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Abstract: Motor impairment is a common issue in stroke patients, often affecting the upper limbs.
To this standpoint, robotic neurorehabilitation has shown to be highly effective for motor function
recovery. Notably, Machine learning (ML) may be a powerful technique able to identify the opti-
mal kind and intensity of rehabilitation treatments to maximize the outcomes. This retrospective
observational research aims to assess the efficacy of robotic devices in facilitating the functional
rehabilitation of upper limbs in stroke patients through ML models. Specifically, clinical scales, such
as the Fugl-Meyer Assessment (A-D) (FMA), the Frenchay Arm Test (FAT), and the Barthel Index
(BI), were used to assess the patients’ condition before and after robotic therapy. The values of
these scales were predicted based on the patients’ clinical and demographic data obtained before the
treatment. The findings showed that ML models have high accuracy in predicting the FMA, FAT,
and BI, with R-squared (R2) values of 0.79, 0.57, and 0.74, respectively. The findings of this study
suggest that integrating ML into robotic therapy may have the capacity to establish a personalized
and streamlined clinical practice, leading to significant improvements in patients’ quality of life and
the long-term sustainability of the healthcare system.

Keywords: stroke; upper limbs; robotic rehabilitation; machine learning; Fugl-Meyer Assessment
(FMA); Frenchay Arm Test (FAT); Barthel Index (BI)

1. Introduction

Stroke is a sudden event caused by issues in blood flow to the brain, which can be
ischemic (due to arterial occlusion) or hemorrhagic (caused by blood vessel rupture). Both
types of stroke cause irreversible damage to brain tissue [1]. Ischemic stroke results from
the occlusion of cerebral arteries, while hemorrhagic stroke results from vessel rupture in
the brain [2–5].

This event is one of the leading causes of death and disability globally, with signif-
icant impacts on health and the economy [1]. Non-modifiable risk factors include age,
gender, ethnicity, and genetics [6,7]. However, there are also modifiable factors such as
hypertension, diabetes, smoking, and obesity that can be managed to reduce risk [7]. The
incidence of stroke varies among different populations and geographical regions, with a
global increase in recent decades [8–10]. Despite medical advancements, stroke remains a
major cause of mortality and disability, resulting in substantial economic costs [11,12].
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Notably, motor impairment in stroke patients is a prevalent and difficult problem
that impacts a substantial proportion of people after a stroke. Studies suggest that around
80% of individuals who have had a stroke develop hemiplegia, which is a common and
widespread consequence [13], and almost 70% of individuals who have had a stroke en-
counter functional impairments, with motor dysfunction being a prominent symptom [14].
This dysfunction is often linked to basal ganglia dysfunction [15], and alterations in the
primary motor cortex (M1) [16]. Moreover, it is worth highlighting that upper limb recov-
ery after a stroke is challenging, with only about 50% of stroke survivors likely to regain
some functional use of their upper limbs [17]. This highlights the importance of effective
interventions for upper limb rehabilitation post-stroke.

Various therapies have been examined to tackle motor impairment in individuals who
have had a stroke. For instance, Transcranial Magnetic Stimulation (TMS) has been used to
study motor dysfunction and recovery in stroke patients [18], and acupuncture targeting
the basal ganglia has been demonstrated as effective in inducing neuroplasticity in stroke
patients who have motor impairment [15].

In addition, therapies such as robotic neurorehabilitation have shown efficacy in the
enhancement of motor functions of individuals with neurological disabilities [19]. Specifi-
cally, robotic neurorehabilitation represents an advanced form of therapy that uses robotic
devices to assist patients during exercises and rehabilitation activities. These devices offer
greater precision in movements and allow for more accurate customization of treatment
based on the specific needs of the patient [20]. Additionally, robotic devices provide
immediate and measurable feedback on recovery progress, encouraging and motivating
patients during rehabilitation. This is particularly important, as highly motivated patients
are more inclined to consider rehabilitation essential for recovery and to take an active
role in the process [21,22]. They are also oriented towards independence and respond
positively to information provided by professionals; this process facilitates learning and
provides an objective assessment of patient performance, which are essential concepts
in the rehabilitation journey [23]. Importantly, enhancing the patients’ attitude towards
therapy, their awareness of the need for treatment, their need for prompts to participate,
their level of active involvement in therapy activities, and their attendance throughout the
rehabilitation program, is associated with reduced levels of depression, denial of disease,
and negative emotional states, while also being connected to increased levels of positive
emotional states [21].

Noteworthy, the employment of robotic rehabilitation for upper limbs in stroke pa-
tients has emerged as a promising approach to enhance motor recovery and functional
outcomes post-stroke [24]. Among the robotic devices employed to this aim, the Armeo
Power® (Hocoma AG, Volketswil, Switzerland) has gained considerable interest in stroke
rehabilitation because of its efficacy in improving the recovery of upper limb motor skills
and functional outcomes in stroke patients. The Armeo Power is a specialized exoskeleton
created to aid in the execution of complex upper limb movements in three dimensions. It
offers rigorous and repeated training focused on the shoulder, elbow, wrist, and gripping
motions, with the goal of enhancing motor skills and coordination [25]. This robotic device
provides support for the whole upper limb, spanning from the shoulder to the hand. It is
equipped with a gravity-support system that effectively offsets the weight of the patient’s
arm during treatment sessions [26]. Studies have shown that the Armeo Power robot has
a beneficial effect on the restoration of upper limb motor function in individuals who
experienced a stroke [27].

