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Abstract: Mobility-as-a-service (MaaS) apps provide a single platform for journey plan-
ning, booking, payment and ticketing, and are proposed as a medium for encouraging
sustainable travel behaviour. Generating sustainable-vehicle-based journey alternatives
can be formulated as a multi-modal multi-objective journey-planning problem, one that
is known to have a prohibitively large solution space. Building on prior insights, we
develop a scalable decomposition-based solution strategy. A Pareto set of journey profiles
is generated based on inter-transfer-zone objective criteria contributions. Then, guided
by neural-network predictions, extended versions of existing shortest-path algorithms for
open and public transport networks are used to optimise the paths and transfers of journey
profiles. A novel hybrid k-means and Dijkstra’s algorithm is introduced for generating
transfer-zone samples while accounting for transport network connectivity. The resulting
modularised algorithm knits together and extends the most effective existing shortest-path
algorithms using neural networks as a look-ahead mechanism. In experiments based on a
large-scale transport network, query response times are shown to be suitable for real-time
applications and are found to be independent of transfer-zone sample size, despite smaller
transfer-zone samples, leading to higher quality and more diverse Pareto sets of journeys:
a win-win scenario.

Keywords: Mobility-as-a-Service; multi-modal multi-objective journey planning; shortest-
path planning; optimisation; heuristics; machine learning

1. Introduction
Mobility-as-a-service (MaaS) is concerned with personal transportation needs in

metropolitan areas [1,2]. It aims to make alternatives to private car journeys more easily
accessible [3–5]. To do this, the offerings of mobility service providers (MSPs) are brought
together within a single convenient platform, usually a mobile phone application, to pro-
vide integrated journey planning, booking, payment and e-ticket functionality. As outlined
by [6], a multiple MSP journey planner provides the most basic functionality of any MaaS
app, since booking, payment, ticketing, subscriptions, bundles and behaviour-nudging
incentives can all be built on top of it.

This work tackles a multi-modal multi-objective journey-planning problem involving
four distinct non-private car classes of transport modes: (i) public transport, such as bus,
train and ferry services; (ii) taxi services; (iii) micro-mobility modes, such as hire bikes and
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e-scooters; (iv) personal transport, such as walking and cycling. The minimisation objectives
considered (and their reasons for inclusion) include the following: (i) cost (people prefer
to pay less); (ii) arrival time (people typically prefer faster journeys); (iii) CO2 emissions
(environmentally conscious people prefer green journeys); (iv) inconvenience (measured as
the total amount of time spent walking and waiting in a journey, which people typically
prefer to avoid if possible); (v) calorie expenditure (some people may like to minimise the
required physical exertion of their journey); (vi) transfers (people tend to prefer making
fewer connections for convenience and reduced risk of missing connections). For any
given commuter query, consisting of a departure time, origin and destination, this objective
function characterises a Pareto set of journeys that are mutually non-dominated with
respect to these objectives. Such a set of journeys includes the cheapest, fastest, greenest,
most convenient and least strenuous. In addition, the Pareto set includes those which
balance conflicting objectives. Such a set of journeys may include those attractive to private
car users and prompt travel behaviour change. The problem we face is that of being
able to generate a Pareto set of multi-modal journeys rapidly in response to commuter
queries received through a MaaS app in real-time. A mobile MaaS application provides the
means by which commuter queries are made and the query results displayed to commuters.
The calculation of multi-modal routes takes place server-side, which permits the use of
algorithms, such as the one presented in this work, that rely on pre-processing and on-going
background update steps in order to aid a rapid response to commuter queries.

In previous work [7], we introduced the multi-modal multi-objective journey-planning
problem considered in this work. In contrast to other streams of research related to multi-
modal journey planning, the problem considered here is more general. It considers a wider
set of transport modes, including public transport, walking, taxis, bikes and also new
shared micro-mobility modes such as rentable e-scooters. Previous works have tended to
focus only on cars, walking and public transport [8–11], while also placing constraints on
the orders in which modes can be used in journeys, which is a solution-space-reduction
approach that is avoided in this work. Ref. [8] proposed an access-node approach where
the main parts of journeys are assigned to the public transport network, thereby reducing
the size of the path-planning problems to and from the public transport access-nodes.
Ref. [9] proposed the Round-Based Public Transit Routing (RAPTOR) algorithm, which is a
dynamic programming-based approach for minimising both travel time and number of
transfers via walking and public transport networks. Each iteration attempts to find faster
journeys to each reachable stop involving one additional transfer. Ref. [10] proposed an
A* [12] style shortest-path journey-planning algorithm (which is a goal-directed version
of Dijkstra’s shortest-path algorithm [13]) that only allows car usage in the first legs of
journeys, as in park-and-ride journeys. Ref. [11] required journey-mode sequences as a
commuter input constraint in their multi-modal travel-time minimisation approach. The
problem considered here considers a unique objective function, that of the simultaneous
minimisation of cost, travel time, inconvenience (measured as the sum of walking and
waiting time), CO2 emissions and calories expended. Prior to this, the most general
objective function considered was that of [8], who considered cost in addition to travel
time and number of transfers. Even for this objective function, acceptable query response
times could not be attained without solution-space-reduction-based heuristics, by imposing
structural constraints on journeys including mode-sequences. This work considers mode
choice and their sequence a commuter choice issue, and the challenge addressed in this
work is to rapidly generate all of the worthy alternatives.

Regarding how this work extends that of [7], the focus of the previous work was an
investigation of exact and heuristic solution methodologies set within small to moderate
sized problem instances such that optimal solutions could still be computed within a
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reasonable amount of time. Time complexity analyses and computational results led to
the conclusion that, for this new problem, the number of transport network nodes that
are considered as potential multi-modal transfer points is a huge and computationally
prohibitive factor influencing query response times. It was recommended that future work
should investigate algorithms based on a transfer-point-sample-approach, a strategy that
should most effectively reduce the size of the solution space. This work builds on the
insights of [7] and proposes a methodology based on such a strategy.

The Pareto set generation process of the multi-modal multi-objective journey-planning
problem is decomposed into two steps. Firstly a Pareto set of journey profiles is generated,
where a journey profile is defined as the combination of a mode sequence and correspond-
ing transfer-zone sequence. That is, solution space is reduced via a transfer-zone sampling
approach. Secondly, the exact transfer locations within the transfer zones of the journey
profiles are then optimised by a procedure guided by machine-learning travel-time pre-
dictions. The proposed approach is referred to as ML-TZSA, reflecting its use of machine
learning and transfer-zone sampling. Figure 1 depicts the four main steps of ML-TZSA:
(i) Transfer-zone sampling, in which the transport networks of interest are divided into a set
of transfer zones (Section 4.1); (ii) Inter-transfer-zone objective criteria contributions, in which
objective value contributions corresponding to single transport mode trips between each
pair of transfer zones are calculated (Section 4.2); (iii) Journey profile Pareto set generation,
in which a Pareto set of mutually non-dominated journey profiles, for a real-time query,
is generated based on the inter-transfer-zone objective criteria contributions (Section 4.3);
(iv) Transfer-zone constrained transfer point optimisation, in which the transfer points and
paths of the journey profiles are optimised in a procedure guided by machine-learning
travel-time predictions (Section 5). Phases (i) and (ii) are offline pre-processing tasks that
prepare the algorithm to be able to handle any query between any pair of locations within
the input transport network, while phases (ii) and (iv) are online query response tasks.

Figure 1. Overview of ML-TZSA.

On the whole, this approach side steps the issue of the very large number of possible
sequences of transfer locations without ruling any out. While the number of transfer
zones generated limits the size of the Pareto set of journey profiles that can be generated,
this is justified by considering that, in theory, there can be an infinite number of optimal
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non-dominated solutions. For instance, consider the case of two objectives, cost and time
minimisation, and two modes, walking and taxi. In this cas, an infinitely sized Pareto set
can be created by generating the set of journeys, including those where the commuter gets
out of the taxi at all points along the taxi route and walks the remainder of the journey.
This is because, in such a case, journey cost and travel time are conflicting objectives.
Considering this, limiting the set of possible transfer points in some way makes practical
sense as a solution space pruning method. Also, it is more practical to present only a limited
number of journey alternatives to commuters.

The contributions of this work are as follows: A transfer-zone sample approach is
proposed and developed for greatly reducing the size of a very large journey-planning
solution space without adversely effecting solution quality. A novel pedestrian transport
network-based hybrid Dijkstra’s algorithm and k-means clustering algorithm is introduced
for selecting the sample of transfer zones—an approach which guarantees the feasibility
of transfers of journeys planned via the sampled transfer zones. Existing shortest-path
algorithms for open and public transport networks are adapted to the many-to-many case
with numerous speed-up techniques and are used in conjunction with a machine-learning
algorithm to optimise the transfer points and paths between the transfer zones of journey
profiles. The new method has the beneficial feature that larger transfer-zone samples
lead to large and better-quality Pareto sets of journeys without increasing query response
times. Our experiment results show that our approach can generate large diverse sets of
efficient journey options within seconds. Such large sets of journeys include cheap, fast,
green, convenient and low effort ones which, when presented within a MaaS app, may
encourage more people to opt for non-private car journeys and thereby reduce pollution
and congestion.

The remainder of this paper is structured as follows. Section 2 provides a review of the
relevant literature. Section 3 defines the problem addressed in this work. Sections 4 and 5
detail the proposed solution methodology. Section 6 provides experiment results evaluating
the effectiveness of the proposed approach. Section 7 summarises the main findings and
promising directions for future work.

2. Literature Review
This section explores the existing literature regarding MaaS in general, considering its

aims and potential benefits, followed by a review of existing approaches for multi-modal
journey planning.

2.1. MaaS Concept

MaaS, in general, aims to integrate the offerings of mobility service providers into
a single digital platform for journey planning, booking, payment and (e-)ticketing [6,14].
They state that mobility service integration can be broken down into four hierarchical levels:
(1) journey planning (which is the most basic function of a MaaS app and the theme of this
work); (2) purchase and ticketing; (3) bundles and subscription plans; (4) addressing societal
goals such as reducing emissions and congestion using behaviour-nudging incentives.
MaaS apps can also provide live routing navigation once a journey is begun, which helps
to ensure that the most efficient routes are followed. Ref. [15] shows that people do not
always opt for the shortest paths without the aid of navigation.

