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Abstract: Traditionally focused on obstructive atherosclerosis, contemporary research indicates that
up to 70% of patients undergoing coronary angiography for angina and ischemic symptoms do
not exhibit significant stenoses. Nonobstructive coronary artery disease (CAD) has emerged as a
prevalent phenotype among these patients. This review emphasizes the emerging understanding
that nonobstructive coronary artery disease, encompassing conditions such as ANOCA (Angina with
No Obstructive Coronary Artery Disease), INOCA (Ischemia with No Obstructive Coronary Artery
Disease), and MINOCA (Myocardial Infarction with No Obstructive Coronary Arteries), represents
the most prevalent phenotype in cardiac patients. It delves into the complex pathophysiology
underlying these conditions, focusing on microvascular dysfunction and coronary vasoreactivity,
which contribute to myocardial ischemia despite the absence of significant coronary obstructions.
Additionally, the review critically examines the limitations of current treatments which primarily
target obstructive lesions and underscores the necessity for tailored therapies that address the specific
microvascular and immunoinflammatory pathways involved in nonobstructive CAD. The main focus
of this review is to advocate for a shift in diagnostic and therapeutic strategies to better identify and
manage this widely prevalent yet under-recognized subset of CAD.

Keywords: nonobstructive coronary artery disease; ANOCA; INOCA; microvascular dysfunction;
immunoinflammatory pathways; multimodal imaging

1. Introduction

Globally, angina pectoris affects about 100 million individuals and is the predominant
manifestation of myocardial ischemia. For more than a hundred years, the main clinical
characteristic was believed to be obstructive atherosclerosis affecting the larger coronary
arteries. A significant number of patients (up to 70%) undergoing coronary angiography
for angina and signs of myocardial ischemia do not have obstructive coronary arteries, yet
they exhibit detectable ischemia [1,2]. In recent years, the terminology and classification
of coronary artery diseases have evolved to better describe various clinical presentations.
Up until 2020, the terms INOCA (Ischemia with Non-Obstructive Coronary Arteries) and
MINOCA (Myocardial Infarction with Non-Obstructive Coronary Arteries) were well-
established in the literature [1,3]. INOCA typically involves the presence of documented
ischemia through stress testing or other diagnostic modalities, despite the absence of sig-
nificant coronary artery blockages, typically resulting from microvascular dysfunction or
coronary artery spasm [1,3]. MINOCA is defined by myocardial infarction evidenced by
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elevated cardiac biomarkers, occurring in the absence of significant coronary artery ob-
structions, with etiologies ranging from atherosclerotic plaque events to non-atherosclerotic
causes like coronary artery dissection [1,3]. However, a new term, ANOCA (Angina with
Non-Obstructive Coronary Arteries), has emerged in subsequent years to further refine
the classification of these conditions [4,5]. Nonobstructive CAD represents an important
paradigm shift in understanding cardiovascular pathophysiology. While traditionally
underrecognized, it is now clear that this condition significantly impacts patient outcomes
and requires dedicated research and clinical focus. The inclusion of ANOCA provides a
more comprehensive framework for understanding and managing patients presenting with
angina without significant coronary artery obstruction, thereby enhancing the complexity
of non-obstructive coronary artery disease classification.

Individuals in this category are referred to as having ANOCA, INOCA, or MINOCA.
ANOCA is characterized by angina symptoms in the absence of significant coronary artery
obstruction, often due to coronary microvascular dysfunction or coronary artery spasm [4].
The complexity and diversity of non-obstructive coronary artery diseases underscore the
critical need for comprehensive diagnostic approaches to effectively identify and manage
these conditions. Microvascular causes of non-obstructive CAD may be classified based
on their pathophysiology into structural and functional processes, as well as myocardial
variables that contribute to microvascular function and result in a decrease in blood flow to
the heart muscle [6] (Figure 1).
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Figure 1. Physiopathology of non-obstructive coronary artery disease. ANOCA, angina with no
obstructive coronary artery disease; INOCA, ischemia with no obstructive coronary artery disease;
MINOCA, myocardial infarction with no obstructive coronary arteries.

Thus, the aim of this narrative review is to better understand the three phenotypes of
nonobstructive CAD, as to what mechanisms underly each of them, which clinical approach
is needed for each of them, and which therapeutic measures may be offered tailored to the
unique characteristics of these conditions.

2. Epidemiological Data

INOCA predominantly affects middle-aged to older adults, with a higher prevalence
in females, often associated with microvascular dysfunction and vasospasm. It affects
approximately 47% of women and 30% of men with suspected cardiac chest pain, reflecting
a significant gender disparity [7].

MINOCA occurs in younger to middle-aged individuals and also shows a higher
incidence in women. It can involve altered coagulation and non-atherosclerotic causes of
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myocardial infarction, with an incidence rate ranging from 2.9% to 13.8%, predominantly
in non-ST elevation myocardial infarction (NSTEMI) cases [8].

