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Abstract: The air suspension system’s superior variable stiffness, low vibration frequency, and
resistance to road impacts significantly elevate both the comfort of vehicle occupants and the overall
ride quality. By effectively controlling the air suspension system, its superior characteristics can
be fully exploited to enhance the overall performance of vehicles. However, the parameter tuning
process of the fuzzy PID controller for air suspension involves subjectivity and blindness, which
affects the performance of the suspension system. To overcome these shortcomings, a control strategy
combining genetic algorithms with fuzzy PID control is proposed. This strategy involves a genetic
algorithm-optimized fuzzy PID air suspension control approach specifically targeting the fuzzy PID
controller for air suspension. A 1/4 two-degree-of-freedom air suspension fuzzy PID controller
is designed in MATLAB 2019a, utilizing genetic algorithms to optimize the PID parameter tuning
process. The ride comfort of the fuzzy PID air suspension after tuning is then investigated. In
the study of ride comfort on Class B road surfaces, the simulation and experimental results were
consistent. Using a genetic algorithm to optimize a fuzzy PID-controlled air suspension resulted
in reductions of the root mean square values for vertical body acceleration, suspension deflection,
and wheel dynamic load by 30%, 26%, and 9%, respectively, compared to passive suspension. These
reductions are further improvements over the corresponding indices controlled by the fuzzy PID
alone, which decreased by 23%, 18%, and 6%, respectively. Thus, the control effect of the genetic
algorithm-optimized fuzzy PID is superior to that of the fuzzy PID control. This demonstrates that
the fuzzy PID control of air suspension optimized by genetic algorithms can further improve the
comfort of vehicle occupants and the ride comfort of driving, providing a reference for active control
of air suspension systems.

Keywords: air suspension; genetic algorithm; fuzzy PID; vehicle ride comfort; intelligent control

1. Introduction

The air suspension system boasts superior attributes such as variable stiffness, low
vibration frequency, and resistance to road impacts. When integrated into vehicle suspen-
sion systems, it significantly improves both ride comfort and handling stability while also
minimizing damage to road surfaces [1]. Particularly, the electronic control air suspen-
sion system can adjust control forces based on input parameters, enabling adjustments
to vehicle posture (especially vehicle height). According to various driving conditions,
the suspension system achieves optimal matching and coordinated control of stiffness
and damping to adapt to various vehicle usage scenarios, thereby improving the overall
performance of vehicles. Li Yanchao conducted control research on the suspension system
of electric vehicles by establishing PID control semi-active suspension models and skyhook
damping control semi-active suspension models. The results indicated that the PID control
semi-active suspension increased the peak value and root mean square (RMS) of suspension
dynamic deflection, while the skyhook damping control semi-active suspension increased
the peak value and RMS of tire dynamic deformation. This verified the mutual influence

Appl. Sci. 2024, 14, 7787. https://doi.org/10.3390/app14177787 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14177787
https://doi.org/10.3390/app14177787
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14177787
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14177787?type=check_update&version=1


Appl. Sci. 2024, 14, 7787 2 of 19

among suspension smoothness evaluation indicators, demonstrating that improving one
performance aspect might reduce another [2]. Sun Shilei studied vehicle ride comfort by
investigating the height adjustment of air springs during the inflation and deflation process
of electronically controlled active air suspension. By applying fuzzy PID controllers and BP-
PID controllers to analyze the vehicle ride comfort during height changes of free diaphragm
air springs, it was found that the fuzzy PID controller effectively suppressed the vertical
acceleration of the car body, particularly when the vertical acceleration exceeded 1.0 m/s2.
The BP-PID controller effectively suppressed vertical acceleration above 0.8 m/s2, thereby
improving ride comfort [3]. Bai Rui presented an adaptive sliding-mode control method,
which is used to stabilize the displacement of electronically controlled air suspension in
the presence of parameter uncertainties. Simulation research showed that the proposed
control method can obtain satisfactory control performance for electronically controlled
air suspension [4]. A hybrid fuzzy and proportional-integral-derivative (PID) controller
is proposed for roll angle handling of a three-axle truck with an active air suspension
system, the pitch angle is controlled by the active suspension system. Roll reduction of a
heavy vehicle can improve the ride comfort and rollover tendency of the truck [5]. A fuzzy
controller is proposed for the insufficient roll resistance of D23. The results show that the
designed controller can further effectively improve the handling stability of vehicles [6].
An optimal fuzzy control with control rules optimized by the genetic algorithm is proposed
to evaluate the performance of the control damping and the control air spring of the vehicle
air suspension system on ride comfort and road friendliness [7]. An innovative design
of an adaptive air suspension system with an LQR control strategy is proposed, and a
dynamic model of an air suspension system used in passenger vehicles was designed and
simulated for both passive and adaptive systems in MATLAB [8]. A height control strategy
for the sprayer body was formulated, and sliding mode control and the on-off control were
used to design the suspension height stability controller. The simulation experiment results
showed that sliding mode control and on–off control could track and stabilize the height of
the sprayer body when it changed under no excitation and D-grade road random excitation.
Compared with the on–off control method, the sliding mode control approach had good
control ability and precision due to its robustness to change in model parameters [9].