A central goal of MaaS is to reduce high private car dependency [16]. Ref. [17] outlines
a research agenda for MaaS enablement, highlighting that a move away from private car
ownership comes with a natural increase in demand for convenient and seamless shared
mobility offerings. According to [18], the convenience benefits of MaaS include smart
ticketing, which also provides an institutional coordination mechanism for facilitating
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cooperation. MaaS is also touted as a means for improving social equity. Ref. [19] proposed
the MaaSINI: a MaaS inclusion index to evaluate the inclusivity and accessibility of MaaS
considering vulnerable social groups’ needs, such as the elderly, people with disabilities
and low-income people.

Ref. [20] attempts to answer the question of whether or not MaaS can change user
travel behaviour and deliver commercial and societal benefits. It is reported that MaaS
may help to reduce car ownership, but this may be offset by an increase in the use of other
car-based modes, such as taxi services or Uber. Evidence was found that suggests that
investment in MaaS does bring about net reductions in CO2. Regarding the demographic
groups that are most likely to adopt MaaS as their alternative to private car ownership,
Ref. [21] performed a latent class cluster analysis of attitudes and found that the largest
cluster is most likely to adopt MaaS, while current uni-modal car users are least likely to
adopt MaaS. This suggests that the natural bias against car-based transport modes of many
MaaS trials may be counter-productive to the aims of the MaaS movement. Instead, by
embracing car-sharing and taxi services in MaaS apps, current uni-modal car users may
be more inclined to explore the many benefits of MSP integration through MaaS apps.
Emerging convenient demand responsive bus services [22] may also sway private-car users
and/or those undergoing life changes.

The success of MaaS trials relies on different aspects, such as business models and
how MaaS can match MSP offers with a traveller’s needs. Ref. [23] evaluated different
business models and structures in the context of MaaS and concluded that it is important
to consider different market structures since, in certain cases like intermediary settings,
prices tend to be significantly higher with low profitability. Recently, Ref. [24] developed
a novel mechanism for MaaS to solve matching and pricing problems between MSPs
and travellers. They presented an initial approach that utilised a static offline mechanism
employing a pricing scheme derived from the Vickrey–Clarke–Groves model. The proposed
mechanism is designed to prioritise incentive compatibility, individual rationality and
system efficiency. Additionally, they introduced an online mechanism that employs a
dynamic learning algorithm to generate a solution that closely approximates optimality. A
customised greedy-based algorithm is used for comparison alongside this online approach.
Ref. [25] also developed incentive-compatible mechanisms for the online mobility-resource-
allocation problem. The proposed polynomial-time online algorithm benefits users with
the possibility to accept or reject offered MaaS bundles by comparing the associated utility
obtained from MaaS with a reserve utility obtained from other travel options.

Ref. [26] explored possible futures for MaaS by investigating the concept of mode
efficiency, where existing and emerging transport modes are categorised in terms of spatial
(vehicle size and average passenger numbers) and temporal (time spent idle) dimensions.
They warn that the promotion of some emerging modes can have adverse effects on the
various externalities for which MaaS is sold as addressing. Along a similar line of research,
ref. [27] found evidence suggesting that the introduction of car-sharing and bike-sharing
(micro-mobility) as alternatives to public transport in low-density areas can improve energy
efficiency. Taken together, mode efficiency, geography and demographics are key elements
that should be accounted for in the provision of mobility services.

2.2. Multi-Modal Route Planning

In general terms, route-planning problems come in two main varieties: vehicle-routing
problems (see [28] for a recent survey and classification scheme) and journey-planning
problems. This work is concerned with the latter. Journey-planning problems themselves
come in many varieties, including itinerary planning, where journeys must visit a specified
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sequence of intermediate locations/transfer points [29], and shortest-path problems, which
are the focus in this work.

Over the years, shortest-path-planning problems have been extended in a number
of ways, including multiple objectives [30–35], transport modes [36–39] and network
characteristics [40,41]. For example, Ref. [32] introduced a new exact-label-setting algorithm
that returns the subset of Pareto optimal paths that satisfy a set of lexicographic goals, or
a subset that minimises deviation from goals if these cannot be fully satisfied. Ref. [39]
presented an algorithm that considers the price optimisation (including driving and parking
costs) as a Pareto criterion in addition to travel time and the number of transfers for multi-
modal two-way round trip journeys.

The term multi-modal route planning refers to path-planning problems where trans-
fers between different vehicles and types of vehicles are allowed en-route. This term
has often been used in cases where the available modes are all fixed-schedule transport
modes [29,42,43]. More recently, multi-modal is most often used to refer to cases where the
available modes also include what might be referred to as open-network modes, such as
cars and bicycles, in addition to fixed-schedule modes, such as public transport services.

Research into multi-modal journey planning has been becoming more and more
general regarding the available transport modes, the objectives considered and the rules
imposed on when different modes can be used and in what order. Ref. [8] proposed a fast
algorithm for a special case of a multi-modal shortest-path problem in which the starts and
ends of journeys use the road network, while the main part of the journey utilises public
transport. Distances to and from public transport access-nodes are pre-computed and
stored, meaning that, at query time, only the smaller public transport network is subject
to a path search. In this work, pre-processing tasks are also employed to reduce query
times; see Section 4.2. This work focuses on the development of a general multi-modal and
multi-objective journey-planning algorithm, without imposing rules regarding allowable
mode sequences. Previous works have focused on other special case problems.

Ref. [44] developed a trip-planning algorithm that extends a time-minimised vehicle
trip-planning system by integrating it with multi-criteria walking considerations. They
argue that people are sensitive to walking for a great many reasons, including, exercise,
physical capabilities, path gradients and environmental conditions at travel time. Ref. [9]
introduced the RAPTOR algorithm for generating public transport and walking journeys
that minimise travel time and number of transfers; it is often the case that journeys can
be completed faster if commuters are willing to perform more transfers and walk more,
since public transport timetables are not always conveniently synchronised with each
other. More recently, ref. [10] proposed a time-dependent inter-modal A∗ (TDIMA*) algorithm,
which combines scheduled transport services, walking and vehicular transport networks.
The objective was to minimise a weighted sum of travel time, waiting time and penalties
for transfers between modes.

The general trend towards rolling out the efficiencies brought about by digitisation,
internet and instant telecommunications is making route-planning algorithm functionality
available to an ever expanding portion of the population, often via MaaS apps. While
the basic feature of an MaaS app is that of route planning, MaaS apps can also be used
as navigation aids to inform commuters of real-time hazards or delays. For example,
Ref. [45] proposed a framework for an integrated multi-modal route planner in the MaaS
domain. The architecture consists of two components: a dynamic journey planner that
combines routes from existing planners, enhances them with innovative mobility services
and transforms them into multi-modal options, and a route recommender system that
filters and ranks routes based on travellers’ preferences and MaaS operator requirements,
such as environmental sustainability or the promotion of specific modes of transportation.
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Relevant methodologies include the following. Ref. [46] propose a methodology for
estimating traffic flows using historic and real-time sensor data, information that is fed
into OpenTripPlanner (OTP). Ref. [47] implemented a similar approach in which real-
time congestion and air quality information are integrated with the multi-modal journey-
planning platform GraphHopper. Another example can be found in [48], who proposed a
dynamic programming route-planning algorithm for avoiding epidemic hot spots. Ref. [49]
developed a journey-planning app that combines public transport and car-pooling, called
RideMyRoute, which relaxes the origin and destination constraints of purely car-pooling
journeys, since the user can adjust the start and/or end of their journey by making use of
public transport, thereby increasing the number of feasible car-pooling options.

Regarding the users’ perspective, Ref. [50] provided 95 travellers with a multi-modal
trip planner and found that participants had positive attitudes toward the trip planner
as it proposes the optimum route, enhancing their comfort and reducing their stress
while travelling.

3. Multi-Modal Multi-Objective Journey-Planning Optimisation Model
The multi-modal multi-objective journey-planning problem has two main sets of in-

puts, a graph G = (N, E), which defines the nodes N (junctions) and edges E (connecting
paths) of the non-public transport networks, and general transit feed specification (GTFS)
data, which defines the public-transport network structure, including its routes and timeta-
bles. The graph G can be broken down further for each non-public transport mode, where
Gp = (Np, Ep) denotes the pedestrian transport network, Gb =

(
Nb, Eb

)
denotes the

bike transport network, Gs = (Ns, Es) denotes the e-scooter network (usually the same
as the bike network) and Gc = (Nc, Ec) denotes the road-vehicle transport network. All
nodes, and public transport stops, have a longitude and latitude, which are used to identify
the nodes/stops directly connected to the nodes/stops in every other transport network,
which define the set of possible transport mode transfer points. Regarding the GTFS data
framework, the public transport network is composed of a set of routes, which define the
stop sequences of each route. Each route has a set of trips, which correspond to the set
of times each route is repeated. Each trip has a set of stop times, which define the stop
timetable of that trip. GTFS data includes calendar data, which specifies the dates on which
each route operates, fare data, specifying the costs associated with possible sub-trips, and
shape data, specifying the exact paths of each route.

Our objective is to return, for any given commuter query (origin O, destination D,
departure time α), the set of non-dominated journeys with respect to simultaneous minimi-
sation of the objectives of (i) cost, (ii) travel time, (iii) CO2 emissions, (iv) inconvenience
(measured as the sum of walking and waiting time) and (v) calories used. Table 1 specifies
the characteristics and cost structures associated with each transport mode. Travel times
and waiting times of journeys are calculated from public transport timetable data and edge
traversal times. CO2 is calculated based on the distance travelled via each transport mode,
while calories used are calculated based on the distances walked and cycled.
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Table 1. Vehicle parameters.

Pedestrian E-Scooter Taxi Public Transport

Fixed cost (GBP) 0 1 2.5 0
Daily cost (GBP) 0 0 0 4.5

Distance cost (GBP/m) 0 0 0.00125 0
Time cost (GBP/s) 0 0.0025 0 0
Response time (s) 0 120 300 N/A

Maximum speed (m/s) 1.111 3.89 31.29 N/A
CO2 (g/m) 0.00011 0.007 0.12 0.0411

Calories (kCal/m) 0.06 0 0 0

While the number of transfers is, in principle, an element of inconvenience, in this
work it is treated as a commuter input constraint and not an objective. The main reason
for this is twofold: (i) a general investigation of multi-modal journey planning requires
the consideration of transfers; (ii) transfers are the primary source of the problem’s com-
plexity that we are trying to address. More generally speaking, we avoid suppressing
transfers directly for analysis purposes. We note that our objective function and corre-
sponding solution techniques extend trivially to the case where transfers are an additional
minimisation objective.

