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Abstract: Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) can ob-
jectively reflect a person’s emotional state and have been widely studied in emotion recognition.
However, the effective feature fusion and discriminative feature learning from EEG-fNIRS data is
challenging. In order to improve the accuracy of emotion recognition, a graph convolution and
capsule attention network model (GCN-CA-CapsNet) is proposed. Firstly, EEG-{NIRS signals are
collected from 50 subjects induced by emotional video clips. And then, the features of the EEG and
fNIRS are extracted; the EEG—{NIRS features are fused to generate higher-quality primary capsules
by graph convolution with the Pearson correlation adjacency matrix. Finally, the capsule attention
module is introduced to assign different weights to the primary capsules, and higher-quality primary
capsules are selected to generate better classification capsules in the dynamic routing mechanism. We
validate the efficacy of the proposed method on our emotional EEG—fNIRS dataset with an ablation
study. Extensive experiments demonstrate that the proposed GCN-CA-CapsNet method achieves a
more satisfactory performance against the state-of-the-art methods, and the average accuracy can
increase by 3-11%.

Keywords: electroencephalogram (EEG); functional near-infrared spectroscopy (fNIRS); graph
convolution network; capsule attention network; emotion recognition

1. Introduction

As a subjective feeling, emotion cannot be defined as a unitary concept. Existing litera-
ture suggests that it is feasible to qualify, contextualize, and define functionally discrete
emotions like happy, sad, fear, calm, etc. Specifically, many researchers affirm that emotion
is a psychological state and affects people’s cognition, behavior, and even physiological
response [1]. So, emotion plays an important role in interpersonal communication, and
emotion recognition has broad application fields in daily life, such as human—computer
interaction, education, entertainment, clinical diagnostics, etc. Traditional emotion recogni-
tion mainly uses facial expression, body posture, and voice intonation, but they are easily
controlled by people’s subjective consciousness. When people’s inner feeling is inconsistent
with their outward manifestation, the emotion recognition system will make the wrong
judgment. However, physiological signals can objectively reflect people’s emotional state
and are mainly controlled by the nervous system [2]. Specifically, the brain is the root of
feeling emotions, and recent studies have found that emotions result from coordinated
activity between the cerebral cortex and the subcortical nerve [3]. Due to being noninvasive
and user-friendly, electroencephalogram (EEG) and functional near-infrared spectroscopy
(NIRS) are commonly used physiological signals related to neural activity in the brain [4].
EEG signals have high temporal resolution, and fNIRS signals have high spatial resolution,
and both of them can reflect the emotional cognitive process of the brain [5]. The EEG
records the electrical activities in the brain from electrodes placed on the scalp, which can
monitor emotion-related brain dynamics directly. The fNIRS uses near-infrared light to
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measure the concentration change of oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (HbR) indirectly during emotion processing, and it is not affected by the EEG.

There have been several works devoted to EEG/fNIRS-based emotion recognition
from two aspects: feature extraction methods and recognition models [6,7]. The state-of-the-
art methods for emotion recognition using EEG/fNIRS are listed in Table 1. For EEG data,
Chen et al. [8] extracted six kinds of time and frequency domain features to classify different
emotions using support vector machines (SVMs) and obtained the best accuracy in differen-
tial entropy and function connectivity features with 10-fold cross-validation (CV). To learn
discriminative spatial-temporal emotional information, a multi-feature fusion convolution
neural network (CNN) inspired by GoogleNet was proposed [9], which achieved average
emotion recognition accuracies of 80.52% and 75.22% in the valence and arousal tasks of the
DEAP dataset by leave-one-subject-out cross-validation (LOSO CV). Moreover, to learn the
interaction of brain regions, Du et al. [10] proposed a multidimensional graph convolution
network (MD-GCN), which integrates the temporal and spatial characteristics of EEGs and
can classify emotions more accurately. Zhang et al. [11] proposed a multi-frequency band
EEG graph feature extraction and fusion method for emotion recognition. They achieved
average accuracies of 97.91%, 98.46%, and 98.15% for the arousal, valence, and arousal-
valence classifications for the DEAP dataset. To effectively combine the spatial, spectral,
and temporal information of an EEG, Gong et al. [12] proposed a novel attention-based
convolutional transformer neural network (ACTNN) and achieved an average recognition
accuracy of 98.47% and 91.90% on SEED and SEED-IV datasets. Wei et al. [13] proposed a
Transformer Capsule Network (TC-Net), which mainly contained a Transformer module to
extract EEG features and an Emotion Capsule module to refine the features and classify
the emotion states. Liu et al. [14] proposed a multi-level, feature-guided capsule network
(MLF-CapsNet) for multi-channel, EEG-based emotion recognition, and results showed
that the proposed method exhibited higher accuracy than the state-of-the-art methods.
For fNIRS data, Bandara et al. [15] demonstrated the capability of discriminating affective
states on the valence and arousal dimensions and provided a higher Fl-score for Valence.
Hu et al. [16] reported 10 recognizable, typical kinds of positive emotions using fNIRS and
provided support for implementing a more fine-grained positive emotion recognition. Si
etal. [17] constructed a dual-branch joint network (DBJNet) to decode fNIRS-based emotion
states, which can effectively distinguish positive versus neutral versus negative emotions
(accuracy is 74.8%; F1 score is 72.9%).