Domestic and international scholars conducted control research on suspension systems
based on PID control theory [10–14]. The air suspension system simulation model with
PID controller was built, and the experimental results show that air suspension based on
PID control strategy can reduce the body vertical acceleration and better increase the ride
comfort of vehicles [10]. PID controller and LQR controller for an active suspension system
are analyzed, evaluated, and compared. The results have shown that the PID controller
supports the optimization of the body acceleration, and the LQR controller supports the
optimization of the body displacement [11]. An advanced firefly algorithm was investigated
to compute the PID controller for a semi-active suspension system. The study of the
controllers has shown significant improvement as the proposed PID-AFA is capable of
reducing the amplitude of the sprung acceleration and body acceleration responses up to
56.5% and 67.1% [12]. The PID controller is researched and applied to control the active
suspension system of the cars under the different excitations of the road surface and the
various car speeds. The research results show that the PID controller for the car suspension
system has an obvious impact on reducing the vibration and controlling the car body
shaking in comparison with the passive suspension system [13]. Using the Ziegler–Nichols
method via the Control System Designer app to tune the PID controller to achieve the
desired comfort traveling of passengers and reliable ride-holding of the car [14]. However,
they did not provide a clear and effective method for selecting specific control parameters,
and the use of PID structures introduced various uncertainties and nonlinearities, making
it difficult to determine appropriate PID gains to enhance the robustness of the control
system. Therefore, intelligent algorithms like fuzzy logic were employed to fine-tune PID
controller gains, enhancing the robustness of the control system. Fuzzy PID control merges
the features of PID control with fuzzy control characteristics, offering rapid convergence,
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robust performance, and a streamlined structure [15–18]. However, due to the complexity of
air suspension systems, the subjective selection of membership functions, fuzzy rules, and
PID initial parameters based on experience hindered achieving optimal control effectiveness.
Literature [19–21] proposed using genetic algorithms to optimize the initial PID parameters
of fuzzy PID controllers. However, the fuzzy rules defined in the study still relied on
expert experience, making it challenging to achieve optimal control. To address these
issues, genetic algorithms were combined with fuzzy PID control to propose a genetic
algorithm-optimized fuzzy PID control strategy. A genetic algorithm-optimized fuzzy PID
control system tailored for air suspension systems was designed to conduct control research
on air suspension systems.

2. Dynamic Modeling of Air Suspension Systems
2.1. Vehicle Model Construction

The air suspension system is a rather complex nonlinear system, making it difficult
to establish an accurate model. In a study of vehicle performance, the suspension system
should be simplified based on the specific research problem. Key aspects that require
detailed investigation should be thoroughly analyzed, while factors with a minimal impact
on certain performance characteristics should be simplified or omitted. This approach
ensures that the simplified system model retains the main features pertinent to the research
problem while remaining both straightforward and practical.

Within the scope of vehicle ride comfort research, focusing primarily on the vertical
dynamics of the vehicle, the following assumptions are made based on the operational
characteristics of the suspension system.

(1) During vehicle operation, the road surface unevenness excitation experienced by the
left and right tires is identical;

(2) The effects of the engine, steering, and drivetrain systems on vibrations are neglected
in the modeling process;

(3) The damping of the tires is significantly less than that of the suspension dampers;
hence, only the stiffness of the tires is considered, and tire damping is ignored in
the modeling;

(4) The time delay effect of the suspension is neglected in the modeling.