However, it is worth to highlight that in order to maximize the outcomes of the reha-
bilitative process, it is crucial to define the appropriate dosage of robotic therapy. The need
to understand which types and intensities of rehabilitation therapies result in optimal and
cost-effective outcomes has been a driving force of research for decades [28–30]. However,
maximizing rehabilitation outcomes requires a thorough understanding of how dosage, fre-
quency, and type of therapy influence recovery. In this context, the use of machine learning
(ML) can be a powerful tool. In fact, through the analysis of a wide range of clinical and
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individual data, ML can help identify which rehabilitation therapies are most effective for
each patient, thereby contributing to maximizing outcomes and improving quality of life
after a stroke [31,32]. Specifically, recent studies have employed ML algorithms to classify
stroke patients and healthy controls, analyzing parameters such as gait and electromyogra-
phy (EMG) [31]; other ML models have demonstrated significant accuracy in diagnosis,
risk stratification, optimizing medical treatment, and predicting patient prognosis [32].
Moreover, ML models have also been utilized to adjust the difficulty of a controller in the
unstable training mode of a trunk rehabilitation robot, with the goal of optimizing partici-
pants’ balance performance and postural stability [33] and to predict improvements in daily
activities and patient participation after stroke intervention by analyzing demographic
data, stroke characteristics, and initial assessment scores [34]. Additionally, ML was used to
automatically analyze patients’ muscle activity during walking videos, thereby enhancing
the evaluation and support for rehabilitation [35].

This retrospective observational study aims to evaluate the effectiveness of robotic
devices in the functional recovery of upper limbs in stroke patients. The main objective is to
analyze the progress made by patients during robot-assisted rehabilitation and to develop
ML models to predict such improvements. Several ML approaches have been investigated
in detail to predict clinical metrics employed to assess upper limb motor function after
the robotic rehabilitation, including the Fugl-Meyer Assessment (A-D) (FMA) [36], the
Frenchay Arm Test (FAT) [37], and the Barthel Index (BI) [38], starting from demographic
and clinical data measured before the robotic treatment.

2. Materials and Methods
2.1. Participants

In the context of this retrospective study, a sample of 30 acute stroke patients was
considered; among the participants, there were 16 males and 14 females, with an average
age of 64.6 years old (standard deviation: 14.9), and it was found that the stroke affected
the dominant limb of 14 participants. The inclusion criteria for this study are as follows:
individuals between the ages of 18 and 85 years old, who have experienced their first-ever
ischemic stroke as confirmed by brain imaging (CT or MRI). Participants must also have
severe or moderate upper limb hemiparesis, as determined by their FMA score (FMA ≤ 44).
The stroke should be in the subacute phase, occurring within 60 days from the onset.
Additionally, participants should have a Modified Ashworth Scale (MAS) score of less than
3 for the shoulder, elbow, and wrist.

Exclusion criteria for this study include stroke occurring in the brain stem or cere-
bellum, unstable general clinical conditions, severe visual impairment, recent or planned
upper limb botox injections, orthopedic or neurological diseases affecting the function of
the affected upper limb, discontinuation of treatments for at least 1 week or 5 consecutive
sessions, and participation in other innovative treatment protocols for the upper limb.

2.2. Clinical Evaluation

To assess upper limb motor function in stroke patients, in this study the FMA, FAT, and
BI were employed. The FMA is a widely validated procedure usually employed to evaluate
body function according to the International Classification of Functioning, Disability, and
Health (ICF) [36]. The FMA is grounded in a hierarchical understanding of motor recovery
post-stroke, reflecting the natural sequence of motor return and sensory restoration. The
FMA comprises several domains assessing different facets of sensorimotor function:

1. Motor Function: this domain evaluates voluntary movement within hemiplegic limbs
and includes assessments of reflex activity, voluntary movements within synergistic
patterns, and movements that progress beyond these synergies. It is scored using a
three-point ordinal scale, where 0 indicates no movement, 1 partial movement, and
2 complete movement within normal limits.

2. Sensory Function: the sensory evaluation measures light touch and proprioceptive
acuity, crucial for effective motor control.
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3. Balance: this component assesses static and dynamic balance capabilities, integral for
functional independence.

4. Joint Function: this includes assessments of range of motion and joint pain, which
are vital for determining the mechanical constraints on voluntary movement and
potential sources of discomfort.

5. Coordination and Speed: these tests evaluate the ability to perform movements
involving coordination and speed, aspects that are often compromised following
neurological damage.

Each section is scored separately, and the sum provides a comprehensive measure of
an individual’s sensorimotor abilities. The maximal scores differ based on whether the
entire assessment or specific sections are administered, facilitating flexibility in clinical and
research settings. The FMA is highly regarded not only for its thoroughness but also for its
ability to provide objective measures for tracking rehabilitation progress and evaluating
the efficacy of interventions. This standardization makes the FMA a cornerstone in stroke
rehabilitation research and practice, providing consistent, reproducible results across differ-
ent clinical environments. Importantly, in this study, only the motor performance items of
the upper extremity (0–66) were considered.

The FAT measures proximal motor control of the upper extremity and dexterity during
activities of daily living (ADL) [37]. Developed to provide a straightforward and reliable
measure of arm function, the FAT specifically focuses on the assessment of arm and hand
movements that are essential for performing daily activities. The FAT consists of five tasks,
each scored on a binary scale where a score of 1 indicates successful completion and a score
of 0 indicates failure. The tasks assessed include the following:

1. Reaching and Retrieving: the patient is asked to reach out and pick up a small wooden
block, testing the ability to coordinate movements of the shoulder and elbow.