ANOCA is a recently defined condition affecting a broad age range, with a notable
female predominance. Patients presenting with angina symptoms but without obstructive
coronary artery disease often require further investigation to identify potential microvascu-
lar dysfunction or other non-obstructive causes of ischemia [9].

Patients with angina and non-obstructive coronary artery disease (CAD) often have
a lower prevalence of traditional cardiovascular risk factors, such as diabetes mellitus,
compared to those with obstructive CAD. However, smoking is significantly associated
with endothelial dysfunction, leading to impaired coronary artery dilation. Additionally,
comorbidities such as hypertension, insulin resistance, hyperlipidemia, obesity, menopause,
and chronic autoimmune inflammatory disorders are consistently linked with coronary
microvascular dysfunction [1]. Age was the only variable independently associated with
microvascular dysfunction, as reported by Sara et al. [10]. Furthermore, another extensive
study by Kanaji Y et al. identified various risk factors for microvascular dysfunction in
ANOCA. Specifically, age was a risk factor for both endothelial-dependent and independent
microvascular dysfunction, female sex was a risk factor for only endothelial-independent
microvascular dysfunction (influenced by adenosine), and diabetes mellitus was a risk
factor for endothelial-dependent microvascular dysfunction [11]. Studies have shown that
men and women have a similar occurrence of coronary vascular dysfunction. Nevertheless,
it is likely that males have a higher incidence of epicardial spasm, and a lower incidence of
microvascular spasm compared to women [12]. Asian individuals seem to have a higher
susceptibility to vasospastic angina compared to Caucasians [10,13]. East Asian individuals
often have diffused and multi-vascular coronary artery spasms (CAS), while Caucasians
tend to exhibit localized CAS.

3. Mechanistic Insights

The specific pathophysiological processes responsible for MINOCA/INOCA/ANOCA
are not yet well understood, but the primary causes may be categorized as either atheroscle-
rotic or non-atherosclerotic. In studies on MINOCA, atherosclerotic causes include plaque
disruption, whereas non-atherosclerotic causes include vasospasm, coronary microvascular
dysfunction, coronary thrombosis/embolism, and spontaneous coronary artery dissec-
tion [14]. The main mechanisms of INOCA are microvascular dysfunction and epicardial
coronary artery spasm [1,3]. In ANOCA, there is no evidence of microcirculatory blockage
or chronic coronary spasm, unlike in MINOCA and the mechanisms include coronary
microvascular dysfunction, epicardial coronary artery spasm, and a combination of both [1]
(Table 1).

Table 1. Distribution of mechanisms in ANOCA, INOCA, and MINOCA.

Type Mechanisms Distribution of Mechanisms

ANOCA

• Macrovascular dysfunction (epicardial
coronary artery spasm) [15].

• Coronary microvascular dysfunction
(microvascular spasm, coronary slow flow,
microvascular ischemia, impaired
microvascular vasodilator response) [16].

• N = 1196. Distribution: The endotypes were
microvascular dysfunction in 24.5%, vasospastic
angina microvascular in 25.7%, and vasospastic
macrovascular angina in 25.4%. Nonspecific chest pain
was present in 20.7% [11].

INOCA • Microvascular dysfunction [1].
• Coronary vasospasm [17].

• N = 1439. Distribution: The endotypes were
microvascular dysfunction in 173 (12%), vasospastic
angina in 478 (33.2%), combined microvascular and
vasospastic angina in 268 (18.6%), and noncardiac
chest pain in 520 (36.1%) [9].



J. Clin. Med. 2024, 13, 4613 4 of 20

Table 1. Cont.

Type Mechanisms Distribution of Mechanisms

MINOCA

• Plaque disruption (plaque erosion or
rupture) [1].

• Coronary microvascular dysfunction,
vasospasm, coronary thrombosis/embolism,
spontaneous coronary artery dissection [7].

• Endothelial dysfunction and heightened
vasoreactivity [1].

• N = 80. Distribution: epicardial spasm was detected in
24 (64.9%) patients and microvascular spasm in
13 (35.1%) patients [18].

• N = 145. Plaque disruption was observed in 46.2%
(67/145) by OCT. A nonischemic pattern of CMR
abnormalities (myocarditis, takotsubo syndrome, or
nonischemic cardiomyopathy) was present in 20.7%
(24/116) [19].

ANOCA, angina with no obstructive coronary artery disease; CMR, Cardiac Magnetic Resonance; INOCA,
ischemia with no obstructive coronary arteries; MINOCA, myocardial infarction with non-obstructive coronary
arteries; OCT, Optical Coherence Tomography.

The coronary arterial bed is divided into three compartments: epicardial coronary
arteries (500 µm to 5 mm in diameter), pre-arterioles (0.1–0.5 mm), and intramyocardial
arterioles (<0.1 mm). Epicardial arteries function as conduits and do not impede blood
flow when unobstructed, while pre-arterioles and intramyocardial arterioles are critical
for regulating coronary blood flow. The epicardial arteries account for only 10% of the
coronary circulation volume, with the microcirculation making up the remaining 90% and
contributing more than 70% of the coronary system’s resistance under normal conditions.
Intramyocardial arterioles have the greatest resistance and adjust blood flow based on
myocardial oxygen demand through autoregulation. In healthy individuals, increased
myocardial metabolic demand leads to arteriolar dilation and a significant increase in
coronary blood flow, up to five times the normal level [1].