On the other hand, hybrid EEG-fNIRS was proposed to further enhance the perfor-
mance of emotion recognition. According to [18], EEG activity was intrinsically associated
with the cortical hemodynamic (fNIRS) responsiveness to negative emotional patterns.
Rahman et al. [19] discussed the applicability of EEG and fNIRS biomarkers for the assess-
ment of emotional valence. Chen et al. [20] exploited the temporal convolutional network
(TC-ResNet) to recognize the emotional features of EEG-fNIRS, which showed significant
accuracy gains of 0.24% for the EEG and 8.37% for fNIRS. Sun et al. [21] proposed a method
to jointly evaluate fNIRS and EEG signals for affective state detection. They showed that the
proposed hybrid method outperforms fNIRS-only and EEG-only approaches. The hybrid
EEG-{NIRS is considered to combine the advantages of the two modalities and compensate
for the limitations of each modality; however, the possibilities of EEG-{NIRS feature fusion
to discriminate the specific emotion states have not been investigated comprehensively.

At the present, emotion recognition based on deep learning has achieved great
progress, especially emotion feature learning and fusion domains. To comprehensively
examine the efficiency of hybrid EEG—NIRS, various deep learning algorithms have been
developed to analyze patterns from EEG and fNIRS data. However, there are still two
problems with EEG-fNIRS feature fusion for emotion recognition using a deep learning
algorithm. One main issue is requiring massive data to train the deep learning model. If the
number of samples is insufficient, the model will be affected by overfitting, the training dif-
ficulty will increase, and the recognition accuracy will decrease. Another challenge is that
the input and output neurons of the traditional CNN are in scalar form, which fails to retain
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the valuable spatial relationship between features and affects the recognition accuracy. The
input and output neurons of the capsule network are vectors, which can retain the exact
spatial position information. To overcome the information loss, it abandons the pooling
layer structure and only needs a few data to train a relatively good network. Thus, a graph
convolution and capsule attentional network (GCN-CA-CapsNet) model was proposed in
this study. Firstly, the EEG and fNIRS features were fused by graph convolution. And then,
the capsule attention module was used to assign different weights to the capsule network,

and EEG-{NIRS features from different depths were integrated efficiently.

Table 1. State-of-the-art methods for emotion recognition using EEG-fNIRS.

Method Data Features Protocol Accuracy (%)
SVM [8] EEG from DEAP time and frequency domain features 10-fold CV 89.94
CNN [9] EEG from DEAP time and frequency domain features LOSO CV 80.52 valence, 75.22 arousal
MD-GCN [10] SE]?]E?S%EIS—IV temporal and spatial features LOSO CV 92.15/90.83
GC-F-GCN [11] EEG from DEAP differential entropy 5-fold CV 98.46 valence, 97.91 arousal
ACTNN [12] SE]ES?S%EII;—IV differential entropy 10-fold CV 98.47/91.90
TC-Net [13] EEG from DEAP continuous wavelet transform 10-fold CV 98.76 valence, 98.81 arousal
MLE-CapsNet [14] EEG from DEAP preprocessed EEG 10-fold CV 97.97 valence, 98.31 arousal
SVM [15] fNIRS slope, min, max, etc. from HbO and HbR 4-fold CV -
SVM [16] fNIRS HbO/HbR 6-fold CV 83.69/79.06
DBJNet [17] NIRS HbO LOSO CV 74.80
TC-ResNet [20] EEG, fNIRS spectral features from EEG-HbO - 99.81
PSD from EEG, mean, median, etc. from
SVM [21] EEG, fNIRS leave-one-out CV 80.00

HbT, HbO, HbR

The main contributions of this paper are given as follows.

(1) Anovel EEG-fNIRS-based emotion recognition framework using a graph convolution
and capsule attention network, namely GCN-CA-CapsNet, is introduced;

(2) The CNN layer is replaced with the GCN layer, which can extract and fuse the graph
structure features and spatial correlation from the EEG and fNIRS;

(38) The capsule attention mechanism is proposed to give different primary capsules to
different attention weights, and the primary capsules with higher quality are selected
to generate better classification capsules.