2. Gripping and Holding: the patient must grasp the same block with a full hand grip,
assessing the basic handgrip functionality.

3. Voluntary Movement of the Hand to the Back of the Head: this task examines the range
of motion and dexterity required to perform more complex, coordinated movements.

4. Voluntary Movement of the Hand to the Mouth: the patient must touch their mouth,
evaluating the ability to perform essential daily activities like eating.

5. Placing the Hand onto the Opposite Shoulder: this part of the test assesses the patient’s
ability to cross the midline of the body, which is crucial for a range of daily tasks.

Each task is designed to mimic practical, everyday activities, thereby assessing the
practical motor capabilities of the upper extremities. The total score is the sum of the scores
from the five tasks, with a maximum score of 5 indicating full function.

Lastly, the BI serves as a simple measure of independence to assess rehabilitation
progress; it comprises 10 tasks evaluated based on the time or assistance required by the
patient [38]. It quantitatively assesses a person’s degree of independence in ten areas of
ADL and mobility. The BI has been extensively used in clinical settings and research to eval-
uate the functional independence of patients, particularly in the contexts of rehabilitation
following stroke, neurological disorders, and elderly care.

The BI focuses on ten specific tasks:

1. Feeding: to assess the ability to eat independently using appropriate utensils.
2. Bathing: to evaluate the ability to wash oneself in the bath or shower.
3. Grooming: to include tasks such as face washing, shaving, and teeth brushing.
4. Dressing: to measure the ability to select and wear clothes and shoes.
5. Bowels: to assess control over bowel movements.
6. Bladder: to evaluate control over bladder function.
7. Toilet Use: to measure the ability to get to the toilet, use it appropriately, and return

independently.
8. Transfers: to include movements such as from wheelchair to bed and return, including

sitting up in bed.
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9. Mobility: to assess walking on a level surface or using a wheelchair over a designated
distance.

10. Stairs: to evaluates the ability to ascend and descend stairs independently.

Each task is scored on a scale, typically 0, 5, 10, or 15, indicating the level of assistance
required. The total possible score is 100, with higher scores representing greater indepen-
dence. The scale is designed to be simple and quick to administer, requiring only a short
time to complete through direct observation and interview. The BI is particularly noted for
its reliability and validity in various patient populations. It is sensitive enough to detect
clinical changes over time, making it valuable for monitoring progress in rehabilitation
settings. Furthermore, the index’s focus on basic physical ADLs relevant to everyday living
contributes to its widespread use in predicting the need for support services upon discharge
from hospital or rehabilitation facilities.

Patients participated in a rehabilitation program consisting of 20 sessions, each lasting
50 min. The sessions were carried out 5 times per week and included the use of the Armeo
Power exoskeleton. Additionally, patients received 1 session of traditional rehabilitation
therapy that lasted the same period.

The Armeo Power is a motorized orthosis designed for the upper limb, offering six
degrees of freedom (DoFs). These include three DoFs for the shoulder, one for elbow
flexion, one for forearm supination, and one for wrist flexion. Every joint is motorized
and fitted with two angle sensors. The robot can bear the weight of the patient’s arm,
creating a sense of movement, and aiding in a wide range of three-dimensional movements
during the execution of exercises. The use of a suspension system enables the operator to
establish and modify the responsiveness of the robot based on the individual attributes
of each patient. The lengths of the arm and forearm may be adjusted to accommodate a
wide range of patients. The interface used for the implementation of workouts, presented
in the form of games, is specifically developed to replicate arm movements and provide a
straightforward virtual setting. Users may choose from several degrees of difficulty, which
will decide the speed, direction, and range of movement based on the individual’s mobility
throughout recovery.

Each robotic session was divided into two parts: the first part, lasting 10 min, involved
passive mobilization to familiarize the patient with the exercises and reduce any spasticity
they may have, whereas the second part, lasting 40 min, consisted of task-oriented exercises
that were adjusted based on the patient’s abilities. The difficulty of these exercises gradually
increased throughout the training period.

2.3. Experimental Design

The study was designed as an observational retrospective clinical study conducted on
a cohort of patients affected by acute stroke. Detailed demographic and clinical data were
collected, including age, sex, side of hemiplegia, dominant arm, and Bamford classification
(i.e., Total anterior circulation infarct, TACI, Posterior circulation infarct, POCI, Lacunar
infarct, LACI, Partial anterior circulation infarct, PACI), along with the time elapsed since
the initial event [39]. Differences in the performance of the affected limb’s movement were
evaluated using the FMA, FAT, and BI both at T0, before the start of the treatment, and at
T1, one month after the treatment initiation, to monitor the rehabilitation progress over
time. Notably, clinical information after 15 days from the first robotic session are available
for 12 patients of the study sample. This approach allowed for a detailed characteriza-
tion of the study population and assessment of the treatment effectiveness in relation to
individual variables.

2.4. Data Analysis and Machine Learning

The data analysis, model implementation, training, and testing were conducted using
MATLAB 2023b. Particularly, paired t-tests were employed to compare the scores of the
tests employed at T0 and T1. Additionally, a repeated measure analysis of variance (RM-
ANOVA) was performed to compare the clinical scores of those patients whose data after
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15 days were available, followed by a post hoc analysis with multiple comparisons and
Bonferroni correction.