Although there are many noninvasive ways to evaluate ischemia in individuals with
non-obstructive CAD, an invasive and systematic examination is critical for a comprehen-
sive diagnosis of these patients and focused therapeutic management. Invasive testing
provides the ability to distinguish between different endotypes, enabling the delivery of tai-
lored and optimal therapy and management for patients with MINOCA/INOCA/ANOCA.
Coronary angiography is required for all patients displaying signs and symptoms of
ischemia in order to rule out the possibility of an epicardial illness. Therefore, if the
angiography does not reveal any obstructive CAD, the patient may proceed with com-
prehensive invasive testing to diagnose any structural or functional abnormalities in the
coronary artery during the same operation (Figure 2) [20]. A comprehensive assessment
using coronary flow reserve (CFR) and microvascular resistance, such as invasive CFR and
index of microvascular resistance (IMR), distinguishes between various pathophysiological
mechanisms (Figure 2).

Invasive CFR can be measured using Doppler flow velocity or thermodilution mean
transit time, with prognostic cutoff values set at 2.0 for thermodilution-based CFR (tCFR)
and 2.5 for Doppler-based CFR (dCFR). IMR values ≥ 25 suggest endothelial-independent
dysfunction, while hyperemic microvascular resistance (hMR) values > 2.4 indicate ab-
normal microcirculation. Steady-state hyperemia is typically induced by intravenous or
intracoronary adenosine administration. Abnormal FFR is defined as ≤0.80 or a non-
hyperemic pressure ratio ≤ 0.89, indicating flow-limiting obstructive CAD [1,4].

Comprehensive assessment enables the identification of endothelium-independent
CMD using CFR and IMR, evaluation of endothelium-dependent CMD by assessing mi-
crovascular response to ACh, and detection of low-grade stenoses using FFR.
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Figure 2. Diagnostic algorithm for invasive functional evaluation in patients with non-obstructive
coronary artery disease. Ach—acetylcholine; CAD—coronary artery disease; CFR—coronary flow
reserve; FFR—fractional flow reserve; IMR—index of microvascular resistance. Adapted from [1].

3.1. Coronary Plaque Disruption

Coronary plaque disruption encompasses plaque rupture, plaque erosion, and calcified
nodules. Plaque rupture is caused by defects in the fibrous cap, exposing the thrombogenic
core due to vascular smooth muscle cells (VSMCs) depletion and macrophage invasion,
and is prevalent in the elderly. Plaque erosion, often found in younger individuals, females,
and smokers, involves endothelial cell apoptosis and detachment from the extracellular
matrix (ECM), leading to blood clots on plaques with low lipid content. Calcified nodules,
although rare, create uneven arterial lumen boundaries and may increase thrombosis risk
due to impaired endothelial cells. Variations in pro-inflammatory biomarkers such as
soluble vascular cell adhesion molecule-1 (sVCAM-1) and Chemokine (C-C motif) ligand 21
(CCL-21) in MINOCA patients suggest that plaque structure changes and microcirculatory
alterations contribute to atherosclerosis progression. Starting statin therapy is strongly
recommended, while other heart-protective medications should be individualized [21–26].

3.2. Coronary Artery Spasm

Coronary artery spasm (CAS) involves severe narrowing (>90%) of the epicardial
coronary artery, leading to chest discomfort and ECG abnormalities, often triggered by
various stimuli. The pathophysiology of CAS is complex and yet not completely understood
(Figure 3). The mechanisms of CAS include hyperreactivity of VSMCs and endothelial
dysfunction, involving pathways such as Ca2+/calmodulin-activated myosin light chain
kinase and Rho-kinase. Inflammation, oxidative stress, and genetic factors also contribute
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to CAS, with inflammatory markers such as high-sensitive C protein reaction (hs-CRP) and
interleukin-6 (IL-6) playing significant roles. Smoking is related mainly to epicardial spasm,
and not as much to myocardial microvascular blood flow [11]. Management of INOCA
patients includes addressing potential harms from prolonged nitrate use and utilizing
invasive physiological testing to guide treatment, as supported by the CorMicA study
which showed improved outcomes with tailored medical therapy. Smoking cessation and
avoiding vasoconstrictive drugs are crucial preventive measures, especially for young
women, as smoking significantly impacts endothelial function and NO availability [27–30].
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1—endothelin-1; NO—nitric oxide; MLC—myosin light chain; MLCK—myosin light chain kinase;
PLC—phospholipase C; PKC—protein kinase C; ROS—reactive oxygen species; RhoA—Ras homolog
gene member A; VSMCs—vascular smooth muscle cells.