Based on these assumptions, when the vehicle is symmetrical about its longitudinal
axis and the left and right wheels experience identical road surface unevenness, the vehicle
exhibits only vertical and pitch vibrations. These two degrees of freedom have the most
significant impact on ride comfort. In this scenario, the vehicle can be approximated
as a planar model. When the mass distribution coefficient of the vehicle’s sprung mass
approaches 1, the vertical motion of the concentrated masses above the front and rear axles
can be considered independent of each other [22]. Thus, the study of vertical dynamics
can be simplified to the vertical motion of a single-axle body. For the analysis of ride
comfort, the vehicle model considers one degree of freedom in the vertical direction for the
sprung mass and one vertical degree of freedom for the wheel mass, totaling two degrees
of freedom. Therefore, the vehicle model is simplified to a quarter-vehicle model. Despite
representing only a quarter of the entire vehicle, the quarter-vehicle model retains all the
characteristics relevant to suspension studies in practical research contexts.

The 1/4 vehicle model can accurately describe the basic motion state of the vehicle.
Moreover, when applying control, it exhibits higher credibility in control effectiveness,
and the control effort required for controller design can be simplified. Figure 1 depicts the
two-degree-of-freedom 1/4 vehicle model, wherein linear springs replace elastic tires, and
tire damping is neglected.
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Figure 1. 1/4 Two-Degree-of-Freedom Model of The Vehicle. 
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Based on Newtonian mechanics laws, combined with the air spring model, a 1/4
vehicle dynamic model was established.{
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In Equation (1), “m1” represents the unsprung mass, “m2” represents the sprung mass,
“kt” is the tire stiffness coefficient, “c” is the suspension damping coefficient, “F” denotes
the air spring force, “U” represents the active control force, “Z1”, “Z2”, and “q” respectively
denote the displacement of the unsprung mass, the displacement of the sprung mass, and
the road input excitation.

2.2. Road Input Model

During actual driving, vehicles are subject to various external influences, such as lateral
winds and road surface unevenness. The study of vehicle ride comfort primarily focuses
on the vibrations induced by road surface unevenness. Therefore, the current analysis
only considers the effects brought about by road surface irregularities. Road inputs can
generally be categorized into two types: deterministic and stochastic inputs. Deterministic
road inputs are used when simulating road irregularities like bumps and potholes, which
pose significant challenges to vehicle navigation. On the other hand, stochastic road inputs
describe the continuous excitation of the road through their statistical properties, providing
a standard classification of road quality that better reflects real-world driving conditions. In
this study, stochastic road inputs are analyzed, and their mathematical model is established.

Random road profiles were used as input to study the characteristics of the suspension
system. The displacement power spectral density and variance described the random road
model, with its displacement power spectral density as follows:

Gq(n) = Gq(n0)

(
n
n0

)−W
(2)

where, “n0”—the reference spatial frequency, n0 = 0.1 m−1;
“n”—the spatial frequency, which is the reciprocal of the wavelength λ, indicating the

number of wavelengths contained per unit length, m−1;
“Gq(n0)”—the road roughness coefficient, m3;
“W”—the frequency coefficient, determining the frequency structure of the power

spectral density, commonly taken as W = 2.
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Using MATLAB/Simulink (Natick, MA, USA), a road surface white noise model was
constructed with a Class B road surface at a vehicle speed of 50 km/h. According to
GB7031-1987 [23], the road roughness coefficient Gq(n0) is 6.4 × 10−5 m3. Figure 2 depicts
the simulated road surface model, while Figure 3 shows the time-domain variation of road
excitation at 50 km/h. Using MATLAB/Simulink, a road surface white noise model was
constructed, selecting a Class B road surface and a vehicle speed of 50 km/h. According to
GB7031-1987, the road roughness coefficient Gq(n0) = 6.4 × 10−5 m3. Figure 2 illustrates
the simulated road surface model, and Figure 3 depicts the time-domain variation of road
excitation at 50 km/h.
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2.3. Selection of Simulation Parameters

In studying suspension performance, three parameters are typically used to evaluate
ride comfort: tire dynamic load, vehicle body acceleration, and suspension dynamic
deflection. A smaller vehicle body acceleration indicates a more stable suspension, while a
smaller suspension dynamic deflection also signifies greater stability. Tire dynamic load
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should remain within a certain range; excessive load can accelerate tire wear and hinder
road maintenance, while insufficient load affects tire traction, impacting vehicle stability.