For the purpose of explaining our objective function, let yk denote a vector defining a
single (kth) multi-modal journey from the origin to the destination and let fi

(
yk
)

denote

the objective value of journey yk on objective criterion i. We are interested in finding
the optimal set of mutually non-dominated journeys with respect to criteria (i) to (v).
Objective (1) specifies that we want to find a Pareto set of journeys P which simultaneously
minimises all objective criteria. Constraints (2) and (3) define the mutually non-dominated
solutions requirement of a Pareto set. Specifically, Constraint (2) specifies that the Pareto
set must not contain any solutions dominated on all criteria by any other solution in the set.
Constraint (3) specifies that each solution in the Pareto set must outperform at least one
other non-dominated solution on at least one objective criteria.

min : fi

(
yk
)

, ∀i ∈ F, ∀yk ∈ P, (1)

s.t.

∀yk ∈ P∄
((

yl ∈ P
)∣∣∣( fi

(
yk
)
< fi

(
yl
)

, ∀i ∈ F
))

, (2)

∀yk ∈ P∃
((

yl ∈ P ∧ i ∈ F
)∣∣∣( fi

(
yk
)
> fi

(
yl
)))

. (3)

Formally, we can characterise the validity of any given multi-modal journey in terms
of a time-expanded graph model, where the non-public transport networks have copies of
each edge corresponding to departures at each possible time interval t (e.g., Ept for the set
of pedestrian edges departing at time interval t). On the other hand, the public transport
network has edges corresponding to each scheduled trip between each pair of consecutive
stops in all scheduled trips. Let xk

vtij denote a binary variable indicating whether or not
transport mode v is used to travel from node/stop i to node/stop j departing at time t in
journey k.

A feasible journey must be spatially contiguous (Constraint 4). Specifically, Constraint 4
states that each non-origin and non-destination node entered must also be exited. Note that,
for the case of connections between transport modes, the edge set Evt includes zero length
edges to nodes in the same position but in different transport networks. Journeys begin at the
origin (Constraint 5) and end at the destination (Constraint 6).
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∑
v∈V

∑
t∈T

∑
(i,j)∈Evt |i ̸=O

xk
vtij = ∑

v∈V
∑
t∈T

∑
(j,l)∈Evt |l ̸=D

xk
vtjl , ∀j ∈ N \O ∪ D, ∀yk ∈ P, (4)

∑
v∈V

∑
t∈T

∑
j∈Nvt

xk
vtOj = 1, ∀yk ∈ P, (5)

∑
v∈V

∑
t∈T

∑
j∈Nvt

xk
vtjD = 1, ∀yk ∈ P, (6)

Constraint 7 characterises time-feasible paths within this time-space network-graph-
based formulation; specifically, nodes can only be exited at a time after they have been
entered. τvtij denotes the travel time between nodes i and j while using transport network
v departing at time interval t. dt is the time associated with time interval t. Additionally,
the journey may not begin before the earliest departure time α (Constraint 8).

∑
v∈V

∑
t∈T

∑
(i,j)∈Evt |i ̸=O

dtxk
vtij + τvtij ≤ ∑

v∈V
∑
t∈T

∑
(j,l)∈Evt |l ̸=D

dtxk
vtjl , ∀j ∈ L \O ∪ D, ∀yk ∈ P, (7)

∑
j∈L

∑
v∈V

∑
t∈T

dtxk
vtOj ≥ α, ∀yk ∈ P, (8)

Commuter queries might also include budget, latest arrival time, maximum transfers
and unacceptable transport mode constraints. In this work, such constraints are to be
treated as commuter preferences, which they apply to filter journey options output from the
proposed approach. Note that they could also be trivially addressed during the optimisation
stage by pruning infeasible solutions as soon as they emerge.

4. Journey Profile Pareto Set Generation
In this work, we propose a methodology for addressing the main computational

bottleneck of multi-modal multi-objective journey planning, that of the very large number
of possible sequences of transfer locations, which can be between any pair of transport
modes. We circumvent this bottleneck in a two-stage approach:

1. A Pareto set of multi-modal journey profiles is generated utilising a carefully selected
sample of transfer zones.

2. Optimisation of the transfer points within the transfer zones, and the exact paths
between them, of the journey profiles.

We propose a hybrid k-means clustering algorithm and Dijkstra’s shortest-path algo-
rithm for generating transfer zones, each consisting of inter-connected transport network
nodes. Once the sample of transfer zones has been selected, static objective criteria contri-
butions are pre-computed for each inter-transfer-zone trip via each transport mode. Then,
at query time, an implicit enumeration algorithm (stage 1) is used to generate a Pareto set of
journey profiles that are mutually non-dominated with respect to the minimisation of cost,
arrival time, CO2, inconvenience and calorie expenditure, where a journey profile is de-
fined as the combination of a transport mode sequence and a corresponding transfer-zone
sequence. Then, finally, the transfer points within the transfer zones and paths between
them are optimised (stage 2) with respect to real-time transport network data.

4.1. Transfer-Zone Sampling (Offline)

The sample of transfer zones is selected based on applying a clustering procedure to
the pedestrian transport network, while ensuring that each cluster/transfer zone forms a
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connected pedestrian node sub-graph, which in turn ensures that transfers planned within
transfer zones can be completed on foot.

Algorithm 1 outlines the hybrid Dijkstra’s algorithm and k-means clustering algorithm
procedure. The algorithm starts with randomly selected pedestrian network nodes as the
seed nodes for building each cluster, while ensuring that at least one node is selected
from each sub-graph (island) of the entire transport network. The sub-graphs and their
number can be identified by applying the minimum spanning tree algorithm, starting a new
tree/sub-graph whenever no more unconnected nodes can be added to the current tree.
The relative sizes of the entire network’s sub-graphs are used to determine proportional
numbers of initial centroids to select for each sub-graph.

Algorithm 1 Hybrid Dijkstra’s algorithm and k-means clustering algorithm for pedestrian
transport network structure informed transfer-zone sampling.

1: Inputs: trans f erZoneSampleSize, iterations (number of k-means iterations), Np (pedes-
trian nodes), Ep (pedestrian edges).

2: //Identify pedestrian node sub-graphs (islands).
3: //For each transfer cluster, initialise a priority list of nodes, each containing a random

pedestrian node, ensuring that a pedestrian node from each sub-graph is selected, and
initialise a list of priority lists containing all of the priority lists.

4: for i ∈ {1..trans f erZoneSampleSize} do
5: priorityListi ← randomPedestrianNode()
6: listO f PriorityLists.add(priorityListi)
7: end for
8: //Apply iterations of the pedestrian node-based clustering algorithm.
9: for j ∈ {1..iterations} do

10: unassignedNodes← pedestrianNodes
11: while |unassignedNodes| > 0 do
12: //The next node to scan is that from the priority list with the non-scanned node

with the shortest path time from the seed node of that priority list.
13: currentPriorityList← listO f PriorityLists[0]
14: nodeToScan← removeAndReturn(currentPriorityList, 0)
15: //Add nodeToScan to the cluster corresponding to the current top-ranked priority

list and remove from unassignedNodes.
16: //Scan the node (fundamental step from Dijkstra’s algorithm)
17: for each node connected to an edge (edge) originating at nodeToScan do
18: if node not assigned to a cluster then
19: node.timeFromSeedNode = nodeToScan.timeFromSeedNode + edge.time
20: //Add node to currentPriorityList and sort by increasing timeFromSeedNode.
21: end if
22: end for
23: //Sort the priority lists of listO f PriorityLists by their minimum times from seed

node.
24: end while
25: //
26: if j < iterations then
27: //Find the node in each cluster nearest to the new cluster centroids and set these

as the seed nodes of each cluster priority list ready for the next iteration.
28: end if
29: end for
30: Output: The cluster assignments of all pedestrian network nodes.

In contrast to a standard implementation of k-means clustering, Dijkstra’s algorithm is
used to determine distances to nearest cluster centroids via shortest paths in the pedestrian
network. Algorithm 1 outlines an efficient approach for running a set of Dijkstra’s algo-
rithms, one for each cluster, simultaneously, which avoids having to implement Dijkstra’s
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algorithm in full starting from each cluster centroid individually, by avoiding “scanning”
any node more than once in total during each k-means iteration. This is achieved by jug-
gling the priority lists of each cluster’s Dijkstra’s algorithm instance, by always considering
next the priority list whose first-ranked node has the minimum path length. The result-
ing assignments of nodes to nearest clusters reflects actual travel times in the pedestrian
network, i.e., actual network topology, as opposed to “as the crow flies” distances. As in
k-means clustering, cluster centroids form the cluster seed nodes for the next iteration.

Figure 2 shows the result of applying Algorithm 1 to the pedestrian network of
the Solent area, for a transfer-zone sample size of 500. The identified transfer zones are
highlighted via different colours and their convex hulls. It can be observed that the resulting
zones capture geographical features and also reflect pedestrian node density.

Figure 2. Transfer zones generated by Algorithm 1 for a transfer-zone sample size of 500.

4.2. Inter-Transfer-Zone Objective Contributions (Offline)

This section outlines how objective criteria contributions are estimated for each journey
leg between each pair of transfer zones via each transport mode.

For the case of open transport networks, the method is as follows. For each transfer
zone, each node in that zone is set as an origin node with an initial arrival time of 0.
Dijkstra’s algorithm is executed to find all of the shortest paths from the origin transfer
zone to each node in every other transfer zone. The average times and distances to
every other transfer zone are used to calculate the required objective criteria contributions.
Let time(i, j, m), distance(i, j, m) and speed(i, j, m) denote the average shortest path times,
distances and speeds, respectively, from transfer zone i to transfer zone j via transport mode
m. Letting T denote the set of transfer zones and O the set of open transport networks, the
open-network inter-transfer-zone objective criteria contributions are calculated as follows.

cost(i, j, m) =


(time(i, j, m)× timeCost(m, speed(i, j, m)))

+ (distance(i, j, m)× distanceCost(m, speed(i, j, m)))

+ f ixedCostPerUse(m)

+ f ixedCostPerDay(m)

+tripCost(i, j, m)

, ∀(i, j) ∈ T2|i ̸= j, ∀m ∈ O, (9)

time(i, j, m) = time(i, j, m) + responseTime(m), ∀(i, j) ∈ T2|i ̸= j, ∀m ∈ O, (10)

CO2(i, j, m) = distance(i, j, m)× distanceCO2(m, speed(i, j, m)), ∀(i, j) ∈ T2|i ̸= j, ∀m ∈ O, (11)

inconvenience(i, j, pedestrian) = time(i, j, pedestrian), ∀(i, j) ∈ T2|i ̸= j, (12)
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Calories(i, j, m) = distance(i, j, m)× distanceCalories(m, speed(i, j, m)), ∀(i, j) ∈ T2|i ̸= j, ∀m ∈ O, (13)

where timeCost(m, s) is the cost per unit time while using transport mode m at an average
speed of s. distanceCost(m, s) is the cost per unit distance while using transport mode m at
an average speed of s. f ixedCostPerUse(m) is the fixed cost per usage of transport mode
m. responseTime(m) is the response time/set up time to begin using transport mode m.
distanceCO2(m, s) is the CO2 emission rate per unit distance while using transport mode
m at an average speed of s. distanceCalories(m, s) is the calories used per unit distance
while using transport mode m at an average speed of s. f ixedCostPerDay(m) is the fixed
daily cost associated with transport mode m. Finally, tripCost(i, j, m) is the average fare
associated with a public transport trip between transfer zones i and j via transport mode m.
In this work, we assume a fixed daily cost model for public transport usage; see Section 6.1.