Recent research indicates that patients with premature (M)INOCA have distinct risk
factor profiles compared to those with obstructive CAD, with atypical risk factors such as
migraines, preeclampsia, depression, and anxiety contributing to (M)INOCA. Psychological
stress is more likely to cause endothelial dysfunction and vasomotor issues in young
women than in men. Additionally, factors like alcohol withdrawal, everyday stress, certain
medications, and cold exposure can trigger anginal episodes. Long-term depression and
chronic inflammation are linked to abnormal vascular reactivity, increasing the risk of
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(M)INOCA, particularly in women. Effective management of INOCA involves lifestyle
changes, risk factor management, and the use of medications such as calcium-channel
blockers, with short-acting nitrates as secondary options and careful avoidance of β-
blockers [31–33].

3.3. Coronary Microvascular Dysfunction

Coronary microvascular dysfunction affects the small blood vessels in the coronary
arteries, leading to impaired blood flow and abnormal resistance. Additionally, as shown
in Table 1, coronary microvascular dysfunction is present in ANOCA and INOCA. The
primary mechanisms involve increased vasoconstriction through the phosphorylation of
myosin light-chain by Rho-kinase and the activation of the RhoA/Rho-kinase pathway,
which leads to the production of reactive oxygen species (ROS), endothelin-1 (ET-1), and
proinflammatory molecules (Figure 4).
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A; VSMCs—vascular smooth muscle cells; WSS—wall shear stress.
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The perfusion anomalies observed in two-thirds of female MINOCA patients undergo-
ing stress cardiac CMR were identified as CMD. Furthermore, of the 80 MINOCA patients
who had ACh testing within 48 h after admission, 46% received a positive result, and 35 per-
cent of the positive cases developed microvascular spasms. Both endothelium-dependent
and endothelium-independent pathways contribute to impaired vasodilation, with factors
like nitric oxide (NO), prostaglandins, and endothelium-dependent hyperpolarization fac-
tor (EDHF) playing crucial roles. Endothelial dysfunction, observed in about 50% of INOCA
patients, is linked to worsening symptoms and increased adverse outcomes [5,17,34,35].
Inflammation-induced activation of endothelial cells leads to increased production of ROS
and adhesion molecules, causing platelet and leukocyte adhesion. NOx isoforms and
mitochondria regulate ROS formation, with NOx activation enhancing ROS production
through p66Shc phosphorylation. This process impairs vasodilation by converting NO into
peroxynitrite radicals. Epigenetic modifications disrupt the balance between oxidants and
antioxidants, increasing ROS and pro-inflammatory cytokines. This results in endothelial
cell activation, loss of endothelial barrier function, and damage to coronary microvascular
endothelial cells, further exacerbated by pathways involving NLRP3, caspase-1, interleukin
1b (IL-1b), and interleukin-18 (IL-18). These mechanisms collectively contribute to CMD
and related cardiovascular issues [36–40].

The Spanish ENDOCOR registry found that patients with endothelial dysfunction had
more severe angina symptoms and were more likely to experience angina with moderate
exertion and adverse cardiac events within one year. Despite the use of acetychcoline (ACh)
testing to guide therapy, optimal treatment was not consistently achieved, and vasodilator
therapy did not significantly improve clinical outcomes [17].

In patients without obstructive CAD, the soluble urokinase plasminogen activator
receptor (suPAR) and higher IL-6 levels are linked to CMD and worse outcomes. Inflamma-
tion is a critical factor in MINOCA, contributing to plaque rupture, myocardial damage,
and ischemia/reperfusion injury, leading to ROS production and cell death. Wall shear
stress influences endothelial cell inflammatory responses, affecting NO production and
promoting atherosclerosis when low. Aging and oxidative stress impair microvascular
endothelial function, reducing NO and increasing inflammatory cytokines, contributing to
CMD. Platelet adhesion to the endothelium further exacerbates inflammation and vascular
damage. Chronic autonomic dysfunction, structural abnormalities in microvessels, and
external compression due to various conditions also contribute to CMD. CMD predicts
adverse outcomes in patients with non-obstructive CAD, emphasizing the need for further
functional examinations for risk classification. While trials like ORBITA and ISCHEMIA
focus on stable CAD treatment, the role of CMD in ongoing ischemia post-revascularization
highlights the need for understanding coronary microvascular physiology [3,7,41–45].

4. Clinical Implications

Current therapy for CMD focuses on reducing risk factors and managing disease
processes [1].

Sodium-glucose transport Protein 2 (SGLT2) inhibitors, known for their positive
impact on the heart, have been shown to enhance coronary microvascular function in mice,
decrease inflammation-induced ROS, and increase endothelial NO availability [46].

Statins, known for their antioxidant and anti-inflammatory properties, have been
found to alleviate impaired coronary artery function in pigs and enhance coronary flow
reserve (CFR) in non-obstructive CAD patients. Additionally, studies have shown that
statins enhance CFR in people who do not have obstructive CAD. A randomized trial
assessing a specific index of microvascular resistance (IMR) in women with INOCA found
no improvement in microvascular function after 6 months of therapy [47,48].