Notably, the normality of the distribution was assessed through the Jarque–Bera test
and visual inspection of normal probability plots. This approach was chosen to compare
differences between two measurements obtained on the same group of individuals at
different time points, eliminating inter-individual variability. Cohen’s d coefficient was
calculated to assess the effect size of these changes, providing information on the clinical
relevance of changes over time in motor and functional abilities of participants.

Additionally, ML models were implemented to predict outcomes following rehabil-
itation. These models used a dataset comprising demographic, clinical, and functional
data collected from patients, along with FAT, FMA, and BI measurements, to predict future
rehabilitation outcomes. Regarding demographic data, several variables were consid-
ered, including patients’ age. Specifically, age was categorized into four groups: less
than 30 years, 31–50 years, 51–70 years, and over 70 years, to assess how age might in-
fluence rehabilitation response. Another demographic variable considered was patients’
gender, which may have implications on rehabilitation response and thus was included in
the models.

Regarding clinical data, several variables were considered, including patients’ domi-
nant arm, side of hemiplegia (i.e., the side of the body affected by stroke), time elapsed from
stroke event to start of rehabilitation, and Bamford classification of stroke. These clinical
factors can significantly influence prognosis and rehabilitation response. Finally, functional
data included FAT, FMA, and BI measurements at T0, which were used as indicators of
patients’ motor and functional abilities.

The combined use of all these data in ML models allowed identification of which
variables were most significant in predicting rehabilitation effectiveness and what could be
the expected outcomes for individual patients.

The first model trained was a bagging ensemble of decision trees; this approach
involves creating multiple decision trees, each trained on a random subset of the training
data. In this case, a set of decision trees with a minimum leaf size set to 8 and considering
all available variables during training were utilized. Bagging randomly selected a subset
of the training data for each tree, repeating the process for 30 learning cycles, ensuring
sufficient diversity among trees in the ensemble. This improved the model’s ability to
capture various nuances of the relationship between predictor variables and the response
variable without overly fitting to the training data.

The second model trained was a Gaussian process regression (GP), a technique that
uses a Gaussian process to model the relationship between predictor variables and the
response variable. In this case, GP was defined by a kernel function, determining the shape
of the relationship between variables. Different model parameters were specified, including
the constant base function and the exponential kernel function. The GP regression was
trained using the training data, aiming to find the best representation of the GP that fits the
observed data. This process involves estimating model parameters, including the kernel, to
maximize the likelihood of the observed data.

The third model trained was a kernel regression, which uses a kernel function to
model the relationship between predictor variables and the response variable. Regres-
sion is performed using the least squares method, which seeks to minimize the sum of
squares of differences between model predictions and actual values of the response variable.
Several parameters were considered in the model setup, such as the number of kernel
expansion dimensions, the regularization parameter Lambda, and the kernel scale. Lambda
regulates the importance of regularization terms in the model, controlling its complexity;
the parameters were automatically optimized during training to maximize the model’s
predictive ability.

The fourth model trained was a neural network for regression, a type of model that
uses a neural network structure to predict the response variable based on the provided
predictor variables. In the model configuration, the neural network was defined with a
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hidden layer containing 100 neurons and using the Rectified Linear Unit activation function
with a maximum number of iterations set to 1000.

All models underwent leave-one-out cross-validation, with Root Mean Square Error
(RMSE), Mean Square Error (MSE), and R squared (R2) used as evaluation metrics. In order
to assess the consistency between the measured variables and the predicted ones, paired
t-tests, regression line graphs, and Bland–Altman plots were employed.

3. Results

From the Jarque–Bera test, it emerged that the data follow a normal distribution. The
results include the p-values and h-stat in Table 1.

Table 1. p-values and h-stats of the Jarque–Bera test.

Samples H-Stats p-Value

FMA T0 0 0.212
FMA T1 0 0.060
FAT T0 0 0.059
FAT T1 0 0.107
BI T0 0 0.500
BI T1 0 0.051

Additionally, a normplot was conducted to further confirm the normality of the data,
as shown in Figure 1.
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Significant changes were observed between T0 and T1 in the evaluation of clinical
scales. The t-test revealed a significant difference for FMA, as well as for FAT and BI, as
reported in Table 2.

Table 2. p-values of the t-test between T0 and T1.

Clinical Scale Samples p-Value

FMA T0 vs. T1 2.13 × 10−6

FAT T0 vs. T1 7.53 × 10−8

BI T0 vs. T1 1.33 × 10−8

Additionally, to assess the effect size between T0 and T1, Cohen’s d indices were
calculated. For FMA, the Cohen’s d index was 1.733, for FAT it was 1.302, and for BI
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it was 1.424. Furthermore, the RM-ANOVA performed for those patients whose data
were available also after 15 days from the first administration delivered p-values for FMA,
FAT, and BI between pre-treatment, 15 days, and 1 month of 7.876 × 10−4, 2.285 × 10−2,
and 2.161 × 10−2, respectively. The p-values of the t-tests for FMA related to multiple
comparisons between pre-treatment and 1 month, pre-treatment and 15 days, and 15 days
and 1 month were, respectively, 2.569 × 10−7, 1.057 × 10−5, and 7.373 × 10−4. For FAT,
the p-value values related to multiple comparisons between pre-treatment and 1 month,
pre-treatment and 15 days, and 15 days and 1 month were 2.168 × 10−3, 2.010 × 10−3,
and 2.098 × 10−2. Concerning the BI, the p-value values related to multiple comparisons
between pre-treatment and 1 month, pre-treatment and 15 days, and 15 days and 1 month
were 2.168 × 10−3, 2.168 × 10−3, and 1.271 × 10−3. Moreover, a t-test was conducted
to determine if there were differences in mobility recovery at 1-month post-treatment,
considering whether the affected limb was the dominant or non-dominant one. The results
of the t-tests for FMA, FAT, and BI between dominant and non-dominant arm are as follows:
the p-value for FMA is 0.027, for FAT is 0.096, and for BI is 0.018.

