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Abstract: Background: Mental health issues are increasingly prominent worldwide, posing significant
threats to patients and deeply affecting their families and social relationships. Traditional diagnostic
methods are subjective and delayed, indicating the need for an objective and effective early diagnosis
method. Methods: To this end, this paper proposes a lightweight detection method for multi-
mental disorders with fewer data sources, aiming to improve diagnostic procedures and enable
early patient detection. First, the proposed method takes Electroencephalography (EEG) signals
as sources, acquires brain rhythms through Discrete Wavelet Decomposition (DWT), and extracts
their approximate entropy, fuzzy entropy, permutation entropy, and sample entropy to establish the
entropy-based matrix. Then, six kinds of conventional machine learning classifiers, including Support
Vector Machine (SVM), k-Nearest Neighbors (kNN), Naive Bayes (NB), Generalized Additive Model
(GAM), Linear Discriminant Analysis (LDA), and Decision Tree (DT), are adopted for the entropy-
based matrix to achieve the detection task. Their performances are assessed by accuracy, sensitivity,
specificity, and F1-score. Concerning these experiments, three public datasets of schizophrenia,
epilepsy, and depression are utilized for method validation. Results: The analysis of the results from
these datasets identifies the representative single-channel signals (schizophrenia: O1, epilepsy: F3,
depression: O2), satisfying classification accuracies (88.10%, 75.47%, and 89.92%, respectively) with
minimal input. Conclusions: Such performances are impressive when considering fewer data sources
as a concern, which also improves the interpretability of the entropy features in EEG, providing a
reliable detection approach for multi-mental disorders and advancing insights into their underlying
mechanisms and pathological states.

Keywords: mental disorders detection; electroencephalography (EEG); entropy; machine learning

1. Introduction

Currently, approximately 970 million people suffer from mental disorders, which
usually lead to varying degrees of impairment in cognitive, emotional, and behavioral
mental activities [1]. Typical mental disorders include schizophrenia, epilepsy, depression,
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and so on. Schizophrenia is a severe mental disorder marked by symptoms such as
hallucinations, delusions, disordered thinking, erratic behavior, and agitation. Particularly,
more devastating than other mental disorders, acute schizophrenia significantly reduces the
life expectancy of those affected by nearly 20 years compared to the general population [2].
Second, epilepsy, a neurological condition caused by abnormal electrical discharges in the
brain, results in episodes characterized by loss of consciousness and prolonged seizures,
affecting about 50 million people globally [3]. Lastly, depression is a profoundly debilitating
mental health disorder characterized by persistent sadness, self-doubt, and even severe
suicidal tendencies [4]. Based on statistics from the World Health Organization (WHO),
an estimated 4.4% of the global population, which equates to approximately 322 million
people, are currently living with depression [5]. During the first year of the Coronavirus
Disease 2019 (COVID-19) pandemic, the incidence of depression saw a significant rise of
25%. This increase translates to approximately 80 million additional cases of depression.
Despite continuous updates to diagnostic instruments and treatment methods, the scarcity
of medical equipment and outdated healthcare standards means that few patients are
identified early and receive timely treatment. Hence, mental disorders are spreading
progressively worldwide [6].

Undoubtedly, early detection of mental disorders is vital. However, their diagnosis
relies heavily on the doctor’s experience of the patient’s symptoms and medical expertise,
making it highly subjective. For example, in the diagnosis of depression, in addition to
the use of self-rating scales from the International Classification of Diseases, 11th Edition
(ICD-11) [7] and the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-
5) [8], there are also traditional psychometric questionnaires, such as the Beck Depression
Inventory (BDI) [9] and the Hamilton Depression Rating Scale (HDRS) [10]. According
to a meta-analysis of 50,731 patients from 118 studies by Mitchell et al. [11], the accuracy
of depression diagnosis was found to be only 47.3%. Depending on questionnaire self-
assessment is a time-consuming and inaccurate approach, especially in populations with a
weak sense of self-judgment (e.g., children and the elderly), and its accuracy plummets.
Therefore, a reliable and objective detection way is preferred and desired in this field.

Electroencephalography (EEG) records electrophysiological signals of neuronal activity
in the brain, providing an objective response to brain activity and playing a vital role in
diagnosing mental disorders [12]. Specifically, it is a non-invasive method that only requires
attaching electrodes to the scalp for collecting electrical signals, making it a safer option.
In addition, it is capable of resolving the electrical activity of the brain at the millisecond
level, offering the possibility of studying rapid changes in the brain. Thus, this technique
is widely used not only in clinical diagnoses such as epilepsy, depression, schizophrenia,
and so on but also in neuroscience, psychology, and cognitive science. For example,
Movahed et al. [13] designed a classification framework for depression by extracting the
statistical, frequency domain, and brain region association features of EEG, which can
accomplish a classification accuracy of 99%. Qiao et al. [14] introduced a TanhReLU-based
Convolutional Neural Network (CNN) for EEG-based classification of Major Depression
Disorder (MMD), offering a promising accuracy of 98.59%. Gupta et al. [15] developed
a privacy-preserving federated learning-based multimodal system utilizing Bidirectional
Long Short-term Memory (BiLSTM) through audio and EEG data, reaching an accuracy
of 99.9% for the MMD detection task. Hu et al. [16] presented an Iterative Gated Graph
Convolutional Network (IGGCN) for epileptic seizure detection with an average F1-score
and recall of 91.5%, and 91.8%, respectively. Nithya et al. [17] used a majority rule-based
Local Binary Pattern (LBP) approach to achieve the highest accuracy of 95.18% on the
Freiburg dataset for epileptic seizure detection. Baygin et al. [18] developed a hybrid
deep learning network to extract the features of EEG to conduct autism spectrum disorder
detection with an accuracy of 96.44%. Kumar et al. [19] extracted both Histogram of
Local Variance (HLV) and Symmetrical Weighted Local Binary Pattern (SLBP) features
from EEG signals for detecting schizophrenia, realizing an accuracy of 92.85%. Mardini
et al. [20] adopted a Genetic Algorithm (GA) in conjunction with four models for EEG
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signal analysis for epilepsy detection. They found that an Artificial Neural Network (ANN)
achieves a higher accuracy. Chen et al. [21] offered a short-time sequence model based
on a CNN to extract features from EEG signals for building a detection framework for
depression with an accuracy of 99.15%. In other fields, Wang et al. [22] combined time-
frequency and non-linear features of EEG to classify bruxism using a fine-tree classifier.
Similarly, Bardak et al. [23] proposed a model consisting of Adaptively Designed Neuro-
fuzzy Inference System (ANFIS) classifiers in parallel, obtaining great results in emotion
recognition utilizing EEG signals. These aforementioned studies demonstrate that EEG
is an effective input data source for mental disorders detection and other related fields,
whether employing traditional machine learning methods or deep learning models.

Generally, an EEG-based mental disorders detection framework consists of signal
processing, feature extraction, and classification model establishment. First, because EEG
signal acquisition is susceptible to noise from sources such as eye movements, blinking,
cardiac activity, and muscle movements, it is necessary to filter them for obtaining pure
EEG data. To this end, a bandpass filter and a fourth-order Butterworth filter can elimi-
nate both the high-frequency noise and low-frequency artifacts [24]. In another study by
Wirsich et al. [25], filters were used not only to control the frequency contents between
0.5 Hz and 70 Hz but also to eliminate the power supply frequency noise generated during
the acquisition process. Then, to further analyze the specificity of the EEG signals and
provide quality inputs to the classifier, trustworthy features need to be extracted, which are
typically categorized into the statistical domain (e.g., mean, skewness, kurtosis, maximum,
minimum, empirical distribution function percentile, empirical distribution function slope,
etc.), spectral domain (e.g., Fast Fourier Transform (FFT), Wavelet Transform (WT), spectral
fundamental frequency, spectral maximal peak, etc.), and temporal domain (e.g., auto-
correlation, differential mean, curve coverage area, cross-collar rate, etc.) [26]. In addition,
deep learning models such as CNN can be utilized to implement extractors for extracting
valuable features automatically [27]. Finally, conventional machine learning classifiers,
such as Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Naive Bayes (NB),
Generalized Additive Model (GAM), Linear Discriminant Analysis (LDA), Decision Tree
(DT), etc., are employed to categorize EEG signals based on applied features [28]. More-
over, diverse neural network models, such as LSTM, ANN, Recurrent Neural Network
(RNN), and Temporal Convolutional Network (TCN), are also available [29]. Meanwhile,
multiple classifiers can be integrated using ensemble learning methods, such as bagging,
boosting, and random subspace, to further enhance the performance of hybrid classification
models [30]. As seen, the previous mental disorders detection contributes to the field of
brain science. Nonetheless, most of them are only specific to one kind of disorder (e.g.,
schizophrenia, epilepsy, depression, or others), and an approach that is well-suited for
various mental disorders is limited.