The pre-calculated inter-transfer-zone objective contributions are based on static es-
timate average speeds of each vehicle type on each edge. Typically, transport network
travel-time data come in two varieties, daily averages and real-time data. Once Pareto
sets of journey profiles have been generated based on static estimates, the transfer point
optimisation procedure that follows is based on real-time speed estimates accounting for
current traffic conditions and disruptions. Similarly, the pre-calculated inter-transfer-zone
objective contributions for public transport journey legs are based on the scheduled public
transport services for the given day, and real-time disruptions can be accounted for in the
transfer point optimisation procedure. Note that the inter-transfer-zone objective criteria
contributions can also be updated in response to real-time changes in traffic conditions
and disruptions in an ongoing update procedure. For simpler exposition purposes, the
pre-processing step is described here as an offline process relative to the query response
aspect of the proposed scheme.

The public transport inter-transfer-zone objective contributions are calculated in a
similar way as those for the open transport networks; however, all of the public transport
trip paths are pre-defined. For each transfer zone, average journey times, distances and
speeds, to every other transfer zone, are calculated based on all scheduled public transport
trips (pairs of origin and destination stops) for the same day. Then, Equations (9)–(13) are
used to calculate expected inter-transfer-zone objective criteria contributions.

For the case of journey profiles with consecutive public transport legs, we account for
minimum possible connection times. For each transfer zone, we identify the minimum
connection times required to access the public transport services that lead to each of the
other transfer zones. The intention is to generate optimistic journey profiles that the
subsequent transfer point optimisation procedure can use to generate the best possible
multi-modal journeys. Some journey profiles may turn out to lead to low-quality journeys
due to time-dependent features that could not be accounted for based on static estimates
regarding inter-transfer-zone journeys. However, many journey profiles are to be generated,
so we should still be left with many options that can be used to generate a final set of fully
defined mutually non-dominated journeys, making the overall approach fairly fail-safe.

4.3. Implicit Enumeration of Non-Dominated Journey Profiles (Online)

At query time, a multi-modal path tree of non-dominated journey profiles is built
from the origin transfer zone to all other transfer zones. The tree is built in increasing
number of transfers order. Iteration 1 generates journeys from the origin transfer zone
to every other transfer zone via each available transport mode. Iteration 2 extends the
journeys with journey legs to every other transfer zone via each available transport mode,
while at the same time maintaining lists of non-dominated journey profiles to each transfer
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zone. Subsequent iterations are analogous while involving one extra transfer built on top
of those from the previous iteration. As a speed-up technique, we apply target pruning [9].
Whenever considering the extension of a partial journey profile with a journey leg to a
non-destination transfer zone, we eliminate the new partial profile if it is dominated by
any profile to the destination transfer zone. The effectiveness of target pruning can be
maximised by generating all of the new non-dominated journey profiles to the destination
transfer zone first at the beginning of each transfer-iteration. This maximises the quality
of the destination transfer zone’s Pareto set as early as possible and increases the total
amount of pruning, which in turn reduces the number of journey profile extensions to be
considered in subsequent transfer-iterations. For the case that the maximum number of
transfers is predefined, the final transfer iteration need only consider extensions leading to
the destination transfer zone, which is useful because, generally, each subsequent transfer-
iteration will involve the consideration of more-and-more partial journey profiles to extend
with additional journey legs.

5. Machine-Learning-Based Transfer Point Optimisation of Journey
Profiles (Online)

Once a journey profile Pareto set has been generated for a commuter’s query, the task is
to define precise paths and transfer points for each journey profile while taking into account
real-time transport network traffic flows and disruptions, i.e., using real-time transport
network graphs and GTFS data. Real-time transport network data capture traffic conditions
by specifying how long it takes to traverse each transport network arc at any given time of
the day; therefore, the path calculations outlined in this section account for varying traffic
conditions. Figure 3 outlines the proposed procedure for this, which is applied to each
non-dominated journey profile in turn. The approach is to cycle through the individual
legs of a journey profile one at a time. Each journey leg-iteration builds a many-to-many
shortest-path tree from the previous transfer zone (origin(s)) to the nodes in the current
transfer zone (reachedNodes/Stops) of the journey profile’s transfer-zone sequence. This
tree is built within the transport network defined by the journey profile’s mode sequence.
If the current mode corresponds to an open transport network, the relevant many-to-many
shortest-path algorithm is Dijkstra’s algorithm with numerous speed-up techniques (see
Section 5.1), which calculates and stores the shortest paths and arrival times at each node in
the current transfer zone. Conversely, if the current mode is public transport, the relevant
many-to-many shortest-path algorithm is a specially adapted version of RAPTOR, which
calculates and stores shortest time public transport journeys from the previous transfer
zone to all of the stops in the current transfer zone (see Section 5.2). Once a many-to-many
shortest-path tree has been built to the current transfer-zone, machine-learning travel time
predictions for the next leg of the journey profile are used to select one of the origins of the
current many-to-many shortest-path tree as a transfer point. At which point, the shortest
path leading to that transfer point is locked into the journey solution. If the current transfer
zone is the last one, machine-learning predictions are not required since we just commit to
the transfer point corresponding to the origin of the shortest path to the actual destination
node. Section 5.3 describes the input features and training procedure of the neural-network
approach for predicting travel times between any pair of locations in each open transport
network. Section 5.4 details the machine-learning-based transfer point selection procedure.
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Figure 3. Flow chart for the machine-learning prediction guided transfer point optimisation procedure.

5.1. Many-to-Many Open-Network Shortest-Path Algorithm

Algorithm 2 presents our target transfer-zone-directed many-to-many shortest-path
algorithm with speed ups for open transport networks. The algorithm is designed to grow
a many-to-many shortest-path tree from specified nodes in the origin transfer zone (origins)
to nodes in the destination transfer zone (reachedNodes). The algorithm is based on the
main steps of Dijkstra’s algorithm (lines 6–10, 20–21, 38–45), but also makes use of three
different speed-up techniques. Both of the first two speed-up techniques are based on
partitioning transport network nodes into clusters, each with defined boundary nodes;
for this, Algorithm 1 is used. Firstly, the arc flag speed up (lines 25–30) is used to avoid
the consideration of paths with edges known not to lie on any shortest paths from arc
flag boundary nodes to any arc flag boundary regions overlapping with the target transfer
zone (endTrans f erZone). Secondly, the cross-region edge label speed up (lines 32–36) is used
avoid the consideration of paths with edges, not in either the origin or destination transfer
zone, that are known not to be in any cross-region edge label boundary zone shortest paths;
Section 5.1.1 provides further details. Thirdly, the algorithm is provided with a dummy
target destination location (dummyDestination) somewhere within the target destination
transfer zone, which is used to simulate the goal-directed A* speed up of Dijkstra’s algo-
rithm, in which the candidate list is sorted according to lower bound estimates (“as the
crow flies”) of the arrival times at the dummy destination from the given node’s location.
This has the effect of prioritising the resolution of shortest paths closer to the target transfer
zone. The algorithm terminates when it is known that the shortest paths to all of the target
transfer-zone nodes have been resolved.
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Algorithm 2 Target transfer-zone-directed many-to-many Dijkstra’s with arc flag and cross
region edge label speed ups.

1: Inputs: origins, startTrans f erZone, endTrans f erZone, dummyDestination, maxSpeed,
numberO f NodesInTargetTrans f erZone.

2: //Initialise candidate list, the set and number of target nodes reached.
3: candidateList← origins
4: reachedNodes← ∅
5: nodesInTargetTrans f erZoneScanned = 0
6: while |candidateList| > 0 do
7: //Resolve and scan the unresolved node with the lowest heuristic score and store

the origin associated with the resolved path.
8: nodeToScan← candidateList(1)
9: candidateList← candidateList \ {nodeToScan}

10: nodeToScan.currentLegStartNode← nodeToScan.parentNode.currentLegStartNode
11: if trans f erZone(nodeToScan) = endTrans f erZone then
12: nodesInTargetTrans f erZoneScanned = nodesInTargetTrans f erZoneScanned + 1
13: reachedNodes← reachedNodes ∪ {nodeToScan}
14: end if
15: //Check if termination criterion is satisfied.
16: if nodesInTargetTrans f erZoneScanned = numberO f NodesInTargetTrans f erZone

then
17: Return reachedNodes
18: end if
19: //Consider whether shorter paths to nodes linked to nodeToScan can be found.
20: edgesOut← nodeToScan.edgesOut
21: for edge ∈ edgesOut do
22: //Apply speed ups.
23: edgePruned = f alse
24: //Arc flag speed up.
25: if arcFlagBoundaryNode(nodeToScan) then
26: edgePruned = true
27: if edge.onAShortestPathToSomeWhereInATargetArcFlagBoundaryZone

(endTrans f erZone) then
28: edgePruned = f alse
29: end if
30: end if
31: //Cross region edge label speed up.
32: if (trans f erZone(nodeToScan) ̸= startTrans f erZone) ∨

(trans f erZone(nodeToScan) ̸= endTrans f erZone) then
33: if ¬edge.crossRegionShortestPathEdge then
34: edgePruned = true
35: end if
36: end if
37: if ¬edgePruned then
38: nextNode = edge.endNode
39: newPathTime = nodeToScan.pathTime + edge.time
40: if newPathTime < nextNode.pathTime then
41: //Shorter path to nextNode found, update candidate list and store new parent

node.
42: nextNode.pathTime← newPathTime
43: nextNode.parentNode← nodeToScan
44: nextNode.heuristicScore = newPathTime +

crowFliesTime(nextNode, dummyDestination, maxSpeed)
45: addAndSort(nextNode, candidateList,′ heuristic score increasing′)
46: end if
47: end if
48: end for
49: end while
50: reachedNodes
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5.1.1. Speed-Up Techniques

Our speed-up techniques build upon the same logic as arc flags and geometric contain-
ers [51], in which the nodes of a transport network graph are partitioned into a set of distinct
regions. Within each region, boundary nodes are identified as those which have edges
leading to other regions. For each boundary node, a Dijkstra’s search to all other nodes
is performed, the results of which are used to define a bit vector for each edge leaving
a boundary node, which specifies each region that can be reached via a shortest path
including that edge. Then, future Dijkstra’s searches can prune edges leaving boundary
nodes which are known not to be included on a shortest path to anywhere in the final target
region. In our case, we define our set of regions using Algorithm 1.