To assess the effectiveness of the models, we examined the regression line plots and
Bland–Altman plots; these results are presented in Figures 2–4 each showing the various
scores considered in the analysis.
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Figure 2. (a) On the left, the regression line plot, and on the right, the Bland–Altman plot for the FMA
score of the Bagged Ensemble of Decision Trees model. (b) On the left, the regression line plot, and
on the right, the Bland–Altman plot for the FMA score of the Gaussian Process model. (c) On the
left, the regression line plot, and on the right, the Bland–Altman plot for the FMA score of the Kernel
Regression model. (d) On the left, the regression line plot, and on the right, the Bland–Altman plot
for the FMA score of the Neural Network model.
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Figure 3. (a) On the left, the regression line plot, and on the right, the Bland–Altman plot for the
FAT score of the Bagged Ensemble of Decision Trees model. (b) On the left, the regression line plot,
and on the right, the Bland–Altman plot for the FAT score of the Gaussian Process model. (c) On the
left, the regression line plot, and on the right, the Bland–Altman plot for the FAT score of the Kernel
Regression model. (d) On the left, the regression line plot, and on the right, the Bland–Altman plot
for the FAT score of the Neural Network model.

Brain Sci. 2024, 14, x FOR PEER REVIEW 9 of 17 
 

and on the right, the Bland–Altman plot for the FMA score of the Gaussian Process model. (c) On 
the left, the regression line plot, and on the right, the Bland–Altman plot for the FMA score of the 
Kernel Regression model. (d) On the left, the regression line plot, and on the right, the Bland–Altman 
plot for the FMA score of the Neural Network model. 

 
Figure 3. (a) On the left, the regression line plot, and on the right, the Bland–Altman plot for the FAT 
score of the Bagged Ensemble of Decision Trees model. (b) On the left, the regression line plot, and 
on the right, the Bland–Altman plot for the FAT score of the Gaussian Process model. (c) On the left, 
the regression line plot, and on the right, the Bland–Altman plot for the FAT score of the Kernel 
Regression model. (d) On the left, the regression line plot, and on the right, the Bland–Altman plot 
for the FAT score of the Neural Network model. 

 
Figure 4. (a) On the left, the regression line plot, and on the right, the Bland–Altman plot for the BI 
score of the Bagged Ensemble of Decision Trees model. (b) On the left, the regression line plot, and 
on the right, the Bland–Altman plot for the BI score of the Gaussian Process model. (c) On the left, 

Figure 4. (a) On the left, the regression line plot, and on the right, the Bland–Altman plot for the BI
score of the Bagged Ensemble of Decision Trees model. (b) On the left, the regression line plot, and on
the right, the Bland–Altman plot for the BI score of the Gaussian Process model. (c) On the left, the
regression line plot, and on the right, the Bland–Altman plot for the BI score of the Kernel Regression
model. (d) On the left, the regression line plot, and on the right, the Bland–Altman plot for the BI
score of the Neural Network model.

The results are summarized in Table 3.
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Table 3. R2, RMSE, and MSE values for validation and test sets across various models.

Model Clinical
Scale R2 Validation

RMSE
Validation MSE Validation

Bagged Ensemble of
Decision Trees

FMA 0.79 0.368 0.226
FAT 0.49 0.591 0.482
BI 0.41 0.606 0.586

Gaussian Process
FMA 0.73 0.393 0.261
FAT 0.41 0.633 0.579
BI 0.74 0.416 0.255

Kernel regression
FMA 0.69 0.467 0.325
FAT 0.46 0.696 0.633
BI 0.62 0.548 0.385

Neural Network
FMA 0.56 0.786 0.832
FAT 0.57 0.637 0.715
BI 0.61 0.564 0.595

Afterwards, t-tests were conducted between the true values and the predicted values
by the model to assess the significance of the predictions; the obtained p-values are reported
in Table 4.

Table 4. p-values of t-tests between true values vs. predicted values.

Model Clinical Scale p-Value

Bagged Ensemble of Decision Trees
FMA 0.507
FAT 0.856
BI 0.802

Gaussian Process
FMA 0.955
FAT 0.830
BI 0.549

Kernel Regression
FMA 0.886
FAT 0.959
BI 0.845

Neural Network
FMA 0.713
FAT 0.895
BI 0.326

4. Discussion

The main objective of the research was to leverage the potential of ML to predict
clinical outcomes related to robotic assistive therapy for the upper limbs’ recovery in post-
stroke patients. To this aim, various significant parameters were considered, including
patients’ age, gender, distance from the stroke event, and the onset of rehabilitation, along
with the Bamford classification to define the type of stroke and whether the affected arm
was dominant or not. This allowed correlations and patterns that could positively influence
the rehabilitation process to be identified.