HsCRP is considered a notable predictor of CMD and a risk factor for coronary artery
stenosis. Tong et al. discovered a correlation between hsCRP levels and peak troponin
levels, suggesting a link between inflammation and myocardial damage or infarction.
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IL-6, a risk marker for atherothrombotic events, is elevated in the plasma of individuals
with non-obstructive CAD, including coronary microvascular dysfunction and coronary
artery spasm. Thus, IL-6 may possess the potential to predict the onset and etiology of
non-obstructive myocardial infarction. A study on tocilizumab, an IL-6 receptor antagonist,
found no effect on coronary microvascular function in patients with NSTEMI during
hospitalization or after six months [49].

Cheng et al. found that inhibiting myeloperoxidase (MPO) reduced inflammation-
induced endothelial dysfunction in mouse models of vascular inflammation and atheroscle-
rosis, highlighting its role in oxidative stress and inflammatory reactions [50]. For the
first time, the Lasso study conducted a comprehensive investigation of a wide range of
cardiovascular biomarkers during the stable period after MINOCA. The primary finding
was a higher level of proinflammatory activity in patients with MINOCA compared to both
MI-CAD and the control group [51].

Giving tumor necrosis factor inhibitors to people with psoriasis greatly improved the
function of their coronary microvascular system, as measured by coronary flow reserve,
and lowered levels of biomarkers of systemic inflammation. Other possible approaches
to reducing vascular inflammation include focusing on cholesterol metabolism, fatty acid
mediators, and the autophagy-lysosome pathway [35,52].

IL-1b has a critical role in initiating IL-6 signaling, which necessitates the use of
anti-inflammatory treatments in CMD. Low-dose methotrexate has been ineffective in de-
creasing inflammation in people with CAD, although colchicine is now under investigation
for this purpose. The potential of COLCOT studies and other modulators of interleukin-1
(IL-1), IL-6, and NLRP3 inflammasome is promising [49].

Cytokines exhibit significant potential as diagnostic tools and serve as biomarkers for
various disorders. Within these, visfatin, placental growth factor (PlGF), and fractalkine
(CX3CL1) can immediately initiate issues in the blood vessels, inflammation, and the
formation of new blood vessels by activating a cellular signaling pathway known as
nuclear factor Kappa B (NF-κB). Although cytokines have regular functions in the body,
they become too active in the processes that lead to MINOCA [53].

Researchers looked at changes in time and biomarker levels in MINOCA patients
and found that these patients had higher levels of early inflammatory activity during
the acute phase, more temporary effects of myocardial damage, and faster recovery than
MI-CAD patients. C-reactive protein (CRP) was shown to be a reliable predictor of both all-
cause mortality and MACE in patients with MINOCA. Moreover, they discovered several
biomarkers that possess discriminative utility in distinguishing between MINOCA and
MI-CAD. When comparing MINOCA with MI-CAD, it was shown that CRP, tumor necrosis
factor (TNF)-related activation-induced cytokine (TRANCE), tissue-type plasminogen acti-
vator (t-PA), and MPO were able to differentiate between the two conditions. Other studies
show discrepancies in hs-CRP/CRP concentrations between patients with MINOCA and
MI-CAD, possibly due to a lack of adjusted comparisons or variations in blood collection
methods [51,54].

Rho-kinase activity in circulating neutrophils can serve as a valuable biomarker for
coronary spasms, aiding diagnosis and evaluating disease activity and treatment effective-
ness. Daily fluctuations in Rho-kinase activity, with the highest level in early mornings,
are linked to changes in baseline constriction of coronary arteries and their response to
blood vessel diameter changes. Using both the Japanese Coronary Spasm Association
(JCSA) risk score and Rho-kinase activity significantly enhanced the process of categorizing
the risk of vasospastic angina (VSA) patients in comparison to using either one of them
alone. Additionally, the assessment of Rho-kinase activity in circulating leucocytes might
be valuable for determining the prognosis of patients with VSA. Recent studies have shown
that individuals with microvascular spasms had considerably greater levels of serotonin
in their plasma compared to control subjects. These results indicate that the quantity of
serotonin in the plasma might be a new biomarker for predicting latent microvascular
spasms and distinguishing it from epicardial CAS [55].
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Considering the correlation between elevated Rho-kinase activity in circulating white
blood cells and a rise in angina frequency, as well as a worse prognosis in terms of cardiac
events, the use of a Rho-kinase inhibitor shows potential as a technique to reduce the risk.
Thus, intracoronary infusion of fasudil, a specific inhibitor of Rho-kinase, has successfully
reduced coronary vasospasm and improved myocardial ischemia caused by spasms of the
small blood vessels in the heart. However, there is currently no authorized oral Rho-kinase
inhibitor. Although not extensively examined in relation to MINOCA, other indicators
of CAS and CMD are equally significant based on the existing data. SuPAR serves as a
reliable indicator of CMD in patients with non-obstructive CAD and may identify those
who are at risk of experiencing long-term adverse effects. Cystatin C (CysC) demonstrated
an independent association with the prevalence of CAS and had a prognostic potential for
unfavorable outcomes. A different investigation discovered a direct relationship between
the levels of serum CysC and the severity of coronary lesions in individuals with MINOCA.
It was shown that elevated CysC levels independently increased the risk of negative
outcomes in these patients [56–58].