To address this drawback, this paper proposes a lightweight detection method for
multi-mental disorders employing the entropy-based matrix derived from single-channel
EEG signals, which offer non-invasive and real-time monitoring of brain activity. This paper
aims to address the critical need for objective and effective early detection methods for
mental disorders, particularly in light of the limitations of traditional subjective diagnostic
tools. Thus, the significance of this paper lies in its potential to enhance diagnostic accuracy
with fewer data sources, making the approach not only more accessible but also portable,
enabling broad applicability in healthcare cases. To achieve this, first, it is necessary to
filter the interference of noisy signals, and a fifth-order Butterworth filter is applied to
obtain the information within the frequency range of 0.5–70 Hz of the EEG recording.
Second, since the abnormal activities of Delta (δ), Theta (θ), Alpha (α), Beta (β), and
Gamma (γ) waves are related to mental disorders, the Discrete Wavelet Transform (DWT)
is applied to decompose the EEG signals into those aforementioned waves that represent
the frequency ranges of 0.5–4 Hz, 4–8 Hz, 8–16 Hz, 16–32 Hz, and 32–64 Hz, respectively,
which are also known as brain rhythms. Next, to better quantify the abnormal activities
of five brain rhythms, the approximate entropy (AE), fuzzy entropy (FE), sample entropy
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(SE), and permutation entropy (PE) are extracted from single-channel EEG signals, so
20 features in total for one channel. Such entropy features describe the signal instability,
where AE evaluates the irregularity of the signal, FE measures noise and uncertainty better,
improving recognition of complex signals, SE quantifies the complexity and randomness
of the signal, and PE captures the non-linear characteristics of the signal. Subsequently,
to characterize the signal comprehensively, these 20 features are applied to generate an
entropy-based matrix, providing quality inputs for the machine learning classifiers. Finally,
six conventional classifiers, including SVM, kNN, NB, GAM, LDA, and DT, are employed
for the entropy-based matrix to investigate the detection tasks for three public datasets of
schizophrenia [31], epilepsy [32], and depression [33]. In addition, to avoid overfitting in
the limited experimental samples in the datasets, leave-one-out cross-validation (LOOCV)
is used to evaluate classification performance. After the analysis of the results from three
datasets, the representative single-channel signals, as well as the optimal classifiers, can be
identified. Such findings reliably assess the validity of the proposed method and ensure
that its results maintain robustness for individuals with various mental disorders. For
better illustration, the overall framework is depicted in Figure 1.
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Figure 1. The overall framework of the proposed lightweight mental disorders detection method.

Particularly, this paper provides the following contributions:

1. A multi-mental disorders detection method based on the entropy-based matrix is
proposed, which not only increases the interpretability of entropy features to detect
the abnormal activity of brain rhythms but also offers a reliable solution for various
mental disorders;

2. From the experimental results, both the optimal classifier with high generalizability
and the representative channel with impressive classification performance are selected.
Such a lightweight way provides the proper classifiers and channels that are beneficial
for developing portable mental disorder detection devices through few data sources;

3. The method validation employs three mental disorders datasets (schizophrenia,
epilepsy, and depression), helping to advance insights into the underlying mech-
anisms and pathological states of these disorders with great detail.

The rest of this paper is organized as follows: Section 2 presents the experimental
datasets. Then, the details about the proposed multi-mental disorders detection method are
described in Section 3. Section 4 shows the results and discussion. Finally, the conclusion is
drawn in Section 5.
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2. Experimental Datasets

Aiming to a multi-mental disorders detection method, the EEG signals from diverse
conditions are necessary for evaluations. Consequently, three typical mental disorders,
schizophrenia [31], epilepsy [32], and depression [33], have been investigated. Figure 2
draws their corresponding EEG channels, and Table 1 summarizes their key information.
More details are described as follows:
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Table 1. Key information of three EEG mental disorders datasets.

Dataset Schizophrenia Epilepsy Depression

Number of participants (Healthy/Patient) 84 (39/45) 318 (139/179) 119 (57/62)
Number of EEG channels 16 14 19

Time duration 1-min approximately five minutes 300 s
Sampling rate 128 Hz 128 Hz 256 Hz

2.1. Schizophrenia

The schizophrenia dataset [31] is a publicly available resource from the Laboratory
of Neurophysiology and Neurocomputer Interfaces at Moscow State University. During
data collection, the subjects were divided into two groups after observation by profes-
sional doctors of the Psychiatric Research Center: one group of healthy school adolescents
(39 subjects) and the other group of adolescents with symptoms of schizophrenia (45 sub-
jects). EEG signals of a 1 min duration were acquired from both groups of subjects using a
16-channel device (shown in Figure 2a) with a sampling frequency of 128 Hz.

2.2. Epilepsy

The epilepsy dataset [32] was collected in two regions of Africa: Guinea-Bissau and
Nigeria. In Guinea-Bissau, 97 subjects participated, including 51 epileptic patients and
46 healthy controls. Each subject participated in approximately five minutes of EEG signal
collection, during which the first three minutes were recorded with eyes closed and the
subsequent two minutes with eyes open, resulting in the collection of 97 sets of EEG signals.
In Nigeria, 221 subjects participated, including 128 epileptic patients and 93 healthy controls.
Subjects were numbered in order of participation, with odd-numbered subjects tested with
eyes open and even-numbered subjects tested with eyes closed, resulting in 221 sets of EEG
signals. In total, 179 sets of epileptic signals and 139 sets of healthy signals. In addition,
the experiments were conducted using a 14-channel data acquisition device (shown in
Figure 2b) with a sampling frequency of 128 Hz.
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2.3. Depression

The depression dataset [33] was acquired from an experiment approved by the Human
Ethics Committee of Hospital Universiti Kebangsaan Malaysia, Kelantan, Malaysia. The
experiment recruited two groups: one group of 34 depression outpatients (17 males and
17 females, aged between 27 and 53 years old) and another group of 30 age-matched
healthy controls (21 males and 9 females) without any other mental disorders. Both groups
were diagnosed by a medical professional to ensure that their conditions matched the
subgroup category they were placed in. Then, EEG signals were recorded in two states,
eyes-open and eyes-closed, resulting in 128 sets of EEG signals. In addition, the signals
were collected utilizing an international standard 10–20 system (19-channel, shown in
Figure 2c) with a sampling frequency of 256 Hz. Since the eye state of the subject is not the
aim of this paper, the signals from both eyes-open and eyes-closed states were mixed for
the experiment. Moreover, several signals were not provided on the public website due to
data loss, resulting in 119 sets of EEG signals (57 sets for depression and 62 sets for healthy
controls) for method evaluation.

3. Proposed Method
3.1. Signal Processing

First, as raw EEG signals are often contaminated by various artifacts and noise, such
as Electrocardiography (ECG) and Electrooculography (EOG), a preprocessing step is
necessary to enhance the signal quality and reliability of the analysis. Thus, the raw
EEG signals are filtered through a fifth-order Butterworth band-pass filter to obtain the
0.5–70 Hz portion, effectively removing those noisy interferences and ensuring the signal
is reliable for further analysis. Once filtered, the EEG signals are transformed from the
time domain to the frequency domain for decomposition. Since the FFT is limited in
acquiring frequency information that changes over time, DWT is employed, which enriches
the concept of localization by providing a dynamic time-frequency window that adapts
to frequency changes. This adaptability can help avoid the data redundancy that arises
from the Continuous Wavelet Transform (CWT) [34]. In addition, the orthogonality of the
Daubechies 4 (DB-4) wavelet basis function enhances the efficiency of signal processing,
as its smoothness makes it highly suitable for analyzing smooth transitions and detailed
variations, which is beneficial for EEG signals containing physiological brain information
and subtle fluctuations [35].