The results of the inferential analysis using the t-tests revealed significant differences
between the values of FAT, FMA, and BI scores across the two time points (T0 and T1).
This result suggests that the treatment significantly improved the motor functions of the
patients. Additionally, to assess the effect between T0 and T1, Cohen’s d indices were
calculated. The obtained values indicate a medium to large effect of the treatment on all
three clinical scales, with FMA showing the largest effect, followed by BI, and finally FAT.
This suggests that the treatment had a significant impact on patients’ mobility, strength,
and daily activities scores.

For 12 subjects, FMA, FAT, and BI values were also available midway between T0
and T1, at 15 days post-treatment. The RM-ANOVA, followed by a post hoc analysis with
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Bonferroni correction, revealed significant differences between the three time periods for
each clinical scale, with an improvement observed over time. Finally, a t-test was conducted
to determine if there were differences in mobility recovery at one-month post-treatment,
considering whether the affected limb was the dominant or non-dominant one. The results
show that the differences between dominant and non-dominant arms are statistically
significant for FMA and BI, while they are not significant for FAT. These results suggest
that the treatment’s effect on mobility recovery may vary depending on the involved limb.

For the FMA clinical scale, the Bagged Ensemble of Decision Trees model demonstrated
a good level of fit to the data, with a coefficient of determination (R2 validation) of 0.79.
However, the RMSE validation (0.368) and MSE Validation (0.226) values are moderately
high, suggesting that the model’s predictions may have some degree of error.

Regarding the Gaussian Process model, it achieved a slightly lower R2 validation (0.73)
compared to the Bagged Ensemble of Decision Trees model, but the RMSE validation (0.393)
and MSE Validation (0.261) values are similar; this indicates that, despite the model’s ability
to adequately explain the variation in the data, its predictions may be as accurate as the
decision tree-based model. The results suggest that the Bagged Ensemble of Decision Trees
model may be the best choice to predict the FMA clinical scale, thanks to its good balance
between data adaptability and prediction accuracy. Notably, the Gaussian Process model
also offers a valid alternative with similar results.

For the FAT clinical scale, the obtained results are influenced by the fact that it is a
reduced scale; therefore, even small discrepancies in the predicted values can be significant
considering the narrow range of values of the scale. The Bagged Ensemble of Decision Trees
model achieved an R2 of 0.49, indicating that approximately 49% of the variation in the data
can be explained by the predictor variables used; however, the RMSE validation (0.591) and
MSE Validation (0.482) values are quite high, suggesting that the model’s predictions may
have a significant degree of error, even considering the reduced scale of the target variable.
Notably, the Kernel Regression model showed an R2 of 0.46, with RMSE validation (0.696)
and MSE Validation (0.633) values higher than the Bagged Ensemble of Decision Trees,
suggesting that the predictions of the Kernel Regression model may be less precise than
the first model. Therefore, for the FAT scale, the results of the models are influenced by its
reduced nature, with small discrepancies in the predicted values that can have a significant
impact. In fact, a reduced range is associated with a limited variability for the model to
learn from. This can make it harder for the model to distinguish between the different
values and make accurate predictions. Notably, this aspect is intrinsic to the learning
process of the machineries, but it does not invalidate the reliability of the results. The
Bagged Ensemble of Decision Trees model appears to be the best choice in terms of balance
between data adaptability and prediction accuracy, even considering the sensitivity of the
FAT scale

For the BI clinical scale, the Gaussian Process model achieved the highest R2 (0.74),
indicating better data adaptability; however, the RMSE validation (0.416) and MSE Vali-
dation (0.255) values are lower when compared to the other models, suggesting that the
model’s predictions may be more accurate compared to the others. Hence, among all the
models considered, the Gaussian Process model seems to offer the best balance between
data adaptability and prediction accuracy.

From the statistical analysis conducted through the t-tests between the true values and
those predicted by the four models (Bagged Ensemble of Decision Trees, Gaussian Process,
Kernel Regression, and Neural Network), it emerged that the p-values are all greater than
0.05; this result indicates that there are no statistically significant differences between the
true values and those predicted for the three clinical scales under consideration. These
results demonstrate that no-bias is present between the measured and the predicted values
of all the metrics considered, showing good performance of the models.

Considering the Bland–Altman plot, it should be highlighted that some models pre-
sented a systematic error in the prediction of the rehabilitative metrics. Particularly, con-
cerning the FMA, the error associated with the prediction performed through the Kernel
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Regression model showed a negative slope, whereas the Neural Network model had a
positive trend. Regarding the FAT, the prediction performed through the Kernel Regression
model exhibited a negative relationship between the error and the value of the metric. For
the BI, the Bagged Ensemble of Decision Trees model and the Kernel Regression model
exhibited a trend in the errors related to the value of the BI. These results are also confirmed
by the regression equation linking the predicted and measured metrics. In fact, a model
should present a slope of 1 and a quote of 0 to perfectly represent the measured values.
Concerning the FMA, the Neural Network model provided the slope closest to 1, but the
quote is quite far from 0 (−4.78). Also, regarding the FAT and BI, the best result was
achieved by the Neural Network model, with a slope of 0.72 and 1.20, and a quote of 0.69
and −1.20, respectively.

Importantly, it should be stressed that for the choice of the best model, the presence
of biases and systematic errors and the slope and quote of the regression should be taken
into account. Particularly, concerning the systematic errors, they can be mathematically
corrected which will improve the performance of the models. Considering the strength
and the weakness of each model developed, it is clear that further studies are needed for a
refinement of the performance.