According to the VERA trial, patients with symptomatic epicardial or microvascular
coronary artery spasms do not experience improvement in their anginal symptoms after
receiving add-on therapy with macitentan, a powerful ET-1 inhibitor. A randomized study
by Reriani et al. found that Atrasentan, a selective ETA-receptor antagonist, significantly
improved coronary microvascular endothelial function after 6 months of treatment, unlike
the VERA study [59].

The Angina (PRIZE) experiment was a randomized, double-blind, placebo-controlled
study conducted to uncover new genetic risk loci for CMD. The results suggest that
dysregulation of ET-1 is involved, providing evidence for the potential use of genetic-
based precision medicine to target oral ETA antagonist treatment in individuals with
microvascular angina. Zibotentan is a molecule that has the potential to be the most
ETA-selective of all orally active endothelin A (ETA) receptor antagonists. This makes it a
good choice for microvascular angina [60]. In addition, a recent pilot study has indicated
that administering a 10 mg dose of zibotentan has a beneficial effect on decreasing the
frequency of angina in patients with refractory angina caused by the coronary slow-flow
phenomenon [61].

In MINOCA patients, there was an elevated level of renin, suPAR, and IL-6 compared
to healthy controls. The latter two markers are believed to be linked to worse cardiovascular
outcomes [62]. High coronary tortuosity prevalence in spontaneous coronary artery disease
(SCAD) patients is linked to recurrent SCAD, with TGF-β (transforming growth factorβ) activity
potentially impacting vascular tortuosity extent, according to a hypothesis. TGF-β has the poten-
tial to serve as an indicator of fibromuscular dysplasia (FMD) [49,63]. Eosinophils contribute
to SCAD development by producing cytotoxic substances in response to inflammatory
signals. Research on eosinophilic inflammation in SCAD has identified drugs that can
reduce damage and facilitate healing by inhibiting chemotaxis, survival, and degranulation
of eosinophils in their natural location [64].

Approximately 60% to 90% of people with angina and ANOCA have CMD as the
underlying cause [5]. Recent research demonstrates an independent correlation between
the presence of INOCA and a high SII (systemic immune-inflammation index) level. The
SII value, in addition to the conventional, expensive approaches often used in INOCA
prediction, can serve as an indicator [65].

Patients diagnosed with autoimmune illnesses (lupus, psoriasis, and rheumatoid
arthritis) exhibit indications of reduced myocardial flow reserve (MFR), which cannot be
accounted for by conventional risk factors for CAD. The WISE research found that women
with INOCA who had a high IL-6 level were more likely to be hospitalized for HF and
experience death from any cause within a period of 6 years [66,67].

A clinical trial involving autologous intracoronary CD34+ stem cell treatment in
patients with INOCA showed promising results in improving angina symptoms, CFR, and
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overall quality of life after 6 months. CD34+ cells have the ability to undergo differentiation
into endothelial cells, restoring microcirculation integrity [68].

The IMPROvE-CED study, which included patients with endothelium-dependent
microvascular dysfunction, conducted another experiment to investigate CD34+ stem cell
treatment. The trial had comparable outcomes to the previously stated trial, demonstrating
substantial improvement in symptoms and angina class. Furthermore, the experiment
demonstrated a rise in the proportion of ACh-mediated coronary blood flow (CBF) and
a decrease in the daily use of sublingual nitroglycerin. Regenerative treatment with stem
cells or gene therapy is a promising and innovative approach to treating CMD [69].

5. Integration of Multimodal Imaging

Both obstructive and non-obstructive forms of CAD may have extended stable in-
tervals but can also suddenly become unstable [70]. The treatment for non-obstructive
CAD varies greatly due to its diverse underlying causes, underscoring the importance
of accurate diagnosis. Non-invasive imaging methods such as single-photon emission
computed tomography (SPECT), positron emission tomography (PET), cardiac magnetic
resonance (CMR), or coronary computed tomography angiography (CCTA) are crucial for
detecting and evaluating non-obstructive CAD, providing both anatomical and functional
insights. However, these non-invasive techniques cannot consistently detect conditions like
microvascular spasm and coronary endothelial dysfunction, highlighting some limitations
in their diagnostic capacity [71–74]. The ESC’s guidelines and the American College of
Cardiology/American Heart Association ACC/AHA recommendations emphasize the
importance of these imaging tests in diagnosing, treating, and assessing the risk of CAD.
Ultimately, for a comprehensive evaluation, particularly of conditions like INOCA, invasive
angiography remains necessary to assess endothelial-dependent dysfunction and other
subtle coronary pathologies [2,70,75,76].