As an extra pruning step, we also introduce a cross-region shortest-path pruning tech-
nique. Since we know that if the current “resolved/scanned node” in a Dijkstra’s search is
not in the origin or destination region, the completed shortest path must include a shortest
path between a pair of boundary nodes of the current region, because all sub-paths of
shortest paths are also shortest paths. Based on this, we monitor which edges are included
in shortest paths across each region between each pair of its boundary nodes, which is
information that can be yielded during the pre-processing step of the arc flags speed up
referred to above. If, in future Dijkstra’s searches, the current “resolved/scanned node”
is not in the origin or destination region, we can prune edges which are never in shortest
paths across that region. We refer to this speed-up technique as cross-region edge labels.

Figure 4 displays the boundary nodes (green dots) of partitioned regions and cross-
region shortest paths (blue); all of the grey edges can be pruned in a Dijkstra’s search when
the current “resolved/scanned node” is not in the origin or destination region.

Figure 4. Cluster boundary nodes (green squares) and cross-region shortest-path edges (blue lines) of
the cross-region edge labels speed-up technique applied to a pedestrian network.
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Appendix A contains experiment results for these speed-up techniques. In summary,
the pre-processing requirements of these techniques increase with transfer-zone sample
size, never exceeding an hour. The arc flags technique alone halves query times on average,
while the cross-region edge labels technique alone reduces query times by two-thirds on
average. When both techniques are applied simultaneously, query times can be reduced
by 93%.

5.2. Many-to-Many Public Transport Shortest-Path Algorithm

Algorithm 3 outlines our transfer-zone sequence constrained many-to-many adapta-
tion of RAPTOR. As with standard RAPTOR, the algorithm works in transfer-iterations
where each subsequent iteration attempts to find earlier arrival times to stops involving
itineraries with one additional transfer (line 13). Within each transfer-iteration, the standard
steps of RAPTOR are step 1 (line 14), step 2 (line 15) and step 3 (line 16). Step 1 gathers
routes whose stops were reached at earlier times in the previous transfer-iteration, or routes
serving origin stops in the first transfer-iteration. Step 2 cycles through those routes, finding
earlier arrival times to the stops along it. Step 3 searches for stops that can be reached more
quickly via walking connections from the stops reached more quickly via routes in the
current transfer-iteration. The differences between our algorithm and RAPTOR are high-
lighted in bold italics and include steps 4–6. As specified on lines 15 and 16, RAPTOR target
pruning no longer applies because we have multiple targets. In contrast to RAPTOR, our
algorithm stores full itinerary information for the routes found to all stops. Our proposed
approach for storing all itineraries is to store a path string for each stop and number of
transfers which specifies the entire itinerary of the corresponding public transport journey.
Each time an earlier arrival time to a stop is found, the corresponding path string is set
as that of the predecessor stop in the route concatenated with details of how the stop was
reached from the predecessor stop. In [9], the authors focus on finding earliest arrival
times as quickly as possible, and only state that it is possible to recover itineraries from
the algorithm. The path strings of origin stops (origins) specify which stop it is and the
arrival time, so that the specific origin, of the many possible, is information that gets carried
through the algorithm through the string concatenation itinerary storage approach. This
itinerary storage approach was found to be more convenient than an approach based on
storing references to parent stops, which is an approach that works well for open-network
journey planning using Dijkstra-based algorithms.

Our adaptation has the added feature that it stores and returns all public transport
journeys to stops in the final target transfer zone (reachedStops). For the case where journey
profiles contain consecutive public transport journey legs, Algorithm 3 builds a many-to-
many shortest-path tree through the specified transfer-zone sequence for that multi-leg
public transport journey. Step 6 applies transfer-zone sequence pruning so that the specified
transfer-zone sequence is adhered to, which can be regarded as a speed-up technique.

The adaptation also includes two fail safe mechanisms for cases in which the planned
transfer-zone sequence of a journey leg cannot be followed due to real-time schedule
information and disruptions. We waive the pruning of stops not in target transfer zones
(Step 6) if none are found in the target transfer zones. Furthermore, extra transfer iterations,
up to a maximum number, are added when no routes are found to stops in final target
transfer zone.
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Algorithm 3 Transfer-zone sequence-constrained many-to-many RAPTOR.

1: Inputs: origins, trans f erZoneSequence, maximumTrans f ers, maximumExtraIterations.
2: reachedStops← ∅
3: markedStops← origins
4: extraIterationsPer f ormed = 0
5: Reset earliest arrival times and full itineraries associated with all stops and number of

transfers except for the stops in origins.
6: for k ∈ {1..maximumTrans f ers} do
7: for i ∈ stops \ origins do
8: arrivalTime(i, k)← ∞
9: pathString(i, k) = ∅

10: end for
11: end for
12: Perform the specified number of transfer iterations (information derived from a journey

profile).
13: for k ∈ {1..maximumTrans f ers} do
14: Step 1. Gather routes reached in the previous round.
15: Step 2. Hop onto routes earlier than previously from stops reached in the previous

iteration while finding earlier arrival times at stops along those routes. No target
pruning and store full journey itinerary corresponding to each earlier stop arrival
time found (i.e., pathString(i, k) values).

16: Step 3. Find stops that can be reached earlier by walking from stops reached ear-
lier via routes in this iteration. No target pruning and store full journey itinerary
corresponding to each earlier stop arrival time found (i.e., pathString(i, k) values).

17: Step 4. Add marked stops in the final public transport leg target transfer zone to
reachedStops.

18: Step 5. Allow extra transfer iterations in the event that no stops have been reached
in the final public transport leg target transfer zone. (i.e., allow for failure due to
real-time disruptions.)

19: if (k = maximumTrans f ers) ∧ (extraIterationsPer f ormed < maximumExtraIterations)
then

20: if markedStops does not include stops in transfer zone trans f erZoneSequence(k)
then

21: maximumTrans f ers = maximumTrans f ers + 1
22: extraIterationsPer f ormed = extraIterationsPer f ormed + 1
23: end if
24: end if
25: Step 6. Perform transfer-zone sequence pruning, provided that public transport

journeys to this iterations target transfer zone have been found; this exception is
another mechanism for allowing for failure due to real-time disruptions.

26: if markedStops includes stops in transfer zone trans f erZoneSequence(k) then
27: Filter markedStops retaining only those in trans f erZoneSequence(k).
28: end if
29: end for

5.3. Neural-Network Travel-Time Predictions

In ML-TZSA, feed-forward neural networks are used to rapidly approximate shortest
time paths from anywhere in an origin transfer zone to anywhere in a destination transfer
zone in any transport network. As such, we train a separate neural network for each pair
of origin and destination transfer zones and each transport mode. Regarding the training
of each neural network, we firstly generate the neural-network structure according to
the specified number of input features, output responses and the numbers of neurons in
each layer. In this case, there are 13 input features and two output responses (travel time
and distance). The input features for making a prediction include origin and destination
longitudes and latitudes (4 features); origin and destination longitudes and latitudes
relative to their respective transfer-zone centroids (4 features); the angles and distances of
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the origin and destination relative to their respective transfer-zone centroids (4 features)
and the “as-the-crow-flies” distance between the origin and destination (1 feature). These
features can be calculated much more rapidly than the exact shortest path between an origin
and destination can be, as can a forwards pass of a neural network for making a prediction
based on these features. Figure 5 illustrates the structure of the neural networks, which
consists of a layer by layer fully-connected feed-forward structure. The hyperbolic tangent
activation function is used for all neurons, and the synapse weights were calculated using
the back propagation algorithm. The number of neurons in the layers between the input
signal and output layer varies smoothly between the input vector size and output vector
size (13-[10-6]-2), which is a common heuristic that helps to reduce the risk of overfitting.
For each neural network, a sample of training data is generated, consisting of pairs of
input features and output responses for randomly selected origins and destinations within
the transfer zones of interest. The A∗ shortest-path algorithm is used to calculate the
desired output responses. The back propagation algorithm is used to train the weights of
the neurons of the neural network. The training procedure involves repeatedly selecting
random instances from the training data and performing a neural-network forwards pass
to make a travel-time prediction based on the feature data, followed by a backward pass
for updating the neuron weights to reduce prediction error in the future. This procedure
requires a learning rate scheme which determines how aggressively the neuron weights are
updated in response to prediction errors. The learning rate starts small and becomes lower
in order to prevent over fitting to individual training data instances. Appendix B provides
neural-network prediction accuracy and time results. In summary, travel-time prediction
errors are around 3% on average and tend to decrease with increasing transfer-zone sample
sizes. Prediction response times are always a tiny fraction of the time required to calculate
travel times using shortest-path algorithms.
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Figure 5. Neural network structure.