The study focuses on the air suspension of a specific model of sedan, with model
parameters listed in Table 1.

Table 1. Part of the structural parameters of the vehicle.

Name Notation Value

Sprung mass m2/kg 500
Unsprung mass m1/kg 50

Suspension damping c/N·s·m−1 1700
Tire stiffness kt/N·m−1 200,000

3. Control Algorithm
3.1. PID Controller

PID control is a widely applied control strategy in industrial process control. PID
stands for Proportional, Integral, and Derivative and involves adjusting these three pa-
rameters to achieve precise control over a system. The basic principle of PID control is
to calculate an output based on the deviation between a desired setpoint and the current
value of the system. This calculation is performed according to proportional, integral, and
derivative relationships. The resulting output is used to control the system, enabling it to
reach and stabilize at the desired setpoint.

In the PID control strategy, system control is achieved through three processes: pro-
portional, integral, and derivative, combined with the relative control error output from
the system. When designing the system, appropriate weighting coefficients “Kd”, “Ki”, and
“Kp” for derivative, integral, and proportional terms are chosen based on the performance
requirements of the air suspension. During the tuning process of control parameters, the
performance changes in the time domain of the control system are considered, as shown in
Table 2 (using the example of a relative increase in tuning parameters).

Table 2. Relationship between PID regulating parameters and performance indexes.

Parameters Rise Time Overshoot Setting Time Steady-State Error

Kp Decrease Increase Slight Change Decrease
Ki Decrease Increase Increase Eliminate
Kd Slight Change Decrease Decrease Slight Change

Using the PID control method, the difference between the ideal vertical acceleration of
the car body (acceleration is 0) and the actual vibration acceleration was directly input into
the controller. The active control force of the air suspension system served as the output.
Through a “trial and error” method, the values of the three parameters “Kp”, “Ki”, and
“Kd” were continuously adjusted. The corresponding output curves were observed, and
parameter values were tuned based on the control effect. Finally, the three parameters of
the PID controller were determined as follows: Kp = 1, Ki = 53, Kd = 0.1.

Based on the above principle, the road input system, air suspension simulation module,
and PID control system were combined in Simulink to establish a PID control air suspension
simulation model for simulation analysis. The suspension control simulation model is
shown in Figure 4, and the vehicle parameters are listed in Table 2.



Appl. Sci. 2024, 14, 7787 7 of 19Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 19 
 

 
Figure 4. PID Simulation System of Air Suspension. 

3.2. Fuzzy PID Controller 
F-PID, or Fuzzy PID, utilizes fuzzy logic algorithms and PID control methods to dy-

namically optimize PID parameters based on specific fuzzy rules. This approach ad-
dresses the limitations of traditional PID controllers that cannot adjust parameters effec-
tively. In air suspension control, integrating fuzzy reasoning with PID control allows for 
the adjustment of parameters according to system requirements, ultimately achieving ef-
fective system control. 

Utilizing fuzzy logic and the PID control method, the input variables of fuzzy infer-
ence were set as the deviation “e” and the rate of change of deviation “ec” of the vehicle’s 
vertical acceleration. The fuzzy algorithm rules were employed to tune the control param-
eters of PID, constructing a two-dimensional fuzzy PID controller [15]. This strategy com-
bined the stability performance of PID control with the good dynamic tracking capability 
of fuzzy control [17]. The operational principle is depicted in Figure 5. 

 
Figure 5. Schematic Diagram of Fuzzy PID Controller. 

3.2.1. Input and Output of Fuzzy Controller 
The vertical acceleration “e” and the rate of change of vertical acceleration “ec” serve 

as input signals to this controller. Through processes such as fuzzy inference and param-
eter adjustment, the controller obtains the final output values, namely “ΔKp”, “ΔKi”, and 
“ΔKd”. These values primarily influence the adjustment of the switching time of the elec-
tromagnetic valves and the regulation of airbag pressure, thereby adjusting the stiffness 
of the air suspension. The final PID parameter values can be obtained accordingly. 𝐾 = 𝐾 + ∆𝐾𝐾 = 𝐾 + ∆𝐾𝐾 = 𝐾 + ∆𝐾  (3)

Figure 4. PID Simulation System of Air Suspension.