It should be considered that the analysis was conducted on a relatively limited sample
of subjects, which may limit the generalizability of the results; future studies with larger
samples could confirm these conclusions. Importantly, despite the study’s relatively small
sample size, the investigation utilized a leave-one-out cross-validation procedure. This
involved removing one subject at a time and testing the regressor outcome on that subject,
allowing for an evaluation of the out-of-sample performance, improving the generalizability
of the findings. Expanding the sample size might potentially enhance the effectiveness of
the classifier by mitigating the risk of overfitting within the sample. Furthermore, increasing
the sample size will allow for employing more advanced regression algorithms (e.g., Deep
Learning), which were not used in this study because of the reduced sample numerosity and
the probable over-fitting effect. Moreover, it should be highlighted that the results rely on
retrospective observational data, thus prospective or randomized controlled trials should
be performed in order to confirm the generalizability of the findings, the long-term efficacy,
and cost-effectiveness. In fact, further studies will allow for a more frequent data collection
(not limited to two or three sessions in one month), providing a better understanding of the
rehabilitation progress. Additionally, most subjects in the sample fell within the age range
of 51 to 70 years, which may limit the ability to generalize the results to different age groups.
However, it should be noted that previous studies reported that the incidence of stroke
peaks in the age range of 46–65 years [40], that the vast majority of stroke victims are over
the age of 60 [41], and that the average age of stroke survivors is around 64–65 years [42].
These findings suggest that the age range considered in this study is indicative of the age
most affected by stroke, but enlarging the dataset will allow for the consideration of other
age ranges, thus increasing the generalizability of the models. Additionally, it is crucial to
highlight that SP can exhibit variability in their recovery trajectories, hence it is crucial to
consider the variability intrinsic to the population in the training sample, in order to make
the model able to take into account this variability for the prediction. Indeed, tailoring
models for each patient can provide more detailed prediction outcomes, but models, as
those developed in this study, able to provide a prediction of the recovery considering
the demographic, clinical, and functional data collected from patients, may be a source of
support for the clinicians for planning the rehabilitation therapy. In this perspective, further
studies should be implemented to consider other scales able to capture all dimensions of
motor function recovery or patient well-being.

Another aspect to consider is that the data were collected using assessment tools, which
may introduce a risk of error due to subjectivity or limited precision of the instruments
used. Other factors that could influence rehabilitative outcomes, such as overall health
status or adherence to therapies, could be considered. In fact, a patient’s general health
and consistent adherence to rehabilitation protocols and therapies is crucial for achieving
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optimal results. Ensuring that patients are motivated and supported in following their
treatment plans can enhance the effectiveness of rehabilitation efforts. For this reason,
further studies should be performed taking into account this aspect in the ML models.

However, in this context, it is pertinent to note that several previous studies have
focused on fundamental aspects in the predictive and therapeutic field using advanced
machine learning techniques. A previous study explored the use of various ML algorithms
to improve the accuracy of predicting upper limb motor recovery by integrating clinical
data with detailed biomechanical measurements. Specifically, the study utilized the Motor
Activity Log (MAL) to measure the activity of the paretic arm at home and combined these
data with upper limb kinematics during reaching and grasping tasks measured in the
laboratory. The results revealed significant variations in prediction accuracy depending
on the combination of features and algorithms used: for predicting the MAL ratio, using
two features related to trunk compensation with the KNN algorithm achieved an accuracy
of 84.4% before applying Principal Component Analysis (PCA); using two features from
ARAT and Fugl-Meyer scores with the SVM algorithm increased the accuracy to 86.6%
without applying PCA; the best result for predicting the MAL ratio, with an accuracy of
93.3%, was achieved by combining three features from ARAT and trunk compensation
with the Random Forest algorithm after applying PCA. For predicting the accel-ratio,
using two features related to trunk compensation with the SVM algorithm resulted in an
accuracy of 77.7% before PCA; using one feature from either ARAT or Fugl-Meyer with
Birch or KNN algorithms improved the accuracy to 84.4% without PCA; the most accurate
prediction for the Accel ratio, with an accuracy of 88.8%, was obtained by combining three
features from ARAT and trunk compensation with the KNN algorithm after applying
PCA [43]. Another study employed Logistic Regression, Random Forest, and Decision Tree
algorithms to predict the risk of stroke, taking into account the influence of smoking habits
and optimizing healthcare management strategies for affected patients. The results showed
that the Decision Tree, with smoking status included, achieved an accuracy of 98.78%, which
increased to 99.46% without considering smoking status; meanwhile, Logistic Regression
reached an accuracy of 71.21% with smoking status and 81.34% without; Random Forest, on
the other hand, achieved an impressive accuracy of 99.98% including smoking status [44].
Another approach examined a broad set of variables, including demographic data, initial
National Institutes of Health Stroke Scale scores, and laboratory test results, using deep
neural networks, Random Forests, and Logistic Regression to develop predictive models
for post-stroke outcomes. This study included a total of 2,604 patients, of whom 2043
(78%) had favorable outcomes. The developed predictive models were compared with
the ASTRAL score, an assessment system used to estimate risk and predict post-stroke
outcomes based on various clinical and demographic factors. The area under the curve
(AUC) for the deep neural network model was significantly higher than that of the ASTRAL
score (0.888 vs. 0.839; p < 0.001); however, the areas under the curves for the Random Forest
(0.857; p = 0.136) and Logistic Regression (0.849; p = 0.413) models were not significantly
higher than that of the ASTRAL score [45]. Also, the use of Decision Trees, Naïve Bayes, and
Artificial Neural Networks was investigated to accurately identify patients at risk of stroke.
These models demonstrated varying levels of performance, with Decision Trees providing
clear interpretability and good accuracy, Naïve Bayes offering simplicity and effectiveness
with a solid performance, and Artificial Neural Networks achieving the highest accuracy
due to their ability to capture complex patterns in the data: the results led to the proposal
of personalized preventive interventions through a dedicated web platform for health
management, aiming to enhance early detection and prompt lifestyle modifications [46].
Another study demonstrated the effectiveness of a weighted voting approach, combining
ten different classifiers for stroke prediction and early detection; the classifiers used in this
approach are Logistic Regression, Stochastic Gradient Descent, Decision Tree Classifier,
AdaBoost Classifier, Gaussian Classifier, Quadratic Discriminant Analysis, Multi-layer
Perceptron Classifier, K-Nearest Neighbors Classifier, Gradient Boosting Classifier, and