The rest of the paper is organized as follows: The materials and methods are demon-
strated in Section 2. Then, the experimental results and analysis are presented in Section 3.
Finally, the conclusion and discussion are provided in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. EEGHNIRS Dataset and Preprocessing

Fifty college students, including 25 males (age: 22.92 + 1.71) and 25 females (age:
24.12 £ 1.67), volunteered for this study. All participants self-reported normal or corrected-
to-normal vision and normal hearing in the experiments. Each participant gave written
informed consent prior to participation, and all of them self-identified as right-handed
and self-reported to have no history of mental illnesses or drugs, which were the inclusion
criteria. The EEG-NIRS data from all participants were included in the data analysis. Each
participant was asked to sit in a comfortable chair facing a computer screen and assigned
to watch 60 emotional video clips, including sad, happy, calm, and fear, and each kind of
emotion had 15 video clips. The selected video clips were pre-assessed from the dimensions
of arousal and valence according to Self-Assessment Manikin (SAM) scores (1-9) from
20 subjects, who were not the experimental subjects. The detailed data description can
be obtained from https://gitee.com/tycgj/enter. The experimental protocol is shown in
Figure 1. Each video clip lasted 1~2 min, and then the participants evaluated the type of
emotion within 30 s by filling out an evaluation form. Each participant was instructed in
the experimental procedure in detail before performing the experiment.
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Figure 1. Experimental paradigm.

Both EEG and fNIRS sensors were placed on each participant’s scalp, and there was no
contact between these two hardware devices (Neuroscan SynAmps2 from Neuroscan USA,
Ltd. Charlotte, NC, USA and NirSmart from DanYang HuiChuang Medical Equipment
Co., Ltd., Danyang, China). The EEG was recorded with a 1000 Hz sampling rate and
64 channels, and the fNIRS with an 11 Hz sampling rate and 18 channels. The EEG
and fNIRS channel distribution map is shown in Figure 2. During the experiment, each
participant was required to minimize head movements to avoid signal artifacts. The
study was conducted in accordance with the Declaration of Helsinki and approved by the
Institutional Review Board of Taiyuan University of Technology. After the experiment,
each participant was paid a certain amount of money in the study.

O EEG electrode
—— {NIRS channel

Figure 2. EEG and fNIRS channel distribution map.

Furtherly, we used the EEGLAB v13.4.4b toolbox in MATLAB R2019b to preprocess
the raw EEG data as follows. The EEG data were converted to a bilateral mastoid reference
and bandpass filtered at 0.5-45 Hz cutoff frequency using a Hamming windowed sinc FIR
filter. The continuous EEG data were divided into epoch data by extracting an emotion
event, and 2 s baseline correction was applied. And then, the epoch data were segmented
into multiple samples with a window length of 3 s and a step length of 1.5 s. Finally, an
independent component analysis was run, and specified electrooculogram (EOG) artifact
components were removed from the EEG data [22].

Similar to the EEG, the raw fNIRS data were corrected using 2 s baseline and bandpass
filtered at 0.01-0.2 Hz cutoff frequency. The artifacts’ segments of sharp change were
identified and removed. And then, for the hemodynamics analysis, we converted the
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optical density to the relative concentration changes of oxygenated hemoglobin (HbO) and
deoxygenated hemoglobin (HbR) with the modified Beer-Lambert Law [23]. Due to the
more reliable measurement of cerebral blood response by HbO than HbR, the HbO-based
classifications in general showed better performance than the HbR-based ones [16]. So, the
HbO data were used and segmented into multiple samples in the same way as the EEG
signals in this paper.

2.2. Feature Extraction

After preprocessing the EEG data, we extracted differential entropy (DE) features of
each sample in five frequency bands, including 6 (0.5-4 Hz), 6 (4-8 Hz), « (8-13 Hz), $3
(13-30 Hz), and v (30-45 Hz). The DE feature was mostly used in EEG-based emotion
recognition and illustrated to be effective. The DE can measure the complexity of signals,
which can be expressed as follows:

(x =) (x—p?)
DE(x) = —/oo ! e 202 log ! e 202 dx = 110g(27m72) (1)
—co /271072 270 2

where the EEG sample x should satisfy the Gaussian distribution with N (y,¢?). It has
been proven that the sub-band signals can meet the Gaussian distribution hypothesis [24].
Because the fNIRS signal mainly reflects the hemodynamic characteristics in time
series, for the HbO sample y(i),i = 1-- - N, N is the sample length. We extracted five kinds
of features from different channels, i.e., mean ¥, variance o2, skewness s, power spectrum
density (PSD), and differential entropy (DE). These features are defined as follows:

1
T ,
V=NL (y(0)) 2)
Pl) = =3 () - 77 ®)
=y -7
1 N _\3
s(y) = W; (v(i) = 7) 4)
PSD(y) = | FFT(y(i))[* ®)
DE(y) = 3 log (2meo(y)?) ©)

where FFT represents the Fast Fourier Transform operation.