5.4. Transfer Point Optimisation

Using an example journey profile including the transfer-zone sequence 1, 2, 3 and
corresponding mode sequence walk, bike, taxi, Figure 6 illustrates the ML-TZSA methodol-
ogy for optimising the transfer points and path of a journey profile. Figure 6 depicts the
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steps performed in one journey leg-iteration of Figure 3 (main loop) for the case where the
current transport mode is bike. Firstly, the origins, which are the inputs of the many-to-many
Dijkstra’s algorithm, are the nodes in cluster 1 that can be reached along the walking path
tree (black lines) from the origin. The many-to-many Dijkstra’s algorithm generates cycling
shortest-path trees (green lines) from cluster 1 to cluster 2. The next step is to commit to
one of the cycling sub-trees, and thereby fix the transfer point of cluster 1 and also a single
walking path within the walking path tree. For this, machine-learning predictions (depicted
as curved dashed lines) are used to estimate arrival times at cluster 3’s sampled transfer
point (centroid), via taxi, starting from each possible cluster 2 transfer point. In the example,
a transfer from bike to taxi at node 9 is found to minimise the expected arrival time at cluster
3’s sampled transfer point, which corresponds to the cycling path sub-tree starting at node
7 (thick green lines), which is then fixed as the transfer point in cluster 1. As a result, nodes
9, 10, 13 and 15 become the origins for the next iteration of Figure 3, as well as being the
candidate locations for the next transfer point in cluster 2. In summary, machine-learning
predictions for the next journey leg are used to decide on a path through the previous leg’s
many-to-many shortest-path tree and commit to a single path sub-tree of the current leg’s
many-to-many shortest-path tree. The issue that machine-learning predictions can exhibit
inaccuracy is not too critical given that the machine-learning predictions are only used to
choose a sub-tree from a many-to-many shortest-path tree.
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Figure 6. Diagram illustrating how machine-learning predictions of travel times of the subsequent
leg of a multi-modal journey, starting from different possible transfer zones, are used to select the
transfer point of the previous leg.

To conclude the presentation of the proposed methodology, we note that the aim of
this approach is to generate a large number of alternative journeys with attractive features
regarding cost, time, CO2, convenience and calorie expenditure. So, while our journey
profile transfer point optimisation procedure is driven by time minimisation, constraining
the transfer points to limited size transfer zones provides the mechanism by which the
objective criteria characteristics of the original journey profiles are preserved. On a case-by-
case basis, it is also possible to further limit the candidate transfer points to those that do
not impact the objective values too much. In any case, the proposed approach is intended to
augment the offerings of MaaS apps rather than replace their existing ones, be they optimal
or not. Regarding the issue of presenting too many journey options to commuters, the
alternatives can be ordered according to different preference criteria (possibly listed in a
drop-down menu). Another option is to present those optimising each individual objective
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in addition to a selection of those balancing conflicting criteria, perhaps identified using a
clustering algorithm.

6. Results
In this section, experiment results are presented for the offline pre-processing step

of ML-TZSA and the online query responses of ML-TZSA. ML-TZSA is also compared
with two versions of RAPTOR in order illustrate the superior diversity of the outputs of
ML-TZSA, as well as to provide some validation of the quality of the journeys generated by
ML-TZSA. ML-TZSA is also analysed in terms of a number of different Pareto set quality
metrics for a variety of transfer-zone sample sizes. The experiment results reported were
all carried out using a 3.9 GHz processor with 8 Gb RAM.

6.1. Experiment Inputs

While our methodology can be applied to any sets of open and public transport
networks, our experiment results are based on the transport networks of the Solent region
of the UK, which can be summarised as follows. The Solent transport network is composed
of pedestrian, bike and road open networks, as well as bus, ferry and train public transport
services. Ferries connect the Isle of Wight with the mainland and connect the adjacent
peninsulas of the coast of the mainland. Trains connect the main suburbs, towns and
cities on the same islands, while the bus network provides the same plus a more extensive
range of connections between local conurbations. The pedestrian transport network is
defined by 202,816 nodes and 523,580 edges. The road network is defined by 141,743 nodes
and 313,373 edges. The e-scooter transport network is defined by 204,037 nodes and
524,917 edges; however, e-scooters are restricted by geofence constraints to the cities of
Portsmouth and Southampton. The public transport network consists of bus, ferry and
train routes, of which there is a total of 1272 unique routes and 5830 stops. GTFS data define
the timetables of the public transport networks as well as the dates that different public
transport trips are available. Regarding the modelling of connections between different
transport networks, nodes are generated in each open transport network corresponding
to each public transport stop along with edges connecting those nodes to the nodes of the
nearest existing edges in those networks. For connections between open transport networks,
connection nodes are similarly generated if the nearest edges in the other networks are
within some specified small distance. These additional connection nodes and edges are
included in the totals reported above.

Table 1 shows the parameters associated with each transport mode, which were
collected from various sources, including www.carbonindependent.org (accessed on 4
April 2024), and capture the main characteristics and relative differences between each
transport mode. The CO2 contribution for public transport is based on that of buses
(822 g/km) and is divided by 20 as an attempt to make the CO2 accounted for directly
attributable to each individual commuter. Walking is assumed to consume 60 calories per
kilometre. The taxi cost (GBP/metre) is based on 40p per fifth of a mile and a fixed cost
of GBP 2.50 per trip. The e-scooter fixed and variable costs are representative of those
of a current app-based e-scooter trial (Voi Portsmouth and Southampton). The vehicle
maximum speeds have been extracted from the static open transport network graphs and
are used for the goal-directed heuristic scores used in the A* shortest-path algorithm.

A day ticket public transport cost model has been selected because of its real-life
relevance and simplicity, and because it leads to a special exception when checking whether
or not one partial solution dominates another. The issue is that a partial solution without
public transport may need public transport for its completion. Therefore, we need to avoid
eliminating a partial solution which already includes public transport on the basis of its

www.carbonindependent.org
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cost exceeding that of a partial solution without public transport by less than the cost of
a day ticket; we must instead retain both partial solutions. Another exception is that we
must avoid comparing and eliminating partial solutions if they do not end at the exact
same transfer point within the same transfer point cluster. Partial solutions ending with
public transport legs may end at different stops within the same transfer point cluster.

6.2. ML-TZSA Pre-Processing Results

Figure 7 (left) shows the pre-processing times required to complete the tasks of
Sections 4.1 and 4.2 for different transfer-zone sample sizes. For transfer-zone sample
sizes of 50 and above, pre-processing times increase linearly with transfer-zone sample
size. This is because the number of calls of Dijkstra’s algorithm required for calculating
open transport network inter-transfer-zone objective criteria contributions is equal to the
number of transfer zones. The task of generating the transfer zones is only dependent on
the size of the pedestrian transport network and not the number of transfer zones. For low
transfer-zone sample sizes, the task of calculating minimum connection times for consecu-
tive public transport legs takes a longer amount of time because there are more possible
public transport connections in larger transfer zones. The calculation of inter-transfer-zone
objective criteria contributions in the public transport network takes the least amount of
the total pre-processing time because public transport routes are pre-defined and the public
transport network is generally a fraction of the size of any of the open transport networks.

Figure 7 (right) shows the portions of all inter-transfer-zone journeys that are actually
possible in each transport network. These values provide a measure of the connectivity of
each transport network. For the case of pedestrian, bike and car networks, approximately
0.8 of all inter-transfer-zone trips are possible, independent of transfer-zone sample size.
This reflects the fact that the Isle of Wight is not connected to mainland Britain via these
networks. The e-scooter network, which is a subset of the bike network, has the lowest
level of connectivity, which is because of the city-based geofence constraints on the use of
hireable e-scooters. For the public transport network, the connectivity appears to decrease
with increasing transfer-zone sample size, which is because smaller transfer-zones each
contain fewer public transport stops and therefore fewer ways to reach other transfer zones.
The connectivity of the public transport network is least accurately judged on this criterion
because the real connectivity of the public transport network relies on transfers, where that
of the open transport networks does not. Multi-modal journeys facilitate a connectivity
level greater than that of any of the individual constituent transport networks.
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6.3. ML-TZSA Query Response Results

Figure 8 provides average query response information based on 2000 commuter
queries, each varying by origin, destination and departure time. The top row of bar charts
provides the average number of non-dominated journey profiles generated and average
number of non-dominated multi-modal journeys generated from those journey profiles,
for a range of different transfer-zone sample sizes. The bottom row of bar charts provides
corresponding average query times expressed in orders of magnitude of seconds (1 = 10 s,
0 = 1 s, −1 = 0.1 s, −2 = 0.01 s, −3 = 0.001 s). The first column limits the available transport
modes to walking and public transport; for this we include results for RAPTOR [9]. The
second column limits the available transport modes to walking, public transport and
e-scooters. For this, we include results for RAPTOR-ES, which is RAPTOR where e-
scooters can be used via e-scooter racks at the beginning and/or end of public transport
journeys as well as to make connections between consecutive public transport services. The
third column limits the available transport modes to walking, public transport, e-scooters
and taxis.

Figure 8 reveals several general trends. The average journey profile Pareto set sizes
increase the more transport modes there are available, as do average total query times.
On average, half of the journey profiles lead to non-dominated journeys, which can be
attributed to the aggregated and approximate nature of the journey profile generation
procedure with respect to exact query departure times, origin and destination locations, but
which are accounted for in the transfer point and path optimisation procedure. Average
total query times remain between 0.1 s and 10 s in all cases, i.e., acceptable for real-time
applications. The largest average total query times are 3.34 s for RAPTOR-ES (for the case
of walking, public transport and e-scooters being available) and 3.21 s for ML-TZSA (10)
(for the case of walking, public transport, e-scooters and taxis being available). Figure 8 also
shows that ML-TZSA average total query times are somewhat independent of transfer-zone
sample size. Although the number of solutions generated increases with transfer-zone
sample size, the time required to optimise the paths and transfer points of individual
journey profiles decreases. The transfer point solution space, constrained by the transfer-
zone sequences, decreases within increasing transfer-zone sample size. Average individual
journey profile transfer point optimisation times range between 0.575 s for the case of
10 transfer zones and 0.0189 s for the case of 500 transfer zones. This is a positive result,
meaning that we need not worry about finding a compromise transfer-zone sample size
and simply make it as large as possible. The bottleneck regarding the maximum transfer-
zone sample size is the memory space required to store the pre-processed information,
which becomes unmanageable for a current standard desktop computer for transfer-zone
sample sizes in excess of 500. For the case of walking, public transport and e-scooters being
available, ML-TZSA can generate Pareto sets of journey profiles in a time ranging from 1.4
to 10.8 ms. Transfer point optimisation accounts for the vast majority of total query time.
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Figure 8. Average numbers of solutions and query times for ML-TZSA and RAPTOR methodologies for different sets of available modes, based on 2000 example
commuter queries.
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Figure 8 showed that ML-TZSA can generate many more solutions than two different
versions of RAPTOR in roughly equal query times. The main reason for this is that RAPTOR’s
objective is to minimise travel time and transfers, which is an objective function that generally
characterises a smaller Pareto set of journeys. Figure 9 provides results for a comparison
between ML-TZSA and RAPTOR based on the best objective values found for each criteria
for each of the 2000 test queries. The results are presented as relative values, where values
below 1 indicate that ML-TZSA finds better objective values for particular criteria compared to
RAPTOR on average. When only walking and public transport are available, RAPTOR finds
slightly faster and less strenuous (in terms of calorie expenditure) journeys on average. This
perhaps is not so surprising considering that ML-TZSA’s RAPTOR component is relatively
constrained by the maximum transfers and transfer-zone sequence imposed by journey profiles.
This reinforces the idea that ML-TZSA is best considered an option for augmenting the offerings
of MaaS apps rather than being a replacement for their existing ones. However, in all other
cases, ML-TZSA finds better best solutions than RAPTOR on average. This is true for all criteria
when the available modes are walking, public transport and e-scooters, and for the criteria of
walking and waiting time, cost and CO2 emissions, when the available modes are walking
and public transport. That is to say, ML-TZSA offers the possibility to directly address a wider
range of objectives within a query response time suitable for real-time applications.
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Figure 9. (Left) Average best ML-TZSA objective values relative to those of RAPTOR for the case of
walking and public transport being available. (Right) Average best ML-TZSA objective values relative
to those of RAPTOR-ES for the case of walking, public transport and e-scooters being available.