5.1. Coronary Computed Tomography Angiography

Coronary CT angiography is highly sensitive and accurate in detecting and ruling
out CAD and abnormalities, though it has low specificity and positive predictive value.
CCTA can evaluate myocardial perfusion by monitoring contrast flow from coronary
vessels into the heart muscle at rest and post-adenosine injection, with decreased perfusion
indicated by reduced contrast agent uptake. Despite its diagnostic benefits, including
detailed plaque assessment and perfusion analysis, CCTA poses risks such as radiation
exposure and contrast-induced nephropathy, particularly in patients with chronic renal
disease. Technological advancements have significantly reduced radiation exposure. While
CCTA is not currently supported for diagnosing MINOCA, it shows promise in identifying
high-risk plaques and coronary inflammation. The WARRIOR study suggests a potential
link between non-invasive CCTA and lower major adverse cardiovascular events (MACE)
in women with suspected INOCA [77–80].

5.2. Cardiac Magnetic Resonance

Cardiac magnetic resonance imaging is crucial for evaluating suspected MINOCA,
offering high diagnostic accuracy without ionizing radiation. CMR can distinguish between
ischemic and non-ischemic heart muscle injuries using T2 and late gadolinium enhancement
(LGE) sequences, providing a conclusive diagnosis in 65–99% of cases. Both the ESC and
AHA endorse CMR for diagnosing MINOCA due to its ability to identify underlying
causes of myocardial damage. Studies show that CMR can modify clinical diagnosis and
treatment in over 50% and 32–42% of patients, respectively, especially when performed
within two weeks of symptom onset. CMR’s ability to measure myocardial perfusion
reserve (MPRI) helps in assessing CMD and predicting future cardiac events. Despite its
benefits, CMR’s adoption is limited by cost, examination time, and contraindications in
patients with certain conditions. Advancements in technology and techniques are needed
to improve its accessibility and reduce scan durations [19,73,81–85].
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5.3. Single-Photon Emission Computed Tomography and Positron Emission Tomography

SPECT and PET technologies use similar reconstruction methods to create heart images
but differ in radiopharmaceuticals and imaging gear. SPECT and PET technologies are used
to create heart images but differ in their radiopharmaceuticals and imaging equipment.
Cardiac PET is highly reliable for assessing INOCA by measuring myocardial blood flow
(MBF) and myocardial perfusion reserve (MPR), but its use is limited by availability and
cost. PET can identify CMD and predict MACEs by evaluating MFR, with values less than
1.5 indicating CMD. SPECT, while showing a good long-term prognosis for patients with
reversible ischemia and no significant CAD, also utilizes MBF and CFR as predictors of
MACEs. Both modalities provide critical insights into CMD and associated risks, but PET
remains the gold standard for non-invasive CMD diagnosis. Recent studies highlight the
significant role of CMD in conditions like heart failure with preserved ejection fraction
(HfpEF), suggesting that nearly 75% of HFpEF patients have underlying CMD [86–89].

In Table 2, imaging aspects of INOCA, ANOCA, and MINOCA, are presented.

Table 2. Imaging aspects of ANOCA, INOCA, and MINOCA.

Type Imaging Aspects

INOCA

• Non-invasive CCTA testing has been associated with a decreased
incidence of MACE in women with suspected INOCA [80].

• The CMR MPR index is a reliable indicator of severe adverse cardiac
events and has been linked to left ventricular diastolic function [8,90,91].

• A cardiac PET measurement with an MRF below 1.5 indicates CMD and
increases the risk of future cardiac events [30,92,93].

• There is a direct correlation between hospitalization for HFpEF and a
reduced MFR [94].

ANOCA -

MINOCA

• CCTA may identify vulnerable plaques that are normally undetected by
invasive coronary angiography [79].

• CMR can provide insight into underlying causes, potentially influencing
the therapy method further [14,73,83,95–98].

• Extent of LGE, along with elevated T2 mapping values, serve as robust
indicators of unfavorable outcomes [99].

• Quantitative stress CMR perfusion mapping can distinguish CMD from
obstructive CAD [100].

• Both stress MBF and MPR evaluated by PET yielded predictions of
MACEs [87].

• Decreased MFR measured by cardiac PET is predictive of MACE in
female patients [30].

VSA -

CMD

• CFR assessment and the myocardial perfusion reserve index are much
better at predicting the risk of MACE than LGE and ischemia alone [101].

• Quantitative CMR techniques offer improved diagnostic capabilities for
MVD, accurate assessment of CAD severity, and quick patient risk
stratification [8,102–104].

• The MPR value is associated with an increased risk for death and
MACE [90,103].

• PET-derived CFR is directly linked to diastolic dysfunction and
cardiovascular adverse events [105].

• The low MPR PET-derived value can accurately predict the long-term
likelihood of significant adverse cardiovascular events [106].

