZ 48 11 15 13 31 3 0.14 388 -
EU 22 12 14 15 48 6 0.15 - -
AF 35 25 20 20 71 1.5 0.098 600 35,000

USA 30 14.4 13.5 18.1 58 5.2 1.6 492 19,500
ROA1 59.5 38.9 29 27 70 6.83 0.41 488 22,979

CA 125 14 58 12 52 28.4 0.102 500 39,500
ME 90 45 68 20 95 13 0.3 850 14,200
BR 20.71 5.94 7.63 19.48 45.41 0.96 0.15 173 16,048
IN 100 55 76 12.5 70 6 0.2 600 47,200
NC 53.9 20 23.4 23.6 67.7 9.2 0.074 482 27,300
SC 53.9 20 23.4 23.6 67.7 9.2 0.074 482 27,300

ROA2 59.5 38.9 29 27 70 6.83 0.41 488 22,979
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