DWT can be represented as a binary tree implemented by a multi-layered set of high
and low-frequency filters. Depending on the sampling rate of the datasets used, different
levels of DWT are required for decomposition. For example, an EEG signal x[t] with a
sampling rate of 128 Hz needs to be decomposed by a four-level DWT through DB-4 as the
basis wavelet function, as illustrated in Figure 3.

In Figure 3, for the first level of decomposition, x[t] is divided into a high-frequency
coefficient (D1) and a low-frequency coefficient (A1). In the second level, A1 is further
decomposed into D2 and A2, and this process continues. Specifically, A4, D4, D3, D2, and
D1 correspond to five brain rhythms in the proposed method, i.e., Delta, Theta, Alpha, Beta,
and Gamma waves, respectively. This decomposition allows for a detailed analysis of the
EEG signals, acquiring the essential characteristics of such brain rhythms.

Typically, the DWT is implemented through Multi-Resolution Analysis (MRA) and
filter banks. As for the MRA, the input signal x[t] is decomposed into low-frequency and
high-frequency components at different scales. The low-frequency component, known as
the approximation coefficient, indicates the coarse information of the signal. The high-
frequency component, known as the detail coefficient, contains the fine details of the signal.
The filter banks consist of a low-pass filter for extracting the approximation coefficients and
a high-pass filter for obtaining the detail coefficients, as expressed in Equations (1) and (2):

aj+1[k] = ∑n h[n − 2k]aj[n] (1)
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dj+1[k] = ∑n g[n − 2k]dj[n] (2)

where aj represents the level-j approximation coefficient, dj denotes the level-j detail co-
efficient, h[n] means the low-pass filter, g[n] is the high-pass filter, n denotes the index of
the discrete sample point of the current level signal, and k means the index of wavelet
coefficients after downsampling.
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When employing the DB-4 as a basis wavelet function of DWT, its low-pass filter
coefficients and high-pass filter coefficients are shown in Equations (3) and (4):

h[0] =
1 +

√
3

4
√

2
, h[1] =

1 +
√

3
4
√

2
, h[2] =

1 +
√

3
4
√

2
, h[3] =

1 +
√

3
4
√

2
(3)
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3.2. Feature Extraction

The second step is feature extraction, which can be generally divided into two main
categories [36]. One involves extracting features using a feature extractor constructed by
deep learning models. While this approach beneficially enhances classification accuracy,
it necessitates a large number of samples for training the model. Another way employs
statistical, non-linear, functional connectivity, or other features to detect mental disorders.
Although the DWT is also utilized to analyze the spectral domain, it typically entails
energy analysis or estimating the power spectral density. In this regard, entropy analysis of
dynamics reveals vital information often not captured in spectral analysis and is well-suited
for analyzing non-stationary signals [37]. That means the entropy analysis is sensitive to
non-linear dynamics and less affected by artifacts and noise. Specifically, each of these
entropy measures exhibits properties that complement one another in quantifying the
non-linear dynamics of brain activity. As stated, AE is sensitive to signal irregularity, SE
addresses bias in small datasets, FE handles noise effectively, and PE captures the non-linear
time series characteristics. This combination allows for a robust representation of the brain
rhythms across different states. Therefore, four kinds of entropies, i.e., AE, FE, SE, and PE,
are extracted to analyze and characterize brain rhythms in the proposed method. This step
can assess the irregularity, complexity, and randomness of EEG, enabling the identification
of abnormal brain activities and the classification of mental disorders accordingly.
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AE quantifies the regularity and unpredictability of fluctuations in time-series data,
which require only a relatively short amount of data to produce a more robust estimate and
is suitable for characterizing non-stationary, non-linear EEG signals. Mathematically, AE is
obtained as follows [38]:

Suppose that a time series containing N data points: u(1), u(2), . . . , u(N). Construct it
as a subsequence of length m:

→
x (1),

→
x (2),. . .,

→
x (N − m + 1), where

→
x (i) = {u(i), u(i + 1), . . . , u(i + m − 1)}, i = 1 → N − m + 1 .

First, the maximum distance d[
→
x (i),

→
x (j)] between each

→
x (i) and

→
x (j) from all other

subsequences is calculated by Equation (5):

d
[→

x (i),
→
x (j)

]
= maxk=0→m−1

∣∣∣→x (i + k)−→
x (j + k)

∣∣∣ (5)

Then, the number of cases where d[
→
x (i),

→
x (j)] is less than r (threshold) is counted and

its ratio to the total number of N − m is calculated and denoted as Cm
i (r):

Cm
i (r) =

1
N − m

{
d
[→

x (i),
→
x (j)

]
< r

}
(6)

Next, the logarithm of Cm
i (r) is obtained, and the average of all the values taken by i is

calculated and denoted as ϕm(r):

ϕm(r) =
1

N − m + 1

N−m+1

∑
i=1

lnCm
i (r) (7)

Lastly, by repeating the above steps, the AE value is acquired:

AE(m, r) = limN→∞[ϕm(r)− ϕm+1(r)] (8)

SE is similar to the AE calculation process but excludes i = j cases when traversing all
combinations of

→
x (i) and

→
x (j), which is insensitive to lost data, even if as much as 1/3 of

data are lost [39].
FE indicates the complexity and uncertainty of time-series data. Unlike other entropy

features, it employs fuzzy set theory to represent similarities in time series as fuzzy affili-
ations. This way avoids the loss of information due to binary classification, providing a
more stable and continuous measure of complexity. Its value is calculated as follows [40]:

Similar to the AE, but with a slightly different presence in
→
x (i), where

→
x (i) = {{x[(u(i)], x[(u(i + 1))], . . . , x[(u(i + m − 1))]} − x0[u(i)]}, i = 1 → N − m + 1, and
x0[u(i)] is the mean of the consecutive

→
x (i):

x0(i) =
1
m

m−1

∑
k=0

x(i + k) (9)

Like (5), the distance between each
→
x (i) and

→
x (j) from all other subsequences is

calculated at first, excluding the case of i = j. Then, a new variable named fuzzy weight
is applied. Combining with the threshold r and the distance d[

→
x (i),

→
x (j)] to measure the

similarity between
→
x (i) and

→
x (j), denoted as Dm

ij :

Dm
ij (n, r) = e−(dm

ij )
n/r (10)

Next, to define a new function called ϕm(n, r):

ϕm(n, r) =
1

N − m

N−m

∑
i=1

[
1

N − m − 1

N−m

∑
j=1,j ̸=i

Dm
ij (n, r)] (11)
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As a result, the FE value is acquired by repeating the above steps:

FE(m, n, r) = limN→∞[ϕm(n, r)− ϕm+1(n, r)] (12)

PE is useful for detecting kinetic mutations and time-series randomness and enables
quantitative assessment of the random noise contained in the signals. It is appropriate
for short-time data and has a certain degree of noise immunity, which makes it ideal for
portable EEG-based systems. Its calculation can be expressed as follows [41]:

To perform phase space reconstruction on time-series u of length N, a matrix Y can
be obtained:

Y =


x(1) x(1 + t)
x(2) x(2 + t)
x(j) x(j + t)

. . .

. . .

. . .

x(1 + (m − 1)t)
x(2 + (m − 1)t)
x(j + (m − 1)t)

...
...

...
...

x(K) x(K + t) . . . x(K + (m − 1)t)

 (13)

where m represents the embedding dimension, t is the delay time, and K = N − (m − 1)t,
so each row in Y represents a reconstructed component (totally K).

After that, rearranging each reconstructed component in ascending order yields a set
of symbol sequences formed by the indexes of the positions of the elements in the vector,
denoted as S(l):

S(l) = {j1, j2, . . . , jm}, l = 1, 2, 3, . . . , K (14)

where j1, j2, . . ., jm represent the indices of the positions of the elements. So, by counting
the number of occurrences of each S(l), the PE value is acquired through the probability of
the S(l), denoted as Pj:

PE(u) = −
k

∑
j=1

Pjln(Pj) (15)

Here, from a preliminary test, set m = 2, n = 2, r = 0.15 times the standard deviation of
the EEG signals.