ANOCA = angina with no obstructive coronary artery disease; CAD = coronary artery disease; CCTA = coro-
nary computed tomography angiography; CFR = coronary flow reserve; CMR = cardiac magnetic resonance;
CMD = coronary microvascular dysfunction; INOCA = ischemia with no obstructive coronary arteries;
HF = heart failure; HFpEF = heart failure with preserved ejection fraction; LGE = late gadolinium enhance-
ment; MACE = major adverse cardiac events; MINOCA = myocardial infarction with non-obstructive coronary
arteries; MBF = myocardial blood flow; MFR = myocardial flow reserve; MPR = myocardial perfusion reserve;
MVD = microvascular disease; PET = positron emission tomography; VSA = vasospastic angina.

5.4. Invasive Investigations

A comprehensive invasive evaluation involving angiography, physiological flow
reserve measurements (like fractional flow reserve [FFR]), provocative testing, and CFR
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can effectively rule out myocardial ischemia as the primary cause of symptoms, facilitating
appropriate non-cardiac examinations. Epicardial vasospasm is diagnosed by injecting ACh
into the coronary artery, while microvascular dysfunction is evaluated by testing coronary
reactivity to endothelium-independent and dependent dysfunctions. CFR assesses the
impairment of blood flow, indicating the microcirculation’s ability to dilate blood vessels,
especially when there is no epicardial stenosis [20,107].

For accurate diagnosis, invasive tests must distinguish between various pathophysio-
logical mechanisms like spasm and microvascular resistance, using tools such as Doppler
flow velocity or thermodilution. FFR evaluates flow-limiting obstructive CAD, while
ACh-induced vasoconstriction diagnoses endothelial dysfunction. Comprehensive assess-
ment identifies CMD using CFR and IMR measurements, and vasospastic responses via
epicardial artery response to ACh [108,109].

The thermodilution-based index of microvascular resistance (T-IMR) is the most reli-
able approach among invasive techniques but has limitations due to its invasive nature.
Non-invasive methods like PET and CMR, though effective, face challenges such as high
costs and limited availability. Newly developed functional coronary angiography parame-
ters, like a coronary angiography-derived index of microvascular resistance (caIMR), offer
a simpler, faster procedure without the need for hyperemic medications [110–112].

Studies show that caIMR accurately measures microcirculatory resistance and has
strong predictive value for adverse cardiovascular outcomes. Comprehensive evaluations
incorporating these techniques improve the diagnosis and management of patients with
suspected INOCA/MINOCA/ANOCA. Tailored medical therapies based on invasive
coronary function testing, as evidenced by the CorMicA study, improve the quality of life
in patients, highlighting the need for a pathophysiology-driven strategy with targeted
therapeutics [27,113–116].

6. Limitations and Future Directions

Despite growing knowledge of the importance of properly examining individuals with
angina who have undergone angiography but do not have obstructed coronary arteries,
as well as new guideline recommendations, the real-world treatment and outcomes of
such patients remain poorly understood. The MINOCA-BAT study is expected to provide
results on this issue by 2025. Prognostic markers that have been validated in cases of classic
MI should be further evaluated for their reliability in patients with myocardial infarction
with MINOCA [117,118]. Additional research is necessary to confirm the effectiveness
of the novel CMR approach (such as Strain-Encoded Magnetic Resonance) in accurately
diagnosing MINOCA. There is a need for fast scanning methods in clinical practice to
decrease scan durations and optimize efficiency and scanning capacity while maintaining
diagnostic accuracy. It would be very useful to develop additional biomarkers that can
accurately indicate the degree of microcirculatory function or damage in order to enhance
the diagnosis of CMD. Also, there is a scarcity of research examining non-invasive imaging
approaches for diagnosing CMD. Microvascular dysfunction in specific organs may indicate
a larger issue, and studying diseases affecting small blood vessels in the brain, retina, kidney,
lung, and heart could reveal common pathological pathways for new treatment approaches.

There are some limitations to this study. First, the complexities of non-obstructive
CAD and its variants (ANOCA, INOCA, and MINOCA) mean that a comprehensive
understanding is challenging to achieve through a narrative review alone. The causal
mechanisms, particularly the role of microvascular dysfunction and its interaction with im-
munoinflammatory pathways, require further elucidation through controlled clinical trials
and multi-center studies. Additionally, the review relies on the existing literature, which
may have inherent biases or limitations in study design and population diversity. Another
limitation is the lack of longitudinal data to firmly establish the long-term effectiveness
of proposed diagnostic and therapeutic strategies. Lastly, while this review advocates for
a shift in clinical practice, the actual implementation of these recommendations requires
validation in diverse healthcare settings to assess feasibility and cost-effectiveness.



J. Clin. Med. 2024, 13, 4613 14 of 20

7. Conclusions

This review highlights the prevalence and clinical impact of conditions such as
ANOCA, INOCA, and MINOCA, which often go unrecognized due to the absence of
obstructive lesions. As the pathophysiology involves microvascular dysfunction and in-
creased coronary vasoreactivity, diagnostic and therapeutic approaches should address
these underlying mechanisms in patients with nonobstructive CAD. The advocacy for a
paradigm shift in treating these widespread conditions could potentially enhance patient out-
comes by tailoring interventions to the specific vascular and inflammatory pathways involved.
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