3.2. Fuzzy PID Controller

F-PID, or Fuzzy PID, utilizes fuzzy logic algorithms and PID control methods to dy-
namically optimize PID parameters based on specific fuzzy rules. This approach addresses
the limitations of traditional PID controllers that cannot adjust parameters effectively. In
air suspension control, integrating fuzzy reasoning with PID control allows for the ad-
justment of parameters according to system requirements, ultimately achieving effective
system control.

Utilizing fuzzy logic and the PID control method, the input variables of fuzzy inference
were set as the deviation “e” and the rate of change of deviation “ec” of the vehicle’s vertical
acceleration. The fuzzy algorithm rules were employed to tune the control parameters of
PID, constructing a two-dimensional fuzzy PID controller [15]. This strategy combined the
stability performance of PID control with the good dynamic tracking capability of fuzzy
control [17]. The operational principle is depicted in Figure 5.
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3.2.1. Input and Output of Fuzzy Controller

The vertical acceleration “e” and the rate of change of vertical acceleration “ec” serve
as input signals to this controller. Through processes such as fuzzy inference and parameter
adjustment, the controller obtains the final output values, namely “∆Kp”, “∆Ki”, and
“∆Kd”. These values primarily influence the adjustment of the switching time of the
electromagnetic valves and the regulation of airbag pressure, thereby adjusting the stiffness
of the air suspension. The final PID parameter values can be obtained accordingly.

KP = K′
p + ∆Kp

Ki = K′
i + ∆Ki

Kd = K′
d + ∆Kd

(3)
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In the Equation, the initial settings of the fuzzy PID are sequentially designated
as “Kp

′”, “Ki
′”, and “Kd

′”; The correction amounts “∆Kp”, “∆Ki”, and “∆Kd” are real-
time self-adjustments of PID parameters for the suspension system based on actual driv-
ing conditions, determined through fuzzy inference; The PID parameter real-time self-
adjustment of the suspension system based on actual driving conditions is derived through
fuzzy inference. The final parameter settings of the fuzzy PID are denoted as “Kp”, “Ki”,
and “Kd”.

Based on the passive suspension test results, the fuzzy domains of the controller input
variables “e”, “ec”, and output variables “∆Kp”, “∆Ki”, and “∆Kd” were all selected as [−6, 6].
The quantization factor was Ke = 7.8, Kec = 1.2, and the proportional factor was Ku = 8. The
initial values of the fuzzy PID controller parameters were Kp

′ = 1, Ki
′ = 53, and Kd

′ = 0.1.

3.2.2. Selection of Input and Output Variable Domains

Before applying fuzzy control, the input variables undergo fuzzification. Typically,
the system’s input parameters are crisp values that are mapped to corresponding fuzzy
subsets and membership functions. This process is known as fuzzification. The subsequent
operations of the fuzzy controller require the fuzzification of the inputs e and ec. The range
of values for e and ec is commonly referred to as the fundamental domain.

Suppose the fundamental domains for the input error and error rate of change
are [−e, e] and [−ec, ec], respectively, and the fundamental domain for the output is
[−u, u]. If the fuzzy domain for the input is set as [−n, −n + 1,. . ., 0,. . ., x − 1, x], then the
domain for the error rate of change can be determined as [−m, −m + 1,. . ., 0,. . ., m − 1, m],
and the output fuzzy domain is [−x, −x + 1,. . ., 0,. . ., x − 1, x]. Typically, the input domain
is set such that n ≥ 6 and the output domain such that m ≥ 6. For this case, n = m = 6
is selected.

In general, after discretization, e and ec typically need to be transformed to correspond
with fuzzy domains using a quantization factor. The expression for the quantization factor
is as follows:

Ke =
n
e

, Kec =
m
ec

, Ku =
x
u

(4)

Based on passive suspension experiments, the fundamental domains for e and ec
are [−0.7, 0.7] and [−5, 5], respectively. The fundamental domains for Kp, Ki, and Kd
are [−6, 6], [−1, 1], and [−100, 100], respectively. The fuzzy domains for input and output
are both set to {−6, 6}. The constants are Ke = 7.8, Kec = 1.2, Up = 1, Ui = 0.167, and
Ud = 16.67. The initial values are Kp

′ = 1, Ki
′ = 53, and Kd

′ = 0.1.