Figure 10 displays a sample of routes generated by ML-TZSA (500), as well as RAPTOR-
ES’s two non-dominated solutions (top-right) and a pure taxi route (top-middle). The bar
charts indicate the overall relative quality of each solution with respect to the objectives of cost,
time, CO2, walking and waiting time and calories, respectively, with higher bars indicating
better quality (lower objective values). ML-TZSA can provide numerous solutions with very
similar characteristics to RAPTOR’s but with variations on the modes used to access and
leave the main train segment of RAPTOR’s solutions. ML-TZSA’s solutions include those
where e-scooters are used at both the start and end of the journey (ML-TZSA 10 and 13),
just at the start of the journey (ML-TZSA 3 and 11), just at the end (ML-TZSA 1) or never.
ML-TZSA also provides solutions from entirely different regions of the objective space. For
instance, ML-TZSA 13 shows a solution where the maximum possible usage of e-scooters is
made given the geofence constraint that e-scooters can only be used within cities and cannot
be used to travel between them. Such a solution has low CO2 emissions; it is significantly
faster than walking but is also one of the most expensive. Nevertheless, it is a non-dominated
solution for this query. Figure 10 also shows that ML-TZSA can also generate solutions which
evenly balance the trade-offs between the various objectives via a more equal division of the
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total trip distance between the different transport modes. For example, ML-TZSA 1 shows a
solution with moderate values for each objective criteria, achieved by travelling approximately
equal distances by walking, bus and e-scooter. ML-TZSA solutions also include bus-based
alternatives to RAPTOR’s train-based solution (ML-TZSA 14), as well as a solution involving
the use of short ferry crossings (ML-TZSA 4), which provide a faster walking-based solution
than the pure walking solution (ML-TZSA 7). While none of the solutions are faster than the
pure taxi journey, many relatively fast alternatives are provided which vastly reduce cost and
CO2 emissions at a small cost in terms of convenience and calorie expenditure.

Figure 10. A sample of the 252 non-dominated journeys generated by ML-TZSA (500) and RAPTOR-
ES’s two non-dominated journeys, plus a taxi journey for an example query.
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6.4. Pareto Set Quality Results

We now turn our attention to the quality of the Pareto sets generated by ML-TZSA and
for completeness include results for those of RAPTOR solution methodologies. Our Pareto
set metrics include dominance ratio, non-dominance ratio, reference set gap average and
reference set gap standard deviation. Dominance ratio and non-dominance ratio are Pareto
set metrics based on comparing the Pareto sets generated by two different methodologies
for the same query directly against each other. The dominance ratio of one Pareto set is
defined as the portion of its solutions that dominate at least one solution from the Pareto
set it is being compared with. The non-dominance ratio of one Pareto set is defined as the
portion of its solutions that are not dominated by any solution from the Pareto set it is being
compared with. The reference set gap average of a Pareto set is defined as the average
distance (in normalised objective value space) between each of a reference Pareto set’s
solutions and the nearest solutions in the Pareto set being measured. This measure is zero
when a solution method can generate the same Pareto set as the reference set. Regarding the
reference set, ideally this would be the optimal Pareto set; however, currently no algorithm
scalable enough exists to calculate it within a reasonable amount of time for the large
sized instances considered here. Instead, we generate a reference Pareto set for each query
composed of the combined set of mutually non-dominated solutions from all available
solution methodologies. The available solution methodologies in this case are ML-TZSA for
all transfer-zone sample sizes considered, as well as those generated by RAPTOR solution
methodologies. Wherever an average can be calculated, a standard deviation can also be
calculated; the reference set gap standard deviation measures the variance in the average
distances between each of a reference set’s solutions and the nearest ones in the Pareto set
being evaluated. Low values of this metric indicate a Pareto set consisting of a diverse
set of solutions, which is a desirable feature of the solutions we would like to provide to
a commuter.

In order to ensure a meaningful comparison, we restrict our attention to the set of
queries of the 2000 test queries for which all methodologies found solutions. This excludes
cases where query origins and destinations lie in the same transfer zone. In such cases,
queries are generally of a short total distance, as such multi-modal journeys are less
appropriate, and other methodologies are sufficient for trip recommendation purposes.
Note that to overcome this issue it is possible to prepare the algorithm for different transfer-
zone structures and to then use ones where the query origin and destination are not in the
same transfer zone.

Tables 2 and 3 provide details regarding the numbers of solutions that each separate
methodology contributed to the reference sets over all of the considered test queries, listed
in decreasing total contribution order, for the cases of (i) walking and public transport
being available and (ii) walking, public transport and e-scooters being available. Generally
speaking, ML-TZSA with high transfer-zone sample sizes contributes most to the reference
sets, and RAPTOR the least, as expressed by columns 2 and 3. Columns 4 and 5 state the
total number of non-dominated solutions generated by each methodology and indicate
that (very) roughly, a third of the non-dominated solutions generated by each method
form part of the reference sets. Reference set contributions are proportional to the relative
numbers of non-dominated solutions generated by each methodology. This indicates that
all methodologies are generating consistently good quality solutions, but different numbers
of them.
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Table 2. The reference Pareto set contributions of different solution methodologies (walking and
public transport).

Method Reference Set Contributions Non-Dominated Solutions per Method
Name Total Portion Total Portion Overall Rank

ML-TZSA (200) 7233 0.1167 19,479 0.0958 1
ML-TZSA (500) 6758 0.1090 26,774 0.1317 2
ML-TZSA (250) 6715 0.1083 21,048 0.1035 3
ML-TZSA (350) 6593 0.1064 24,277 0.1194 4
ML-TZSA (450) 6550 0.1057 25,298 0.1244 5
ML-TZSA (400) 6352 0.1025 23,495 0.1156 6
ML-TZSA (300) 6294 0.1015 22,866 0.1125 7
ML-TZSA (150) 5375 0.0867 15,619 0.0768 8
ML-TZSA (100) 3888 0.0627 11,286 0.0555 9
ML-TZSA (50) 2609 0.0421 7293 0.0359 10
ML-TZSA (20) 1731 0.0279 4151 0.0204 11
ML-TZSA (10) 1423 0.0230 1731 0.0085 12

RAPTOR 467 0.0075 1731 0.0085 13

Table 3. The reference Pareto set contributions of different solution methodologies (walking, public
transport and e-scooters.

Method Reference Set Contributions Non-Dominated Solutions per Method
Name Total Portion Total Portion Overall Rank

ML-TZSA (500) 28,484 0.1450 77,812 0.1490 1
ML-TZSA (350) 23,269 0.1184 66,383 0.1271 2
ML-TZSA (250) 22,622 0.1151 56,294 0.1078 3
ML-TZSA (400) 22,359 0.1138 62,713 0.1201 4
ML-TZSA (450) 22,154 0.1128 68,815 0.1318 5
ML-TZSA (200) 21,930 0.1116 48,888 0.0936 6
ML-TZSA (300) 20,359 0.1036 59,183 0.1133 7
ML-TZSA (150) 14,599 0.0743 36,505 0.0699 8
ML-TZSA (100) 10,329 0.0526 24,265 0.0465 9
ML-TZSA (50) 5033 0.0256 12,537 0.0240 10
ML-TZSA (20) 3141 0.0160 6450 0.0124 11
ML-TZSA (10) 1682 0.0086 2314 0.0044 12
RAPTOR-ES 505 0.0026 2314 0.0044 13

Figures 11 and 12 show firstly that, generally speaking, ML-TZSA outperforms RAP-
TOR in terms of all Pareto set metrics by a significant amount, which is what ML-TZSA is
designed for. However, as indicated by the moderate non-dominance ratios, RAPTOR does
generate strong albeit few solutions. More interestingly, we see that ML-TZSA Pareto set
metric values improve with increasing transfer-zone sample size, which can be attributed
to the larger and more diverse Pareto sets generated when the transfer-zone sample size is
higher. ML-TZSA always has a non-dominance ratio close to one, indicating that its Pareto
sets rarely contains solutions that are dominated on all criteria by any RAPTOR solution.
Regarding reference set gap measures, RAPTOR results are independent of transfer-zone
sample size and are hence displayed as constant in this comparison. The ML-TZSA refer-
ence set gap metrics tend to zero as the transfer-zone sample size approaches 500, even
though ML-TZSA (500) only contributes around 15% of reference set solutions.
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Figure 11. Dominance ratio, non-dominance ratio, reference set gap average and standard deviation
results for the case of walking and public transport.
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Figure 12. Dominance ratio, non-dominance ratio, reference set gap average and standard deviation
results for the case of walking, public transport and e-scooters.
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Figure 13 displays the objective criteria scatter plots for the reference, ML-TZSA (500)
and RAPTOR Pareto sets corresponding to the query depicted in Figure 10. The reference
set consists of 628 solutions (small dots), ML-TZSA (500)’s Pareto set consists of 252 solu-
tions (circles), 115 of which are reference set solutions, while RAPTOR’s Pareto set consists
of 2 solutions (asterixes), neither of which are in the reference set. For this query, both
ML-TZSA’s and RAPTOR’s dominance ratio was 0 and their non-dominance ratio was
1, indicating that, for this query, ML-TZSA (500) also found both of the solutions found
by RAPTOR (note that dominance and non-dominance metrics are based on comparing
ML-TZSA’s solutions with RAPTOR’s and not with the reference set). ML-TZSA’s and RAP-
TOR’s reference set gap averages were 0.0767 and 1.79, respectively, ML-TZSA providing
an improvement of 1.71. ML-TZSA’s and RAPTOR’s reference set gap standard deviation
values were 0.118 and 1.02, respectively, ML-TZSA providing an improvement of 0.90.
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Figure 13. Pareto front objective criteria scatter plots for ML-TZSA (500), RAPTOR and the reference
set for the query depicted in Figure 10, displaying the nature of the trade-offs between each criterion.