2.3. GCN-CA-CapsNet Model

On the whole, our proposed graph convolution and capsule attentional network
(GCN-CA-CapsNet) model can be divided into three crucial components: the GCN mod-
ule, capsule attention module, and dynamic routing-based classification capsule module.
Figure 3 illustrates the framework of the proposed GCN-CA-CapsNet for EEG-{NIRS-
based emotion recognition, which will be introduced in detail as follows. The code related
to this model is available at https://gitee.com/tycgj/gcn-ca-capsnet.
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Figure 3. Schematic of the proposed GCN-CA-CapsNet framework.

2.3.1. GCN Module

The graph convolutional network (GCN) can be used to process graph data by combin-
ing convolution with graph theory, which provides an effective way to explore the spatial
relationships among multiple EEG-NIRS channels. In this module, two-layer GCNs are
carried on the EEG and HbO features extracted in Section 2.2 and generate high-level
EEG-{NIRS representations.

A graph can be defined as G = {V, £}, in which V represents the set of nodes with
the number C, and £ represents the set of edges connecting these nodes. In this study,
the EEG—fNIRS feature matrix X € R€*? is used as the set of nodes, where C = 80 is the
channel number, and d = 5 is the feature dimension. Let Adj € R©*C denote an adjacency
matrix describing the connection relationships between any two nodes in V. Commonly,
the connection relationships can be characterized by the Pearson correlation coefficient
(PCC), phase locking value (PLV), Granger causality (GC), etc. Compared with the PLV and
GC, the PCC is used as an adjacency matrix with higher classification accuracy, referring to
the experimental results in Section 3.1, so we employ the PCC to construct the adjacency
matrix among the EEGNIRS channels.

The PCC measures the similarity of two vectors and its value is between —1 and 1.
The positive or negative value of the PCC can indicate whether the relationship between
two vectors is a positive or negative correlation. As the absolute value of the PCC increases,
the correlation between the two variables becomes stronger. If the PCC is 0, it indicates
that there is no correlation between the two vectors. Assuming that any two channels of
EEG—NIRS signals x;, Xj, and then we can define

cov (x;, x]-) E((xl- ) (x]- - .”xj))
P = = 7
CCy, x; 0 o @)

where cov represents the covariance, E represents expectation, and o represents the standard
deviation. Since the sampling rate between the EEG and fNIRS is different; the EEG signals
are down sampled to 11 Hz during the calculation of the PCC, which is consistent with the
sampling rate of the fNIRS signals.

It is notable that the used GCN structure is GraphSAGE [25]. Briefly, there are two
main operations in this network: the sampling and aggregation of neighbor nodes. For a
given node, relevant neighbor node features are selected according to the adjacency matrix
A, and then a new node feature is obtained through an aggregation operation. The new
node feature not only includes the information of previous nodes, but also aggregates the
features of neighboring nodes. In the process of generating new nodes, the node features of
both the EEG and fNIRS are aggregated, and the feature fusion of the EEG and fNIRS is
realized. Compared with traditional graph convolution, GraphSAGE can extract the local
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Primary
capsules

features of graph data. For the GraphSAGE with mean aggregation, the formula of the
node update can be expressed as follows:

xkt1 :f(w.MEAN({X{f}u{X}‘,weN(i)})) ®)
where Xf‘“ represents the feature of node i in layer k + 1, X¥ represents the feature of node i
in layer k, X;.‘, Vj € N(i) represents the feature vector of node j relevant with node 7 in layer
k, W represents the parameter matrix, and f represents the nonlinear activation function.
In the first GCN layer, the input dimension is 5, the output dimension is 16, and the
number of nodes is 80 (i.e., 62 EEG channels and 18 fNIRS channels). The node features
from the EEG and fNIRS are aggregated to generate new node features according to the
adjacency matrix. In the second GCN layer, the features from the first GCN layer are
aggregated, and the output dimension is 16; the number of nodes is 80. Then, the GCN
module eventually generates 160 16D features by concatenating two layers of output
features, which are used to construct the primary capsules.

2.3.2. Capsule Attention Module

In this module, through the capsule attention mechanism, the primary capsules con-
taining different depth node features are assigned different weights, so that we can pay
more attention to the important primary capsules, and the specific process is shown in
Figure 4.

Sigmoid

1x160 —>
—_——— —_— Mnode %

| | |
| I
Max pooling| . | FC | . | FCzI | Sigmoid —
' I—C} : I_> E— 1x160
I I | & | M
ol 1ol 14l
el b 1g! L
1x160
hierarchy

Figure 4. Capsule attention mechanism.

The set of primary capsules can be represented as follows, and k = 160.

U:{ul,uz,---,uk} (9)

To generate the capsule attention weight, each capsule is first maximized by pooling
layer, and the maximum of each capsule is obtained.

maxy = maxplooing (1) (10)
The above maximums are concatenated as follows:

U’ = contact(max,, maxy, - - - ,maxy) (11)



Brain Sci. 2024, 14, 820

8 of 17

After that, the above information is exchanged across nodes through 1D convolution
with a kernel size of 3, and the sigmoid function is used to provide nonlinear activation.
The node attention weight is calculated via

M,040 = sigmoid(conv1D(U’)) (12)

On the other hand, the capsule attention needs to be designed to generate the weights
to the primary capsules from different hierarchies (i.e., primary capsules from different
GCN layers). The primary capsules consist of node features at different depths, and these
features play different roles in the subsequent dynamic routing mechanism. After the max
pooling of each capsule, the hierarchy weight Mpjerrcny is calculated through the two fully
connected layers and sigmoid activation function as follows.