3.3. Entropy-Based Matrix

After feature extraction, considering that abnormal brain rhythm activity is usually
associated with mental disorders, the entropy features properly reveal the irregularity,
complexity, randomness, and non-linearity of signals, which can further characterize these
abnormal activities. Specifically, higher entropy values indicate more chaotic and complex
signals, signifying more pronounced abnormal activities. Based on that, the proposed
method uses the concept of feature-level fusion to generate an entropy-based matrix that
consists of 20 features through the AE, SE, FE, and PE extracted from the five brain rhythms,
as expressed in Equation (16):

Entropy matirx =


AEGamma FEGamma SEGamma PEGamma

AEBeta FEBeta SEBeta PEBeta
AEAlpha
AETheta
AEDelta

FEAlpha
FETheta
FEDelta

SEAlpha
SETheta
SEDelta

PEAlpha
PETheta
PEDelta

 (16)

The entropy-based matrix integrates five brain rhythms with four entropy features,
effectively using the properties of rhythms in mental disorders and the sensitivity of
entropies to describe non-stationary EEG signals. This fusion not only addresses the
data insufficiency inherent in single-channel data but also facilitates a comprehensive
analysis of the complex dynamic changes in EEG signals, enhancing the accuracy and
interpretability of mental disorder detection. Therefore, the next step is utilizing the
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entropy-based matrix generated from each EEG signal as the input to train the classifiers
and establish an appropriate classification model with the representative channel data.

3.4. Classification Method

Recent studies have shown that employing neural networks for the detection of mental
disorders yields good performance. For instance, in [42], a combination of CNN and LSTM
was used to achieve depression detection with an accuracy of 95.1%. In the same case, the
accuracies through SVM, kNN, and DT classifiers were only 72.05%, 79.7%, and 79.49%,
respectively. Nonetheless, as stated by Tawhid et al. [43], because neural networks generally
require a large amount of training data and higher computational cost, the EEG signals are
sliced to increase the amount of data for training. Yet, there will be a potential issue that
arises when a segment of an EEG signal from a diseased one shows normal manifestations
but is still labeled as diseased, which could lead to label confusion that reduces the reliability
of the detection framework.

In addition, the number of features, i.e., the entropy-based matrix, in this paper is
not large enough to satisfy the neural networks. Selecting the six conventional machine
learning classifiers, including SVM, kNN, NB, GAM, LDA, and DT to evaluate a diverse
set of models with varying strengths, is considered. In this paper, SVM is chosen for its
well-known ability to handle non-linear data, particularly with the use of kernel methods.
kNN is included due to its simplicity and effectiveness in smaller datasets. NB is selected
because of its efficiency and relatively good performance with independent features. GAM
and LDA are chosen as they offer strong interpretability and handle linear relationships
well, making them useful for comparing against more complex models. Lastly, DT is
selected for its ability to model non-linear relationships and handle noisy data. Overall,
this selection covers a broad spectrum of model complexities, from simple models to
more advanced ones, ensuring a comprehensive analysis of classifier performance on the
entropy-based matrix.

Moreover, in place of an ablation study, which is commonly used in deep learning
models, a comprehensive comparison of six conventional machine learning classifiers is
conducted. Such a comparison helps to evaluate the contribution of each classifier to the
detection task and determine the one with the highest performance and robustness. After
that, the one that offers the satisfying performance is determined and included in the
detection framework with the entropy-based matrix from the representative channel. The
details of each classifier applied are described as follows:

SVM is a binary classification method that operates by finding a hyperplane that
maximizes the margin between different classes. The key aspect of SVM is identifying
the hyperplane that maximizes this margin, which can enhance the generalization ability
of the classifier [44]. In this paper, a polynomial kernel is considered, specifically using
the polynomial kernel function to map the data into a higher-dimensional space, which
allows for the handling of non-linearly separable problems. In addition, to reduce model
complexity and mitigate the risk of overfitting, a third-order polynomial kernel function
is adopted. While SVM has limitations, such as potential unsuitability for large-scale
datasets, this limitation may be advantageous given the relatively small dataset assessed in
this paper.

kNN is an instance-based learning method used for classification. For an unknown
sample, kNN identifies the k-Nearest Neighbors in the training set and utilizes their labels
to vote on the class of the unknown sample [45]. In this study, k is set to 5, striking a balance
between bias and variance, enhancing the robustness of the classification results. kNN is
easy to implement. However, as the dataset grows, the computational complexity of kNN
also increases, which is a limiting factor.

NB is a probabilistic classification method based on Bayes’ theorem, which assumes
independence between features [46]. Although this assumption rarely holds in real-world
scenarios, the NB classifier remains highly effective in many applications due to its simplic-
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ity and efficiency. In this paper, multivariate multinomial is chosen as the distribution type,
which reflects the class distribution in the data and helps reduce model bias.

GAM is a classification method that captures complex non-linear relationships by rep-
resenting the effects of features as the sum of multiple smoothing functions. The smoothing
term is the core component of GAM, enabling it to obtain the non-linear relationships be-
tween features and response variables [47]. While GAM has limitations, such as sensitivity
to both the model and the form of the smoothing function.

LDA is a linear classification method for modeling and prediction based on specific
feature values. It seeks linear combinations of features that maximize between-class vari-
ance while minimizing within-class variance, making it a powerful tool for distinguishing
between different classes [48]. The main advantages of LDA are computationally efficient
and suitable for most classification tasks, as it can estimate the probabilities based on class
frequencies, allowing the model to adapt well to varying datasets.

Lastly, DT employs a tree-like structure for classification. It partitions data through a
series of decisions to achieve predictive outcomes. In classification tasks, DT assigns target
variables based on the values of different features [49]. This paper uses the fitctree function
to train the DT, utilizing the Gini impurity as the measure for evaluating splits. Each split
in the tree is determined by selecting the feature that maximally reduces Gini impurity,
effectively detecting abnormal brain activities.

Overall, each classifier has its advantages, making it essential to select the most
appropriate one. To ensure the performance and generalizability of the proposed method,
proper validation is necessary. While datasets are typically divided into training, validation,
and test sets when sufficient data are available, this study utilizes three datasets with limited
samples and pronounced individual specificity. To address these challenges, LOOCV is
employed, which is particularly suitable for small datasets. In this approach, each subject’s
data (i.e., entropy-based matrix extracted from the EEG signals of each subject) serves as
the test set, while the data from the remaining subjects constitute the training set. This
method maximizes the use of all available data for training and validation, reducing the
impact of individual differences on model performance. It ensures that the classification
model is not unduly influenced by specific data characteristics, aligning more closely with
real-world scenarios where individuals use the proposed framework for mental disorder
detection independently. Hence, the cross-individual performance validation effectively
mitigates overfitting and enhances the model’s reliability. In addition, regarding the method
validation, four evaluation metrics, including accuracy (ACC), sensitivity (SEN), specificity
(SPE), and F1-score (F1), are applied in this study, as detailed in Equations (17)–(20):

ACC =
TN + TP

TN + FN + TP + FP
(17)

SEN =
TP

FN + TP
(18)

SPE =
TN

FP + TN
(19)

F1 =
2 × TP

2 × TP + FP + FN
(20)

where True Positive (TP) means correctly predicted positive instances, True Negative (TN)
denotes correctly predicted negative instances, False Negative (FN) represents incorrectly
predicted negative instances (actual positives classified as negative), and False Positive (FP)
indicates incorrectly predicted positive instances (actual negatives classified as positive).

4. Results and Discussion

In this experiment, the three publicly available EEG datasets are used to validate the
performance of the proposed method based on MATLAB. To facilitate reproducible research
and have a positive effect on the academic field, the source codes are freely available at
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https://github.com/75Fleven/CODE.git (accessed on 31 August 2024). In addition, to
identify the minimum required number of channels (i.e., single-channel EEG signals)
and the suitable classifier, a statistical analysis of performances across these datasets is
performed according to the four evaluation metrics. Since the data properties of such
mental disorders may differ, the results and discussion are presented based on each dataset.