Figure 13 shows that the clearly conflicting pairs of objectives all include CO2 emis-
sions, which conflicts with travel time, walking and waiting time, and calorie expenditure.
That is, low CO2 emissions generally have to be accepted in exchange for higher travel
times, walking and waiting times and calorie expenditure. The generally accepted conflict
between the objectives of cost and travel time appears to be more convoluted than might be
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expected. The explanation for this is that cost provides the main lever that enables us to use
different transport modes, e-scooters in this case, that can be used to balance the conflict
between CO2 and each of travel time, walking and waiting time and calorie expenditure.
Another visible pair of conflicting objectives is between travel time and transfers; generally
speaking, we will only accept more transfers if total travel time is reduced.

Appendix C shows that increasing the set of available transport modes increases
Pareto front quality and diversity. Additionally, it provides another perspective on some of
the main sets of conflicting objectives.

7. Conclusions
This work has presented a methodology for rapidly generating many efficient alter-

native multi-modal journey alternatives with respect to the objectives of cost, travel time,
CO2 emissions, convenience and calorie expenditure. The aim of this methodology is to
augment the offerings of MaaS apps with cheap, fast, green, convenient and energy efficient
alternatives to private car journeys, which, given their uptake, can in turn help to reduce
pollution and congestion on our roads.

Our methodology side steps the issue of the large solution space of possible transfer
locations between pairs of transport modes using a two-step approach. Firstly, a Pareto set
of journey profiles is generated based on aggregated transfer zones. Secondly, integrated
and adapted versions of existing shortest-path algorithms for open and public transport
networks, with various speed-up techniques, are used to optimise the transfer points and
paths between transfer zones in a procedure guided by neural machine-learning predictions.
A novel hybrid k-means and Dijkstra’s algorithm was introduced for determining sets of
transfer zones which accounts for transport network topology and local geography. In
general terms, this work provides another example of how learning and optimisation can
be beneficially integrated.

The proposed methodology was then tested on a real large-scale multi-modal transport
network. Pre-processing times for ML-TZSA were found to be linearly increasing with
increasing transfer-zone sample size. In terms of query responses, Pareto set sizes increased
with transfer-zone sample size without adversely affecting query times, which were never
more than a few seconds. The time required to generate journey profile Pareto sets was
always very small, while the time to optimise the transfer points, and the paths between
them, decreases with increasing transfer-zone sample size, because this reduces the transfer
point solutions space. The result is that the recommended transfer point sample size should
be as high as possible before the pre-processing times and memory requirements become
too large. However, meaningful results are still obtained for moderate sample sizes.

ML-TZSA was contrasted with RAPTOR in order to illustrate how ML-TZSA can
generate large diverse Pareto sets of multi-modal journey, addressing a wider variety of
objective criteria in similar query times to RAPTOR. By looking at a sample of the routes
generated by RAPTOR and ML-TZSA, it was shown that ML-TZSA can generate routes
including those of equal quality and characteristics to those of RAPTOR’s, but also that
ML-TZSA can provide many solutions that minimise and balance different objectives.
Based on four different Pareto set metrics, ML-TZSA consistently found high-quality and
diverse Pareto sets.

While our transfer point optimisation procedure is driven by time minimisation,
constraining the transfers to limited size transfer zones provided the mechanism by which
the objective criteria characteristics of the original journey profiles are preserved. Quickly
generating truly optimal and full Pareto sets of multi-modal journeys for the criteria
considered, without relying on pre-processing and transfer-zone sampling as this work
does, currently remains an open area of research. However, the issue of presenting too
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many journey options to commuters warrants methods that limit the sizes of the Pareto
sets generated. A related future research direction could involve trials into the influence
that presenting different sets of journey alternatives has on travel behaviour for different
demographics and personas. Another future direction is to investigate how shortest-path
algorithms can incorporate preference criteria such as avoiding motorways, large numbers
of turns and lane changes, and to use such algorithms in modular multi-modal journey-
planning algorithms such as that presented here.
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Appendix A. Speed Up Technique Results
Table A1 displays the statistics associated with the pre-processing and testing of

both of the goal-directed Dijkstra’s algorithm (A*) speed-up techniques presented in
Section 5.1.1, applied to the pedestrian transport network of the Solent region. It shows that
pre-processing times increase with the number of regions, which is because more regions
mean more boundary nodes between adjacent regions (see “boundary nodes” column), and
hence more corresponding calls of Dijkstra’s algorithm. For 1000 regions, pre-processing
takes no longer than an hour. For each number of regions, we tested 3 versions of A* in the
same set of 1000 random origin–destination queries: (i) A* (no speed ups); (ii) A* with arc
flags; (iii) A* with cross-region edge labels. In each case, the same shortest-path solutions
are found. The final three columns of Table A1 provide average query times, given in
milliseconds. All speed-up experiments do lead to reduced query times compared to A*
alone. For the case of the arc flags speed up, query times are lower the higher the number
of regions, because more boundary nodes are encountered where edges can be pruned.
Conversely, for the case of the cross-region edge label speed up, query times generally
increase gradually the higher the number of regions, after a minimised query time for the
case of 50 regions. That is, fairly large regions lead to greater portions of edges not being
included in cross-region shortest paths.

The previous experiment results are based on applying both speed-up techniques
separately. However, they can be applied simultaneously, along with their optimal node
region definitions. When both speed ups are applied simultaneously with their respective
optimal node region definitions, query times are reduced to 3 milliseconds, which is
approximately a 93% query time reduction compared to A* alone.
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Table A1. Speed-up technique statistics for different numbers of regions.

Pre- Pruned With Arc With Cross
Region

Processing Boundary Cross A* Query Flags Query Edge Labels
Regions Time (s) Nodes Region Edges Time (ms) Time (ms) Query Time (ms)

10 112.2 787 432,023 44.76 31.08 13.66
20 185.0 1364 404,318 44.79 29.56 10.55
50 341.6 2496 367,501 44.69 27.28 8.95

100 597.8 4082 335,123 44.89 25.56 10.30
150 816.6 5382 311,209 44.76 23.43 11.60
200 983.1 6288 291,265 44.80 22.88 12.64
250 1162.4 7225 276,504 44.58 21.68 13.79
300 1291.9 8014 266,260 45.17 20.38 14.45
350 1451.0 8864 256,527 44.94 19.78 15.13
400 1574.9 9489 248,124 45.88 19.08 15.61
450 1703.3 10,148 240,749 45.50 18.68 16.10
500 1873.1 10,878 234,755 45.90 17.76 16.19
1000 3093.9 15,690 221,502 45.76 13.65 16.80

Appendix B. Neural-Network Travel-Time Prediction Time and
Accuracy Results

Table A2 provides neural-network prediction accuracy results for different transport
networks and transfer-zone sample sizes based on 1000 randomly selected origin and
destination queries. The root mean squared error (RMSE) of travel-time predictions are
lower when there are many small transfer zones (as opposed to a few large ones), which
makes sense considering that travel times between smaller zones will have a lower variance
in possible shortest-path travel times. However, the storage space required for the neural
networks increases with the square of the number of transfer zones. For the case of
100 transfer zones, we need to store 30,000 individual neural networks (100 zones times
100 zones times 3 open transport networks). For more than 100 transfer zones, this becomes
a serious computational bottleneck for a current standard desktop computer. In terms
of ML-TZSA, this means that different degrees of graph partitioning need to be used for
neural-network travel-time predictions than for other journey-planning tasks when the
transfer-zone sample size exceeds 100. The RMSE and mean absolute error (MAE) are
always least for predictions in the car transport network. However, the relative MAE is
always highest in the car transport network. This is because travel times are always lowest
in the car network, so variance of travel times is naturally lower. Furthermore, predictions
are more difficult to make in the car network because the roads exhibit a high variance in
top speeds in comparison to paths in the other networks. The units of MAE are seconds,
so for 100 transfer zones the expected prediction error lies between 30 s and 2.5 min. We
except this error in exchange for the speed with which neural-network predictions can be
made: small fractions of a millisecond.
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Table A2. Time and accuracy measures for 1000 random test data queries (time prediction in seconds,
distance predictions in metres.

Prediction Transportation Time Time Time Prediction A* Time
Clusters Mode RMSE (s) MAE (s) Relative MAE Time (ms) (ms)

10 Walking 398.2 296.3 0.052 0.019 5.46
10 E-scooter 287.9 209.6 0.063 0 4.58
10 Car 74.5 50.9 0.079 0 2.29

20 Walking 310.6 227.3 0.038 0 5.60
20 E-scooter 222.6 136.5 0.053 0 3.66
20 Car 62.6 41.5 0.064 0 2.45

50 Walking 248.1 177.5 0.030 0 5.62
50 E-scooter 126.5 73.2 0.038 0 5.85
50 Car 44.7 31.4 0.040 0 2.41

100 Walking 211.1 150.8 0.019 0.020 5.27
100 E-scooter 103.3 64.8 0.031 0 2.56
100 Car 48.1 29.5 0.038 0 2.42

Appendix C. The Impact of the Set of Available Transport Modes on
Pareto Set Diversity

Figure A1 displays spider plots of ML-TZSA (200) Pareto fronts for three different
available transport mode cases. It can be seen that, as the set of available transport modes
increases, the Pareto sets becomes larger and more diverse, and also that the best solutions
according to the criteria of time, walking and waiting time and calorie expenditure improve.
Generally speaking, different transport modes allow us to address different objectives better,
and that combinations of transport modes allow us to generate more trade-off solutions
that balance conflicting objectives. Each individual solution in each Pareto set has its own
unique colour; the shades of the solutions in each Pareto set change uniformly according
to travel time. This makes some of the trade-offs between conflicting criteria visible. The
conflict between travel time and both calorie expenditure and walking and time is most
clearly visible. For the cases involving each of public transport, walking and e-scooters,
a trade-off between cost and travel time is also quite visible. The trade-offs relating to
CO2 are more convoluted, which is because public transport introduces non-linearities
due to their discrete timetables, and that their routes are predefined and some routes are
more efficient than others for different journey requirements. Journey planning has limited
control over CO2 emissions due to public transport usage.

Figure A1. Spider plots of pareto fronts for different sets of available transport modes, with individual
solutions coloured according to travel time.
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