Miyicrarchy = sigmoid (FC, (FC(U")) (13)

The capsule attention weight M is finally obtained by adding the node weight and the
hierarchy weight, and the size is 1 x 160.

M = Myoge + Mhiemrchy (14)

Finally, the capsule attention weight M is multiplied with the primary capsule as the
output of the capsule attention module.

U =ueM (15)

2.3.3. Dynamic Routing-Based Classification Capsule Module

For the input and output vector of a capsule, the lower-level capsule is connected to
the higher-level capsule by a dynamic routing algorithm. In the capsule attention module,
we get 160 16D primary capsules as the input of the dynamic routing. To classify four kinds
of emotions, the output of the dynamic routing is 4 16D classification capsules. The outputs
of four classification capsules, calculated through the L2 norm and then activated by
Softmax, represents the probability of emotion category, and is used in the calculation of
the subsequent loss function.

The dynamic routing algorithm is shown in Figure 5. Firstly, the prediction vector i),
is produced by multiplying the output u; of the capsule attention module with a weight
matrix W;;, i € {1,2,---,160},j € {1,2,--- ,4}.

0y = Wiy (16)

Figure 5. Dynamic routing algorithm.
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And then, a weighted sum over all prediction vectors is calculated
1

where ¢;; are coupling coefficients between capsule i and capsule j in the higher layer that
are determined by the iterative dynamic routing process. The coupling coefficients sum to
1 and are determined by the routing softmax

o exp(bij)
U Yeexp(bi)

where b;; are the log prior probabilities that capsule i should be coupled to capsule j, and b;;
are updated iteratively according to Equation (20). The initial values of b;; are 0.

Finally, we use a non-linear squashing function to ensure the length of the output
vector from a classification capsule between 0 and 1, and it can be used to represent the
classification probability.

(18)

o Dl s -
- [lsi
L sj* Wi
The output v; is multiplied with the prediction vector i;; to get a scalar, which is used
to update the b;; until the set number of iterations is reached. Sabour et al. suggested that
better convergence can be obtained by using three routing iterations than one iteration [26].
Therefore, we set the maximum number of routing iterations as 3.

bij — bi]‘ + ﬁj\i " U; (20)

When the predictions of the lower capsule and the higher capsule are consistent, the
values of the b;; and ¢;; become larger, and when the predictions are inconsistent, the value of
the Cij becomes smaller. Thus, the lower capsule can send its information to the classification
capsule that is consistent with its predictions by adjusting the coupling coefficient.

The margin loss function is used to optimize the proposed GCN-CA-CapsNet model,
which is defined as follows:

L;j = Tjmax(0,m™ — ij|‘)2 + A(1 = Tj)max(0, ||vj|| — m)? (21)

where T represents the target label, and T; = 1 if the label of the input sample is j; otherwise,
Tj =0, ||vj|| represents the length of the classification capsule, and m* = 0.9 and m'= 0.1
represent the maximum and minimum margin thresholds, A = 0.5.

3. Experimental Results and Analysis
3.1. Experimental Settings and Evaluation

All experiments are performed on the Pytorch 1.10.2 deep learning framework through
NIVIDA Telsa T4 GPU. The environment platform includes Python 3.7 and CUDA 10.0.
The model is trained by an Adam optimizer with a learning rate of 0.0001. The batch size
of the training set is 32, and the maximum epoch is initiated to 200. In order to obtain
reliable evaluation results, we perform a 5-fold cross-validation (CV) on the dataset from
each subject. In each fold of the CV, 80% of samples are used to train the classifier, while
the remaining samples are used for validating the results. To comprehensively evaluate
the classification performance, the average accuracy (Acc) and standard deviation (Std)
from the 5-fold calculations are used as evaluation metrics in the experiments, where
Acc = Neorrect / Miotal, Neorrect 1S the number of correctly classified samples, and 71,4, is the
total number of samples. Meanwhile, the calculation amount (number of model parameters)
and running time of the model are compared and analyzed.

In the GCN module, the selection of the adjacency matrix is crucial to find appropriate
nodes to generate new node features through aggregation. The Pearson correlation, PLV,
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and GC were selected to explore the influence of adjacency matrices on the final emotion
recognition performance. The experimental result for different adjacency matrices is shown
in Figure 6. It shows that the proposed method obtains a better performance for the first
10 subjects when the Pearson correlation is used as the adjacency matrix compared with
PLV and GC. It is consistent with the results in [27], which used the Pearson correlation
coefficient as the adjacency matrix of graph convolutional network and achieved the best
performance in EEG emotion recognition. Thus, we chose the Pearson correlation as the
adjacency matrix in this study.