In addition, an overall metric aimed at quantifying the process of optimal channel
selection is designed. Given the practical significance of ACC, SEN, SPE, and F1, higher
values in these metrics indicate better performance. For example, a higher SEN reflects
a lower risk of missed diagnoses. Based on these considerations, the following steps
are adopted to select the representative channel: Each metric is first ranked individually
in descending order, meaning the higher the value, the higher the rank, with rankings
represented by 1, 2, 3, . . ., N. Then, the rankings for the four metrics are summed to obtain a
composite ranking, where a lower composite ranking indicates better overall performance
within the proposed method. Thus, the channel with the lowest composite ranking is
selected, which ensures that the representative channel of each mental disorder can be
consistently identified.

4.1. Schizophrenia Results

The schizophrenia dataset consists of 84 sets of EEG signals, with each set containing
data from 16 channels. Figure 4 illustrates the ACC (%) for each channel across different
classifiers, where a deeper color represents a higher accuracy for the respective EEG channel.
For instance, Figure 4a shows the ACC results for the 16 channels when employing the
DT classifier for detecting schizophrenia. The color of the P3 channel is deeper than that
of the Pz channel, indicating that the accuracy of the P3 channel is higher than that of the
Pz channel (P3 is 90.48%, whereas Pz is 77.38%). For further details on the four evaluation
metrics, Tables 2–5 list the results of ACC, SEN, SPE, and F1, respectively.
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Table 2. Accuracy (ACC) results of six classifiers on 16 channels in schizophrenia detection.

DT GAM kNN LDA NB SVM

F7 71.43% 76.19% 77.38% 71.43% 60.71% 77.38%
F3 72.62% 67.86% 73.81% 73.81% 63.10% 69.05%
F4 61.90% 70.24% 72.62% 69.05% 71.43% 67.86%
F8 69.05% 63.10% 65.48% 77.38% 60.71% 71.43%
T3 77.38% 71.43% 67.86% 66.67% 61.90% 65.48%
C3 72.62% 70.24% 75.00% 72.62% 67.86% 69.05%
Cz 80.95% 75.00% 57.14% 76.19% 73.81% 72.62%
C4 79.76% 83.33% 58.33% 73.81% 63.10% 65.48%
T4 73.81% 70.24% 60.71% 75.00% 64.29% 80.95%
T5 69.05% 69.05% 61.90% 69.05% 65.48% 70.24%
P3 90.48% 73.81% 60.71% 73.81% 67.86% 75.00%
Pz 77.38% 73.81% 59.52% 85.71% 73.81% 78.57%
P4 85.71% 75.00% 65.48% 75.00% 71.43% 75.00%
T6 82.14% 69.05% 59.52% 71.43% 70.24% 79.76%
O1 69.05% 73.81% 63.10% 77.38% 72.62% 88.10%
O2 72.62% 65.48% 76.19% 71.43% 67.86% 75.00%

Table 3. Sensitivity (SEN) results of six classifiers on 16 channels in schizophrenia detection.

DT GAM kNN LDA NB SVM

F7 61.54% 71.79% 79.49% 66.67% 66.67% 74.36%
F3 56.41% 69.23% 76.92% 74.36% 66.67% 69.23%
F4 56.41% 74.36% 76.92% 66.67% 79.49% 69.23%
F8 64.10% 56.41% 61.54% 74.36% 56.41% 71.79%
T3 76.92% 66.67% 71.79% 71.79% 53.85% 66.67%
C3 69.23% 64.10% 76.92% 71.79% 71.79% 71.79%
Cz 71.79% 76.92% 58.97% 76.92% 76.92% 71.79%
C4 74.36% 79.49% 58.97% 76.92% 64.10% 69.23%
T4 69.23% 64.10% 58.97% 74.36% 64.10% 76.92%
T5 64.10% 56.41% 56.41% 69.23% 58.97% 71.79%
P3 89.74% 71.79% 61.54% 71.79% 69.23% 76.92%
Pz 76.92% 76.92% 58.97% 89.74% 74.36% 84.62%
P4 84.62% 69.23% 64.10% 79.49% 74.36% 74.36%
T6 87.18% 66.67% 56.41% 74.36% 76.92% 82.05%
O1 74.36% 71.79% 56.41% 76.92% 74.36% 92.31%
O2 74.36% 58.97% 76.92% 74.36% 74.36% 71.79%

Table 4. Specificity (SPE) results of six classifiers on 16 channels in schizophrenia detection.

DT GAM kNN LDA NB SVM

F7 80.00% 80.00% 75.56% 75.56% 55.56% 80.00%
F3 86.67% 66.67% 71.11% 73.33% 60.00% 68.89%
F4 66.67% 66.67% 68.89% 71.11% 64.44% 66.67%
F8 73.33% 68.89% 68.89% 80.00% 64.44% 71.11%
T3 77.78% 75.56% 64.44% 62.22% 68.89% 64.44%
C3 75.56% 75.56% 73.33% 73.33% 64.44% 66.67%
Cz 88.89% 73.33% 55.56% 75.56% 71.11% 73.33%
C4 84.44% 86.67% 57.78% 71.11% 62.22% 62.22%
T4 77.78% 75.56% 62.22% 75.56% 64.44% 84.44%
T5 73.33% 80.00% 66.67% 68.89% 71.11% 68.89%
P3 91.11% 75.56% 60.00% 75.56% 66.67% 73.33%
Pz 77.78% 71.11% 60.00% 82.22% 73.33% 73.33%
P4 86.67% 80.00% 66.67% 71.11% 68.89% 75.56%
T6 77.78% 71.11% 62.22% 68.89% 64.44% 77.78%
O1 64.44% 75.56% 68.89% 77.78% 71.11% 84.44%
O2 71.11% 71.11% 75.56% 68.89% 62.22% 77.78%
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Table 5. F1-score (F1) results of six classifiers on 16 channels in schizophrenia detection.

DT GAM kNN LDA NB SVM

F7 66.67% 73.68% 76.54% 68.42% 61.18% 75.32%
F3 65.67% 66.67% 73.17% 72.50% 62.65% 67.50%
F4 57.89% 69.88% 72.29% 66.67% 72.09% 66.67%
F8 65.79% 58.67% 62.34% 75.32% 57.14% 70.00%
T3 75.95% 68.42% 67.47% 66.67% 56.76% 64.20%
C3 70.13% 66.67% 74.07% 70.89% 67.47% 68.29%
Cz 77.78% 74.07% 56.10% 75.00% 73.17% 70.89%
C4 77.33% 81.58% 56.79% 73.17% 61.73% 65.06%
T4 71.05% 66.67% 58.23% 73.42% 62.50% 78.95%
T5 65.79% 62.86% 57.89% 67.50% 61.33% 69.14%
P3 89.74% 71.79% 59.26% 71.79% 66.67% 74.07%
Pz 75.95% 73.17% 57.50% 85.37% 72.50% 78.57%
P4 84.62% 72.00% 63.29% 74.70% 70.73% 73.42%
T6 81.93% 66.67% 56.41% 70.73% 70.59% 79.01%
O1 69.05% 71.79% 58.67% 75.95% 71.60% 87.80%
O2 71.60% 61.33% 75.00% 70.73% 68.24% 72.73%

Analyzing the performances of the six classifiers in Tables 2–5 reveals that all of them
demonstrate impressive results, with the underlined values indicating the best performance
within each classifier. Regarding the ACC, the standard deviations across all channels for
LDA, NB, GAM, SVM, kNN, and DT are 4.40%, 4.62%, 4.75%, 6.16%, 6.95%, and 7.22%,
respectively, with LDA, NB, and GAM showing relatively stable performance. Then, the
maximum and minimum values of ACC across all channels are as follows: DT (90.48% and
61.90%), SVM (88.10% and 65.48%), LDA (85.71% and 66.67%), GAM (83.33% and 63.10%),
kNN (77.38% and 57.14%), and NB (73.81% and 60.71%). These results indicate that DT,
SVM, and LDA exhibit advantages in terms of accuracy. Moreover, for the other metrics,
the SVM shows superior overall performance. Therefore, it can be concluded that the SVM
is more suitable for the proposed method to detect schizophrenia.