3.2.3. Membership Functions of Fuzzy Variables

The membership functions within the input and output ranges are triangular mem-
bership functions. This function can rapidly respond to the occurrence of an error and
generate a corresponding adjustment output. Additionally, its computation and expres-
sion are relatively simple, and it requires minimal memory space. [NB, NM, NS, ZO, PS,
PM, PB] represent the fuzzy subsets of the input and output fuzzy variables. The fuzzy
controller employs the Mamdani model and adheres to the following principles when
designing control rules: for large errors, the control actions are chosen to prioritize rapid
error elimination; for small errors, the control actions prioritize stability to prevent sys-
tem overshoot. Additionally, the centroid method is utilized for fuzzy decision-making.
The centroid method is an ideal defuzzification technique whose fundamental principle
involves computing the centroid of the area under the membership function curves. This
approach provides smoother output in inferential control. The membership function curves
for the input and output are illustrated in Figures 6 and 7.
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3.2.4. Establishment of Fuzzy Control Rules

In the process of designing a control system, establishing fuzzy PID control rules is
particularly crucial. Fuzzy control rules are formulated based on the linguistic values of
input and output variables, arranged or combined to form fuzzy conditional statements.
According to the variation patterns in the excitation response of the suspension system, the
following control rules are established:
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(1) When |e| undergoes significant changes, choose a larger ∆Kp and smaller ∆Ki, ∆Kd
to ensure system stability and effectively control the instantaneous deviation;

(2) If there are no significant changes in |e| and |ec|, reduce ∆Kp appropriately and
select suitable ∆Ki, ∆Kd based on system requirements to ensure minimal overshoot
and effectively reduce system response time;

(3) When |e| changes minimally, increase the values of ∆Kp and ∆Ki, adjusting ∆Kd
based on the variation in |ec|. For small |ec|, choose a larger ∆Kd; for large |ec|,
choose a smaller ∆Kd;

(4) When e and ec change in the same direction, indicating an increasing error trend,
increase ∆Kp; conversely, decrease ∆Kp.

Based on the variation pattern of the suspension system excitation response and in
combination with the actual response during the operation of the air suspension system,
the fuzzy control rules corresponding to Tables 3–5 were organized and summarized based
on operational experience and expert knowledge.

Table 3. Fuzzy control logic of ∆Kp.

e
ec

NB NM NS ZO PS PM PB

NB PB PB PM PM PS ZO ZO
NM PB PB PM PS PS ZO NS
NS PM PM PM PS ZO NS NS
ZO PM PM PS ZO NS NM NM
PS PS PS ZO NS NS NM NM
PM PS ZO NS NM NM NM NB
PB ZO ZO NM NM NM NB NB

Table 4. Fuzzy control logic of ∆Ki.

e
ec

NB NM NS ZO PS PM PB

NB NB NB NM NM NS ZO ZO
NM NB NB NM NS NS ZO ZO
NS NB NM NS NS ZO PS PS
ZO NM NM NS ZO PS PM PM
PS NM NS ZO PS PS PM PB
PM ZO ZO PS PS PM PB PB
PB ZO ZO PS PM PM PB PB

Table 5. Fuzzy control logic of ∆Kd.

e
ec

NB NM NS ZO PS PM PB

NB PS NS NB NB NB NM PS
NM PS NS NB NM NM NS ZO
NS ZO NS NM NM NS NS ZO
ZO ZO NS NS NS NS NS ZO
PS ZO ZO ZO ZO ZO ZO ZO
PM PB PS PS PS PS PS PB
PB PB PM PM PM PS PS PB

3.3. GA F-PID Controller

A genetic algorithm is a probabilistic optimization algorithm that conducts a proba-
bilistic search based on the natural genetic mechanisms and biological evolution principles
in nature, iteratively seeking the optimal solution. It relies on the principles of biological
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evolution and natural selection, using individual fitness as a basis to perform selection,
crossover, and mutation operations to intelligently search for optimal parameter solutions.
This intelligent algorithm can optimize one or multiple parameters of a system, thereby
enhancing the effectiveness of the controller.

A genetic algorithm is employed to optimize the control rules and membership func-
tions in F-PID controllers, aiming to achieve superior control performance.

3.3.1. Selection of Objective Function

Based on the passive suspension tests and expert experience, when selecting the
optimization range for the initial parameters of the fuzzy PID controller, the range of “Kp”
was set to [0, 10], the range of “Ki” was set to [0, 10], and the range of “Kd” was set to [0, 5].