100

99 |-+ A b N\ Y S F \ ERPRRREE : Pearson -

Acc(%)

........................

...................................

94
subject
Figure 6. The recognition results of three adjacency matrices for different subjects.

On the other hand, we explored the selection of 10%, 20%, 30%, 40%, 50%, 60%, 70%,
80%, 90%, and 100% of full connection in adjacency matrix and analyzed the influence of
different percentages of connection on the emotion recognition performance. The average
accuracy of the first 10 subjects for different percentages of connection is shown in Figure 7.
It can be seen that the proposed method obtains the best performance when 40% of the
connections are selected. By removing part of the connection and selecting the most relevant
connections, the adjacency matrix of this paper can be divided into three parts. The first
part is the correlation between the EEG and EEG, the second part is the correlation between
fNIRS and fNIRS, and the third part describes the correlation between the EEG and fNIRS.
Therefore, the top 40% of connections with strong correlation in each part are selected as the
adjacency matrix of our method. Figure 8a shows the adjacency matrix with all connections,
and Figure 8b shows the adjacency matrix with the top 40% of connections.

98.6
98.4
98.2

98

97.8

Acc(%)

97.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentage of connection

Figure 7. The recognition results of different percentages of Pearson correlation connection.
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Figure 8. Adjacency matrices for (a) all connections and (b) 40% of connections.

3.2. Ablation Study

To further validate the effectiveness of each component of our GCN-CA-CapsNet
framework, we perform an ablation study. The CapsNet is regarded as the baseline frame-
work, and we superimpose the GCN and CA on the baseline framework in order, which
aims to present their positive effect on emotion recognition. The competing frameworks
are as follows.

(1) CapsNet: The CapsNet method includes two-layer CNN, a primary capsule module,
and a classification capsule module;

(2) GCN-CapsNet: Compared with the CapsNet, this network replaces the CNN with the
GCN, which is utilized to extract graph structure features from the EEG and fNIRS;

(3) GCN-CA-CapsNet: This network introduces the capsule attention mechanism, which
gives different primary capsules to different attention weights for feature fusion.

We present the experimental results in Figure 9 and Table 2, which demonstrate the
efficacy of each component of our GCN-CA-CapsNet model. As shown in Figure 9, the
recognition accuracy of our GCN-CA-CapsNet model is significantly higher than the GCN-
CapsNet model and CapsNet model for each subject (Paired samples t-test: p < 0.01). As
can be seen in Table 2, compared with the CapsNet model, the average accuracy of the
GCN-CapsNet model increases by 4.56%, and the standard deviation decreases by 2.41%.
The recognition accuracy of sad, happy, calm, and fear are increased by 5.34%, 3.78%,
4.57%, and 4.58%, respectively. Meanwhile, the number of parameters and the running
time of the GCN-CapsNet model are greatly reduced. This is mainly due to the fact that the
GCN layer can reduce the invalid background information of the 2D EEG—NIRS feature-
mapping matrix used in the CNN layer of the CapsNet model. In other words, the GCN
layer converts EEG-{NIRS features to high-level features that are then effectively used as
inputs to the primary capsules. Furthermore, because the capsule attention mechanism is
added, the number of parameters and the running time of the GCN-CA-CapsNet model
increase by 31,314 and 38 s compared with the GCN-CapsNet model, respectively. But
the average accuracy of GCN-CA-CapsNet reaches 97.91%, demonstrating the benefit
of capsule attention weights. And compared with the CapsNet model, the number of
parameters and running time of the GCN-CA-CapsNet model still decrease.

Table 2. Comparison of ablation results.

Acc (%)
Methods Number of Parameters ~ Times (s)
Sad Happy Calm Fear Avg Acc (Std)
CapsNet 91.27 92.71 90.34 92.42 91.69 (5.45) 2,897,155 1814
GCN-CapsNet 96.61 96.49 94.91 97.00 96.25 (3.04) 1,071,271 391
GCN-CA-CapsNet 97.76 98.19 97.06 98.62 97.91 (2.20) 1,102,585 429
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Figure 9. The recognition results of ablation experiment for different subjects.