Furthermore, after investigating the suitable classifier, it is desirable to select the
representative channel for minimizing data redundancy. To this end, a thorough analysis
is conducted based on the four evaluation metrics. As depicted in Figure 5, the SVM
classifier exhibits superior overall performance across the Pz, T4, T6, O1, and O2 channels.
Particularly, the O1 channel accomplishes ACC = 88.10% (first rank), SEN = 92.31% (first
rank), SPE = 84.44% (first rank), and F1 = 87.80% (first rank), demonstrating impressive
performance. Hence, the O1 channel can be regarded as the representative data input for
lightweight single-channel detection in the case of schizophrenia.
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4.2. Epilepsy Results

The epilepsy dataset comprises 318 EEG recordings, each consisting of 14 channels.
The ACC (%) for each channel is depicted in Figure 6, and the details of the four evaluation
metrics (ACC, SEN, SPE, and F1) are listed in Tables 6–9, respectively.
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Table 6. Accuracy (ACC) results of six classifiers on 14 channels in epilepsy detection.

DT GAM kNN LDA NB SVM

AF3 64.47% 60.06% 65.09% 68.87% 59.12% 74.53%
AF4 64.15% 67.30% 64.15% 77.99% 63.52% 75.47%
F3 62.58% 74.84% 68.24% 74.53% 63.52% 75.47%
F4 62.26% 64.47% 67.30% 66.04% 54.09% 73.27%
F7 59.43% 65.72% 61.01% 64.78% 56.60% 68.87%
F8 58.81% 63.84% 67.30% 64.47% 54.72% 72.64%

FC5 60.06% 61.64% 59.75% 68.24% 55.97% 71.07%
FC6 56.60% 68.24% 64.15% 61.95% 56.92% 69.18%
O1 50.63% 63.21% 61.32% 64.78% 54.40% 67.92%
O2 56.60% 59.75% 55.35% 64.78% 58.18% 68.87%
P7 61.32% 60.69% 60.06% 63.84% 55.35% 63.84%
P8 61.95% 63.21% 65.09% 67.30% 54.40% 69.50%
T7 60.06% 66.04% 69.81% 71.07% 57.86% 74.84%
T8 61.64% 61.32% 65.41% 64.47% 61.64% 69.81%

Table 7. Sensitivity (SEN) results of six classifiers on 14 channels in epilepsy detection.

DT GAM kNN LDA NB SVM

AF3 53.96% 53.24% 62.59% 64.75% 75.54% 67.63%
AF4 63.31% 62.59% 52.52% 74.10% 82.01% 72.66%
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Table 7. Cont.

DT GAM kNN LDA NB SVM

F3 56.12% 72.66% 72.66% 75.54% 97.12% 76.26%
F4 58.99% 57.55% 67.63% 61.87% 62.59% 71.22%
F7 55.40% 61.15% 53.96% 53.96% 67.63% 61.15%
F8 44.60% 58.27% 64.03% 58.27% 69.78% 73.38%

FC5 52.52% 55.40% 52.52% 58.99% 41.01% 61.15%
FC6 48.20% 63.31% 59.71% 58.99% 74.82% 71.94%
O1 41.73% 57.55% 58.99% 47.48% 53.24% 58.27%
O2 55.40% 53.96% 54.68% 56.12% 65.47% 65.47%
P7 50.36% 56.12% 51.80% 48.92% 33.81% 57.55%
P8 61.15% 59.71% 64.03% 61.87% 71.94% 69.06%
T7 56.12% 59.71% 65.47% 59.71% 44.60% 65.47%
T8 52.52% 52.52% 64.75% 58.99% 72.66% 67.63%

Table 8. Specificity (SPE) results of six classifiers on 14 channels in epilepsy detection.

DT GAM kNN LDA NB SVM

AF3 72.63% 65.36% 67.04% 72.07% 46.37% 79.89%
AF4 64.80% 70.95% 73.18% 81.01% 49.16% 77.65%
F3 67.60% 76.54% 64.80% 73.74% 37.43% 74.86%
F4 64.80% 69.83% 67.04% 69.27% 47.49% 74.86%
F7 62.57% 69.27% 66.48% 73.18% 48.04% 74.86%
F8 69.83% 68.16% 69.83% 69.27% 43.02% 72.07%

FC5 65.92% 66.48% 65.36% 75.42% 67.60% 78.77%
FC6 63.13% 72.07% 67.60% 64.25% 43.02% 67.04%
O1 57.54% 67.60% 63.13% 78.21% 55.31% 75.42%
O2 57.54% 64.25% 55.87% 71.51% 52.51% 71.51%
P7 69.83% 64.25% 66.48% 75.42% 72.07% 68.72%
P8 62.57% 65.92% 65.92% 71.51% 40.78% 69.83%
T7 63.13% 70.95% 73.18% 79.89% 68.16% 82.12%
T8 68.72% 68.16% 65.92% 68.72% 53.07% 71.51%

Table 9. F1-score (F1) results of six classifiers on 14 channels in epilepsy detection.

DT GAM kNN LDA NB SVM

AF3 57.03% 53.82% 61.05% 64.52% 61.76% 69.89%
AF4 60.69% 62.59% 56.15% 74.64% 66.28% 72.14%
F3 56.73% 71.63% 66.67% 72.16% 69.95% 73.10%
F4 57.75% 58.61% 64.38% 61.43% 54.38% 69.96%
F7 54.42% 60.93% 54.74% 57.25% 57.67% 63.20%
F8 48.63% 58.48% 63.12% 58.91% 57.40% 70.10%

FC5 53.48% 55.80% 53.28% 61.89% 44.88% 64.89%
FC6 49.26% 63.54% 59.29% 57.54% 60.29% 67.11%
O1 42.49% 57.76% 57.14% 54.10% 50.51% 61.36%
O2 52.74% 53.96% 51.70% 58.21% 57.78% 64.77%
P7 53.23% 55.52% 53.14% 54.18% 39.83% 58.18%
P8 58.42% 58.66% 61.59% 62.32% 57.97% 66.44%
T7 55.12% 60.58% 65.47% 64.34% 48.06% 69.47%
T8 54.48% 54.28% 62.07% 59.21% 62.35% 66.20%

By comprehensively analyzing the results shown in Tables 6–9, it is observed that SVM,
LDA, and GAM demonstrate superior performance, while the accuracies of other classifiers
are relatively lower. Besides, the standard deviations of ACC for NB, SVM, DT, kNN,
GAM, and LDA are 3.27%, 3.42%, 3.61%, 3.94%, 4.03%, and 4.48%, respectively, indicating
that the accuracy performance of these classifiers is stable. Meanwhile, the maximum and
minimum accuracies are as follows: LDA (77.99% and 61.95%), SVM (75.47% and 63.84%),
GAM (74.84% and 59.75%), kNN (69.81% and 55.35%), NB (63.52% and 54.09%), and DT
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(64.47% and 50.63%), where LDA, SVM, and GAM offer better output. Regarding the other
metrics, the overall performance of LDA and SVM is very close. Since this paper aims to
construct a detection approach suitable for multi-mental disorders, the SVM that performs
remarkably in schizophrenia is chosen to be the optimal solution for epilepsy.

Next, to determine the representative channel, all metrics of SVM across various
channels are considered, as displayed in Figure 7. The assessment shows that the F3 channel
offers stable satisfactory performance, where the ACC = 75.47% (1st rank), SEN = 76.26%
(1st rank), SPE = 74.86% (6th rank), and F1 = 73.10% (1st rank). Therefore, it is suggested to
select the F3 channel as the representative for lightweight single-channel mental disorders
detection in the case of epilepsy.
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4.3. Depression Results

The depression dataset comprises 119 sets of EEG signals, each with 19 channels.
Figure 8 draws the ACC (%) of all channels, and the detailed performances in terms of
ACC, SEN, SPE, and F1 are contained in Tables 10–13, respectively.

Table 10. Accuracy (ACC) results of six classifiers on 19 channels in depression detection.