Brain Sci. 2024, 14, 759 14 of 17

XGBoost Classifier. The results of the base classifiers are aggregated using the weighted
voting approach to achieve the highest accuracy, reaching an accuracy of 97% [47].

Moreover, a multimodal approach should be implemented, hence further studies
are indeed necessary to evaluate, for instance, the neuroplasticity induced by the robotic
rehabilitation of the upper limbs in stroke patients through the employment of portable
neuroimaging tools [48,49]. To this aim, further studies including, for instance, electroen-
cephalography (EEG) or functional near infrared spectroscopy (fNIRS) could provide
further information regarding the effect of the rehabilitation to the neural plasticity. Im-
portantly, it should be highlighted that the quality and completeness of clinical and de-
mographic data are critical to the accuracy and robustness of ML models in healthcare.
High-quality data ensures accurate representation of real-world scenarios, preventing er-
rors and inconsistencies that could degrade model performance. Completeness of data is
equally important, as handling missing data appropriately and ensuring comprehensive
coverage prevent biases and enhance model generalization. Robust ML models require
high-quality and complete data to generalize well to new data, avoiding overfitting and
underfitting. In this study, a reliable validation and testing of models was performed thanks
to the quality and completeness of the data, ensuring accurate performance metrics.

Concerning the employment of the developed models in clinical practice, it should be
considered that they take as input demographic, clinical, and functional data collected from
patients that are already considered in the clinical workflows. Hence, employing these
models implies the development of a software with a user-friendly graphical user interface
where the clinicians can provide as input the requested information already acquired
during the clinical assessment. To this aim, training sessions for healthcare professionals
can be organized to properly employ these models in clinical practice.

It should be highlighted that the use of ML opens broad prospects in the field of
rehabilitation, allowing for personalized treatment tailored to each patient and for constant
monitoring of patient progress, thereby adjusting therapies in real time. The employment
of the developed method ensures a more effective and targeted treatment, while simulta-
neously reducing the risk of complications or therapeutic inefficacy. Therefore, ML not
only provides new opportunities to optimize rehabilitative outcomes but also to identify
and address potential obstacles to patient progress early on. Importantly, these results
could also foster the establishment of shared guidelines concerning the administration of
robotic rehabilitative therapies for the upper limbs recovery. In this perspective, it is worth
noting that although establishing shared guidelines for robotic rehabilitative therapies can
standardize clinical practices and improve outcomes, achieving this requires extensive
validation and collaboration. Rigorous clinical trials and evidence-based research are nec-
essary to ensure guidelines are effective across diverse settings. Moreover, collaboration
among clinicians, researchers, technology developers, and policymakers is crucial, along-
side centralized data sharing to continuously update guidelines. Additionally, training and
support for healthcare providers are also essential for effective implementation. Thus, while
promising, realizing these guidelines will need comprehensive validation and cooperative
efforts across the healthcare spectrum.

In addition, ethical and privacy implications of the employment of ML in clinical
practice should be considered. In fact, the use of physiological and rehabilitative data
presents major issues about user privacy and autonomy. Hence, establishing a framework
for ethical monitoring procedures is essential; however, defining widely acceptable rules
remains an ongoing issue. In this perspective, another ethical issue is related to the fact
that advanced technologies like robotic devices and ML could make the rehabilitation
process less accessible, especially in resource-limited settings. To address this issue, several
strategies can be implemented. Cost reduction can be achieved through subsidies, grants,
and bulk purchasing, making technologies more affordable. In addition, training programs
and tele-rehabilitation can ensure that local healthcare providers are equipped to use these
technologies effectively. Furthermore, partnerships between the public and private sectors,
as well as international cooperation, can facilitate the sharing of resources and knowledge.
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However, defining a solution to this relevant issue is still an ongoing concern. Finally, it
should be highlighted that integrating ML in robotic therapy could pave the way for a more
personalized and effective clinical practice, with a significant impact on patients’ quality of
life and the sustainability of the healthcare system.

5. Conclusions

This research focused on using ML to maximize robotic rehabilitation outcomes in
stroke patients for the recovery of the upper limbs’ motor functions. The results indicate
that employing ML can significantly optimize rehabilitation outcomes, allowing successful
prediction of rehabilitative metrics (i.e., FMA, FAT, and BI) from pre-therapy values. This
approach will foster the creation of standardized protocols for the implementation of
robotic rehabilitation treatments aimed at recovering upper limb function. Finally, it is
important to emphasize that incorporating ML into robotic treatment has the potential to
create a more individualized and efficient clinical practice, which would greatly benefit
patients’ quality of life and the long-term viability of the healthcare system.
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