To intuitively present the interpretability of the capsule attention weights, we apply
the capsule location mapping, as shown in Figure 10a. Figure 10b shows the attention
weights of capsules from the first layer of GCN, and Figure 10c shows the attention weights
of capsules from the second layer of GCN based on Figure 10a. The weights are in one-to-
one correspondence with the channel distribution of the EEG and fNIRS. It can be shown
that more attention is paid to the primary capsule generated by the first GCN layer. The
attention weights of capsules from the first GCN layer are about 0.8, and the attention
weights of capsules from the second GCN layer are about 0.5. Moreover, the parietal
and occipital lobes of the brain play a large role in emotion recognition, and the primary
capsules generated by the EEG channels have higher weights than the primary capsules
generated by the {NIRS channels. Through the capsule attention mechanism, the length
of the primary capsule is changed. In the dynamic routing mechanism, the length of the
capsule represents the category probability, and the primary capsule with higher quality
helps to generate better classification capsules and improve the recognition performance.
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Figure 10. Visualization of capsule attention weights. (a) Capsule location mapping based on EEG-
fNIRS channel distribution, (b) attention weights of capsules from first-layer GCN, and (c) attention
weights of capsules from second-layer GCN.
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3.3. Performance Comparison with Single EEG and Single fNIRS

To validate the efficacy of EEG—NIRS feature fusion, we also applied the single
modality of either EEG or fNIRS features for emotion recognition. As shown in Table 3, the
average recognition accuracy of our GCN-CA-CapsNet method jointly using EEG—{NIRS
features outperforms the accuracy using only one of them (96.17 for EEG and 84.66 for
fNIRS). Compared with single EEG, the recognition accuracies of sad, happy, calm, and fear
jointly using EEG—NIRS features are significantly increased by 1.45%, 1.72%, 2.03%, and
1.74%, respectively (Paired samples f-test: p < 0.01). Moreover, compared with single fNIRS,



Brain Sci. 2024, 14, 820 13 0of 17

the recognition accuracies of sad, happy, calm, and fear jointly using EEG-fNIRS features
are significantly increased by 14.66%, 10.00%, 15.65%, and 12.67%, respectively (Paired
samples t-test: p < 0.01). These results are consistent with the study in [21]. Our GCN-CA-
CapsNet method could effectively fuse EEG-{NIRS features, which provide comprehensive
information to boost emotion recognition performance. Since the concentration changes
of HbO based on fNIRS are slow-varying signals, their ability to characterize emotional
responses is limited.

Table 3. Performance comparison between EEG—{NIRS and single EEG/{NIRS.

Acc (%)
Methods
Sad Happy Calm Fear Avg Acc (Std)
GCN-CA-CapsNet (EEG) 96.31 96.47 95.03 96.88 96.17 (2.63)
GCN-CA-CapsNet (fNIRS) 83.10 88.19 81.41 85.95 84.66 (4.38)
GCN-CA-CapsNet
(EEG-NIRS) 97.76 98.19 97.06 98.62 97.91 (2.20)

Further, we analyze the confusion matrices for emotion recognition with different
features in Figure 11. It is observed that our GCN-CA-CapsNet method has high recognition
accuracies on the happy and fear emotions for three kinds of features. This is due to
the fact that both happy and sad video stimuli are more likely to evoke distinguishable
emotional responses. The recognition accuracy of the four emotions increases when using
the EEGNIRS features compared with single EEG features and single f{NIRS features. The
recognition accuracy of each emotion using fNIRS features is low because the fNIRS signal
has only 18 channels, and the sampling frequency is 11 Hz; the emotion-related information
is less, which is a limitation in this work. Our future work will try to increase the f{NIRS
channels and improve the accuracy.

EEG-fNIRS features
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1~
'

EEG features (b) fNIRS features
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Figure 11. Confusion matrices for emotion recognition with different features: (a) EEG features,
(b) fNIRS features, and (c) EEG-fNIRS features.

3.4. Comparison with the State-of-the-Art Methods

Table 4 presents a performance comparison between the proposed GCN-CA-CapsNet
method and recent deep learning methods, including GCN, TC-Net, MLF-CapsNet, and
ST-CapsNet on our EEG-fNIRS emotion dataset. Five-fold cross-validation tests were
performed in the same environment platform for all methods. The parameters of different
methods are set based on the corresponding literatures. The GCN method uses two-layer
GraphSAGE to learn EEGNIRS graph features. The TC-Net [13] contains a Transformer
module to extract features and an Emotion Capsule module to refine the features and
classify the emotion states. The MLF-CapsNet [14] incorporates multi-level feature maps in
forming the primary capsules to enhance feature representation and uses a bottleneck layer
to reduce the number of parameters. The ST-CapsNet [28] uses a capsule network with
both spatial and temporal attention modules to learn discriminative features. In Table 4, the
results show that our GCN-CA-CapsNet method illustrates the best recognition accuracy
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among the listed methods, which is 7.75%, 11.07%, 3.26%, and 3.90% higher than the other
four comparison methods, respectively. The outstanding performance demonstrates that
it is beneficial to combine graph convolution and capsule networks to fuse EEG—{NIRS
features, especially the spatial correlation information, and design the capsule attention
mechanism module to generate higher-quality primary capsules.

Table 4. Performance comparison with the state-of-the-art methods.