DT GAM kNN LDA NB SVM

FP1 73.95% 82.35% 76.47% 82.35% 74.79% 84.87%
F3 76.47% 83.19% 77.31% 84.87% 74.79% 87.39%
C3 78.15% 80.67% 84.87% 86.55% 69.75% 88.24%
P3 72.27% 82.35% 88.24% 88.24% 60.50% 85.71%
O1 68.07% 81.51% 84.87% 89.08% 73.95% 89.08%
F7 77.31% 80.67% 78.99% 87.39% 77.31% 85.71%
T3 73.95% 79.83% 78.99% 85.71% 72.27% 84.87%
T5 78.99% 83.19% 85.71% 87.39% 57.14% 84.03%
Fz 84.03% 83.19% 85.71% 84.87% 71.43% 89.08%

FP2 78.99% 79.83% 78.15% 84.87% 71.43% 89.08%
F4 73.11% 82.35% 83.19% 84.03% 65.55% 87.39%
C4 77.31% 77.31% 82.35% 86.55% 62.18% 85.71%
P4 76.47% 84.03% 85.71% 89.92% 60.50% 85.71%
O2 73.11% 84.03% 83.19% 90.76% 60.50% 89.92%
F8 83.19% 79.83% 79.83% 87.39% 67.23% 87.39%
T4 78.15% 81.51% 82.35% 86.55% 60.50% 84.03%
T6 76.47% 84.03% 83.19% 89.08% 72.27% 87.39%
Cz 73.11% 80.67% 81.51% 84.03% 59.66% 84.87%
Pz 69.75% 84.03% 88.24% 89.08% 61.34% 87.39%
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19 channels using various classifiers. The deeper the color, the greater the accuracy: (a) DT; (b) GAM;
(c) kNN; (d) LDA; (e) NB; and (f) SVM.

Table 11. Sensitivity (SEN) results of six classifiers on 19 channels in depression detection.

DT GAM kNN LDA NB SVM

FP1 68.42% 77.19% 75.44% 78.95% 66.67% 84.21%
F3 75.44% 84.21% 77.19% 78.95% 73.68% 84.21%
C3 78.95% 75.44% 87.72% 80.70% 91.23% 84.21%
P3 70.18% 84.21% 91.23% 85.96% 89.47% 82.46%
O1 66.67% 80.70% 85.96% 84.21% 64.91% 84.21%
F7 75.44% 80.70% 78.95% 84.21% 71.93% 84.21%
T3 68.42% 78.95% 77.19% 75.44% 73.68% 80.70%
T5 78.95% 85.96% 92.98% 80.70% 91.23% 82.46%
Fz 82.46% 80.70% 89.47% 80.70% 87.72% 89.47%

FP2 80.70% 78.95% 82.46% 80.70% 85.96% 85.96%
F4 78.95% 84.21% 82.46% 80.70% 84.21% 82.46%
C4 78.95% 77.19% 87.72% 85.96% 94.74% 84.21%
P4 80.70% 89.47% 91.23% 85.96% 94.74% 84.21%
O2 70.18% 85.96% 84.21% 87.72% 94.74% 85.96%
F8 87.72% 82.46% 80.70% 82.46% 89.47% 87.72%
T4 73.68% 82.46% 84.21% 82.46% 94.74% 80.70%
T6 80.70% 82.46% 80.70% 84.21% 84.21% 84.21%
Cz 71.93% 84.21% 84.21% 82.46% 96.49% 82.46%
Pz 71.93% 84.21% 89.47% 87.72% 94.74% 84.21%

In analyzing the performance of the six classifiers in Table 10, the standard deviations
of ACC for SVM, GAM, LDA, kNN, DT, and NB are 1.83%, 1.86%, 2.26%, 3.53%, 4.06%,
and 6.48%, respectively, indicating good stability from them. In addition, the ACC range,
with maximum and minimum values, are as follows: LDA (90.76% and 82.35%), SVM
(89.92% and 84.03%), kNN (88.24% and 76.47%), GAM (84.03% and 77.31%), DT (84.03%
and 68.07%), and NB (77.31% and 57.14%), where LDA, SVM, and kNN offering very
similar performance. Concerning the other metrics, the performances of LDA and SVM
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are also very close, but SVM exhibits greater stability across all channels. As a result, the
SVM demonstrates impressive accuracy and better stability, making it more suitable for
depression detection in the proposed method.

Table 12. Specificity (SPE) results of six classifiers on 19 channels in depression detection.

DT GAM kNN LDA NB SVM

FP1 79.03% 87.10% 77.42% 85.48% 82.26% 85.48%
F3 77.42% 82.26% 77.42% 90.32% 75.81% 90.32%
C3 77.42% 85.48% 82.26% 91.94% 50.00% 91.94%
P3 74.19% 80.65% 85.48% 90.32% 33.87% 88.71%
O1 69.35% 82.26% 83.87% 93.55% 82.26% 93.55%
F7 79.03% 80.65% 79.03% 90.32% 82.26% 87.10%
T3 79.03% 80.65% 80.65% 95.16% 70.97% 88.71%
T5 79.03% 80.65% 79.03% 93.55% 25.81% 85.48%
Fz 85.48% 85.48% 82.26% 88.71% 56.45% 88.71%

FP2 77.42% 80.65% 74.19% 88.71% 58.06% 91.94%
F4 67.74% 80.65% 83.87% 87.10% 48.39% 91.94%
C4 75.81% 77.42% 77.42% 87.10% 32.26% 87.10%
P4 72.58% 79.03% 80.65% 93.55% 29.03% 87.10%
O2 75.81% 82.26% 82.26% 93.55% 29.03% 93.55%
F8 79.03% 77.42% 79.03% 91.94% 46.77% 87.10%
T4 82.26% 80.65% 80.65% 90.32% 29.03% 87.10%
T6 72.58% 85.48% 85.48% 93.55% 61.29% 90.32%
Cz 74.19% 77.42% 79.03% 85.48% 25.81% 87.10%
Pz 67.74% 83.87% 87.10% 90.32% 30.65% 90.32%

Table 13. F1-score (F1) results of six classifiers on 19 channels in depression detection.

DT GAM kNN LDA NB SVM

FP1 71.56% 80.73% 75.44% 81.08% 71.70% 84.21%
F3 75.44% 82.76% 76.52% 83.33% 73.68% 86.49%
C3 77.59% 78.90% 84.75% 85.19% 74.29% 87.27%
P3 70.80% 82.05% 88.14% 87.50% 68.46% 84.68%
O1 66.67% 80.70% 84.48% 88.07% 70.48% 88.07%
F7 76.11% 80.00% 78.26% 86.49% 75.23% 84.96%
T3 71.56% 78.95% 77.88% 83.50% 71.79% 83.64%
T5 78.26% 83.05% 86.18% 85.98% 67.10% 83.19%
Fz 83.19% 82.14% 85.71% 83.64% 74.63% 88.70%

FP2 78.63% 78.95% 78.33% 83.64% 74.24% 88.29%
F4 73.77% 82.05% 82.46% 82.88% 70.07% 86.24%
C4 76.92% 76.52% 82.64% 85.96% 70.59% 84.96%
P4 76.67% 84.30% 85.95% 89.09% 69.68% 84.96%
O2 71.43% 83.76% 82.76% 90.09% 69.68% 89.09%
F8 83.33% 79.66% 79.31% 86.24% 72.34% 86.96%
T4 76.36% 81.03% 82.05% 85.45% 69.68% 82.88%
T6 76.67% 83.19% 82.14% 88.07% 74.42% 86.49%
Cz 71.93% 80.67% 81.36% 83.19% 69.62% 83.93%
Pz 69.49% 83.48% 87.93% 88.50% 70.13% 86.49%

Moreover, to identify the representative channel, the four evaluation metrics of SVM
are considered, as depicted in Figure 9. From the analysis, it is evident that the O2 channel
generates an impressive performance, with ACC = 89.92% (first rank), SEN = 85.96% (third
rank), SPE = 93.55% (first rank), and F1 = 89.09% (first rank). Hence, the O2 channel is
selected as the minimal data input for lightweight single-channel mental disorders detection
in the case of depression.
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4.4. Comparative Study