Acc(%)
Methods
Sad Happy Calm Fear Avg Acc (Std)
GCN 90.15 90.71 88.45 91.33 90.16 (5.10)
TC-Net [13] 85.62 89.35 83.84 88.54 86.84 (9.25)
MLF-CapsNet [14] 94.48 94.79 93.46 95.86 94.65 (3.80)
ST-CapsNet [28] 93.57 95.02 93.04 94.42 94.01 (2.95)
GCN-CA-CapsNet 97.76 98.19 97.06 98.62 97.91 (2.20)

4. Discussion

Emotion is a complex coordinated activity between the cerebral cortex and the sub-
cortical nerve; however, the mechanisms of how the brain processes emotions are still
unclear. Currently, the neural basis of emotions is usually studied by using physiological
signals [29,30]. Specifically, with the development of wearable devices, there is growing
interest in combining noninvasive EEGs and fNIRS to gain a more thorough knowledge of
the brain correlates of emotion [31]. The EEG can capture the rapid temporal dynamics of
emotional response, and fNIRS can identify the more locally concentrated brain activity.
The integration of EEG and fNIRS data offers a spatial-temporal complementarity for emo-
tion recognition. In this paper, the accuracy of our GCN-CA-CapsNet method jointly using
EEG-{NIRS features outperforms the accuracy of using only one of them. However, there
are still three limitations. First, the inconsonant sampling frequency between the EEG and
fNIRS leads to the difficulty of temporal feature fusion. The temporal alignment and data
enhancement of fNIRS need to be considered when EEG—fNIRS features are fused [32,33].
Second, most hybrid EEG-fNIRS studies have focused on local brain regions [34]; the
discrepancies in the recording locations between the EEG and fNIRS lead to the difficulty
of spatial feature fusion. In this study, the f{NIRS signal has only 18 channels involved
in the prefrontal and temporal lobes, and the emotion-related spatial information is less
than that of the EEG. Our future work will try to increase the fNIRS channels and improve
the accuracy. Third, fNIRS signals can be converted to concentration changes of HbO and
HbR. Both of them can characterize physiological responses to emotions [15,21]. In [16], the
HbO-based classifications showed better performance than the HbR-based ones. Moreover,
several previous studies [35,36] showed that the signal/noise ratio of HbO was much
higher than that of HbR. To reduce the calculated amount, this study focused on the HbO
concentration changes. In future work, we will further explore the influence of HbO-HbR
on emotion recognition.

On the other hand, the multi-channel EEG—fNIRS signal is non-Euclidean data; tradi-
tional CNNs have limitations in extracting spatial connection features from EEG—NIRS
data [37]. In this paper, we address the challenges based on the GCN, attention mechanisms,
and CapsNet [38]. The EEG-{NIRS data can be converted to a graph and then be processed
to learn high-level emotional features by the GCN efficiently. The capsule network can
retain the exact spatial position information using the vector forms. Specifically, the CNN
layer is replaced with the GCN layer, and the different depth features from the multiple
GCN layers are used as the primary capsules. Moreover, to generate better classification
capsules, a capsule attention mechanism is proposed to select the higher-quality primary
capsules. The efficacy of the proposed GCN module and capsule attention module is
validated by an ablation study in Section 3.2. Extensive experiments in Section 3.4 demon-
strate that the proposed GCN-CA-CapsNet method achieves more satisfactory performance
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against the state-of-the-art methods and prove that the proposed method has an effective
emotion feature learning capability from EEG—{NIRS.

It is well-known in the emotion literature that age, gender, and cultural differences
among individuals affect the emotional response to a given stimulus [16,39]. In this
study, 50 college students, including 25 males (age: 22.92 £ 1.71) and 25 females (age:
24.12 + 1.67), volunteered and were recruited. They did not have significant differences
in age, culture, or educational experience. However, the emotion recognition accuracy of
the different subjects is obviously different in Figure 9. We furtherly study the correlation
between different emotional responses and EEG/fNIRS brain signals for subjects with
different genders and cultural differences and construct a transferable emotional brain
signal feature learning model, so as to improve the accuracy and generalization of emotion
recognition under cognitive differences.

5. Conclusions

In this paper, a novel EEG-fNIRS-based emotion recognition framework using a graph
convolution and capsule attention network, namely GCN-CA-CapsNet, is introduced.
Specifically, the CNN layer is replaced with the GCN layer, which can extract and fuse the
graph structure features from the EEG and fNIRS. And the different depth features from the
GCN layers are used as the primary capsules. Moreover, a capsule attention mechanism is
proposed to give different primary capsules to different attention weights for feature fusion.
So, the primary capsules with higher quality are selected to generate better classification
capsules in the dynamic routing mechanism, and the recognition performance is improved.
The efficacy of the proposed GCN module and capsule attention module is validated by an
ablation study. Furthermore, the comparisons of the recognition results demonstrate that
the proposed GCN-CA-CapsNet method achieves a more satisfactory performance against
the state-of-the-art methods, and the best accuracy can reach 97.91%.
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