To comprehensively demonstrate the advantages of this paper, a comparative study
of the proposed method with recent state-of-the-art works was conducted, as outlined in
Table 14. A key research gap that this study addresses is the lack of focus on single-channel
selection in EEG-based mental disorder detection. While many previous studies rely on
multi-channel data and complex feature extraction methods to maximize classification
accuracy, few have explored the potential of single-channel EEG signals, which can greatly
reduce data redundancy and improve the feasibility of portable and real-time applications.
Investigating the representative channel is valuable, and it has been addressed by Cai
et al. [37], who designed a prefrontal three-channel EEG signal acquisition device, achieving
an accuracy rate of 86.93%. In addition, although Chen et al. [21] realized the highest
accuracy of 99.16% in depression detection, the requirement for a large sample size (up to
15,360 after slicing the EEG signals) reveals this method depends on extensive training data
and high computational cost. In another study by Alyas et al. [50], even with a large number
of samples, the homogeneity of feature types may constrain accuracy. To characterize
mental disorders more comprehensively and obtain better accuracy, several previous
works [13,19,37] employed feature fusion to construct a feature matrix for classification,
resulting in improved outcomes. For example, Cai et al. [37] adopted positive, negative,
and neutral audio stimulation of subjects during EEG acquisition to create multimodal data
sources for improving accuracy. Moreover, all of them focus on the detection of specific
mental disorders. In contrast, this paper aims to design a lightweight framework that is
appropriate for multi-mental disorders detection.

Compared to the previous studies, this paper aims to enhance the feature set by
integrating brain rhythms and entropy features to solve the limitations of single-channel
EEG signals. Although the proposed method cannot accomplish the highest accuracy in
all cases, its single-channel solution effectively reduces multi-channel data redundancy
and improves the portability and ease of operation of the device. Meanwhile, unlike
other deep learning models [16,21,50,51] that need complex inputs, this paper employs
Polynomial-SVM as the classifier due to its ability to handle non-linear relationships within
the entropy-based matrix, capturing complex interactions between different brain rhythms
and entropy measures, leading to superior performance compared to other classifiers. In
contrast, classifiers such as kNN and DT perform worse due to their sensitivity to noise
and variations in the data. Given the abstract nature of the entropy-based matrix and the
non-time series format, these classifiers struggled to generalize effectively across different
datasets. NB, which assumes feature independence, also shows limitations, as the features
extracted from various brain rhythms are not entirely independent. This assumption led to a
reduction in accuracy for models based on NB. In short, the proposed lightweight approach



Brain Sci. 2024, 14, 987 21 of 25

constructed by the entropy-based matrix has been successfully applied to the detection
of at least three mental disorders, demonstrating a balance between channel number and
classification accuracy. Such performances are impressive when considering fewer data
sources as a concern, providing a suitable approach to multi-mental disorders detection.

Table 14. A comparative study with recent works.

Work Number of
Channels

Number of
Subjects

Feature Classifier
Accuracy (%)

Schizophrenia Epilepsy Depression

Movahed
et al. [13] 19 119

Statistical, spectral, wavelet,
functional connectivity, and

non-linear features

Radial Basis
Function

(RBF)-SVM
/ / 90.70

Qiao et al.
[14] 20 64 EEG feature map TanhReLU-

based CNN / / 98.59

Gupta et al.
[15] 3 55 EEG and audio multimodal

data Bi-LSTM / / 99.90

Hu et al. [16] 19 / Log-amplitude characteristics
of the four seizure classes IGGCN / 91.80 /

Kumar et al.
[19] 16 84 HLV and SLBP features

Adaptive
Boosting

(AdaBoost)
83.33 / /

Chen et al.
[21] 19 119

Two-dimensional matrices with
different frequency domains

and electrode position
CNN+LSTM / / 99.16

Cai et al. [37] 3 119 Both linear and non-linear
features kNN / / 86.93

Alyas et al.
[50] 14 318 Statistical features

Extreme
Gradient
Boosting

(XGBoost)

/ 79.45 /

Hussain et al.
[51] 16 84 Six-second EEG trial divided

into three-second windows
1D-CNN with
majority voting 99.88 / /

This study 1 84/318/119 Entropy-based matrix from
brain rhythms

Polynomial-
SVM 88.10 75.47 89.92

4.5. Discussion

First, this study conducts a comprehensive analysis of the experimental mental disor-
ders dataset and finds that the proposed framework exhibits a high degree of interpretability.
Regarding the schizophrenia results, except for the best-performing O1 channel, the O2,
Pz, T4, and T6 channels also demonstrate commendable performances. It suggests that
EEG signals from the occipital, parietal, and temporal regions play vital roles in detect-
ing schizophrenia. Such a finding aligns with the previous work [52], which indicates a
significant positive correlation between functional connectivity deficits in the cerebellum,
inferior frontal gyrus, and anterior cingulate cortex of schizophrenia patients and neurosoft
markers, which are vital biological indicators of schizophrenia. In this regard, the locations
of the cerebellum, inferior frontal gyrus, and anterior cingulate cortex are proximal to T4,
Pz, T6, O1, and O2 channels, enhancing the clinical interpretability of the proposed method.

Second, concerning the epilepsy results, excluding the optimal F3 channel, the AF3,
AF4, and F4 channels also provide good detection performance. Such high-performing
channels are mainly located in the frontal lobe region. Considering that epilepsy seizures
are normally caused by abnormal discharges in the brain, the entropy-based matrix in this
study helps to characterize abnormal brain rhythms and demonstrates certain reliability,
revealing that the seizures in this dataset exhibit correlations with the frontal and prefrontal
regions. Particularly, several previous studies [53–55] have mentioned that during seizures,
discharges from the temporal lobe, hippocampus, and amygdala typically propagate along
specific neural pathways to the frontal lobe, potentially impairing its functions. This finding
is also consistent with the experimental results obtained in this paper.
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Lastly, as for the depression results, the O1 channel offers remarkable performances
based on the four evaluation metrics. Meanwhile, the O2 channel also performs well.
In addition to the occipital region, the average accuracy of the frontal region (F3, F7, F4,
F8, and Fz) is 87.39%, while the average accuracy of the parietal region (P3, P4, and Pz)
is 86.27%, slightly inferior to that of the frontal region. In both the frontal and parietal
regions, the accuracy of Fz (89.08%) and Pz (87.39%) is higher than their averages. The
previous work [56] claimed that the brain mechanisms underlying depression are mainly
concentrated in the midline region of the brain. It is meaningful that the locations of
the Fz, Pz, O1, and O2 channels are situated in and around the midline of the brain,
further confirming the experimental results of this study and advancing insights into the
underlying mechanisms and pathological states of depression.

5. Conclusions

In this paper, a lightweight EEG-based multi-mental disorders detection method is
proposed. It first applies DTW to decompose EEG signals into five brain rhythms, followed
by extracting entropy features from these rhythms, which are then gathered into an entropy-
based matrix. After that, conventional machine learning classifiers are employed to train
and test the entropy-based matrix. The method validation demonstrates the impressive
performances using three public EEG datasets in schizophrenia, epilepsy, and depression,
achieving satisfying accuracies of 88.10%, 75.47%, and 89.92%, respectively. In addition,
the results not only confirm the robustness of Polynomial-SVM in detecting multi-mental
disorders but also help entropy features that characterize such conditions, enhancing the
interpretability of the EEG signals. Furthermore, the selected representative channel can
support the detection through the single-channel solution, which provides insights into
the underlying mechanisms and pathological states of brain functions in terms of mental
disorders. Consequently, the proposed method holds the potential for embedding into
portable devices that assist in the early detection of mental disorders, which help in timely
intervention and prevent the adverse consequences of delayed diagnosis and treatment.

However, there are several limitations to this approach. First, the reliance on EEG as a
single modality may limit the richness of information compared to multimodal approaches,
which can integrate diverse data types such as audio and facial expression, potentially
limiting the method’s ability to capture a wider range of brain activities. Second, while
the proposed method achieves reasonable classification accuracy, the recognition rates
are relatively lower compared to certain deep learning models, which can process more
complex data inputs. Therefore, several related data compression and feature fusion
methods [57–60] will be investigated in the future. In addition, the EEG cases of other
mental disorders, such as autism, anxiety, dementia, etc., will be analyzed, facilitating the
diagnosis in more healthcare applications through this lightweight single-channel solution.
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