When designing a suspension system to enhance vehicle performance, it is necessary
to improve the ride comfort, which can be judged based on the vehicle body’s vibration
acceleration. The overall posture of the vehicle body is determined by the suspension’s
dynamic travel, and this parameter value varies depending on the different suspension
structures. The ground-contact performance of the wheels during driving can be described
by the tire dynamic load. These three parameters describe the suspension’s performance
from different aspects, making them suitable as evaluation indicators. Therefore, the
overall performance of the suspension can be judged based on the values of these three
parameters. Assuming both active and passive suspensions operate under the same condi-
tions, the objective function for genetic algorithm optimization is constructed by dividing
the performance indicators of active suspension by those of passive suspension under
identical conditions.

minQ(x) =
J1

JA
+

J2

JS
+

J3

JD
(5)

s.t.


J1 ≤ JA
J2 ≤ JS
J3 ≤ JD

(6)

In the Equation, “Q(x)” represents the objective function; “J1”, “J2”, and “J3” respec-
tively denote the root mean square values of the vehicle vertical acceleration, suspension
wheel travel, and dynamic tire load for the active air suspension; “JA”, “JS”, and “JD”
respectively represent the root mean square values of the vehicle vertical acceleration,
suspension wheel travel, and dynamic tire load for the passive air suspension under the
same operating conditions.

3.3.2. Controller GA Optimization Algorithm

The genetic algorithm achieves optimization through operations such as selection,
crossover, and mutation, seeking the optimal solution with the maximum fitness value in
the population. The parameter tuning process is shown in Figure 8, and the parameter
settings are detailed in Table 6.

Table 6. Genetic algorithm parameters.

Parameters Explanation Parameters Explanation

Encoding Method Binary Encoding Mutation Function Constrained Adaptive
Mutation

Initial Population Randomly Generate Within
Specified Bounds Crossover Probability 0.9

Population Size 30 Mutation Function 0.1

Selection Function Random Uniform Selection Maximum Evolution
Generations 100

Crossover Function Diversified Crossover Stopping Generation 100
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The fitness function for this genetic algorithm optimization was set as the reciprocal of
the objective function, as shown in Equation (7). The representation of control effectiveness
(suspension performance) improves with increasing fitness value.

f =
1

Q(x)
=

1
J1
JA

+ J2
JS
+ J3

JD

(7)

When using genetic algorithms for controller parameter optimization, the fuzzy PID
controller model was invoked, and the suspension ride comfort index was input into
the optimization main program of the GA. Genetic algorithms utilize fitness functions
to control the program’s operation and determine termination conditions based on the
maximum number of iterations. When the genetic algorithm program reaches a specific
number of iterations, it will automatically terminate and output the optimal solution. After
100 iterations, the curve of fitness function variation was obtained, as shown in Figure 9.
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From Figure 9 it can be observed that starting from generation 38, the fitness value
tends to stabilize at 2.2441. At this point, the optimal variables are determined to be
(Kp, Ki, Kd) = (10, 6, 1.5). A simulation analysis of the air suspension system was conducted
in Simulink using the vehicle model parameters as listed in Table 1.

4. Experimental Research
4.1. Air Suspension System Bench Test

A test bench for the air suspension system was designed and constructed for exper-
imental research. The test system mainly consisted of a vibration excitation system, air
spring force sensor, displacement sensor, pressure sensor, data acquisition system, air
reservoir tank, controller, ball valve, etc. The test bench is shown in Figure 10. The test
equipment for the bench test is shown in Figure 11.
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The bench test system also includes auxiliary equipment, primarily consisting of
pneumatic systems and electrical components such as pressure transmitters. The pneumatic
system comprises elements like an air compressor, air reservoir, oil–water separator, and
solenoid valves.

During the experiment, control of the air springs was achieved by opening and
closing the solenoid valves. Data were tested and collected accordingly. The experimental
procedure is illustrated in Figure 12.
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4.2. Model Validation

The test parameters on the test bench were set to be the same as those in the simulation,
and the simulation model was validated. A comparison between the simulated and
experimental response curves of the air suspension is shown in Figure 13.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 19 
 

 
Figure 13. Comparison of response curves between simulation results and test results. 

From Figure 13 it can be observed that due to the simplification of the system in the 
construction of the simulation model, factors such as the damping of the air spring itself 
and the stiffness of the damper were neglected. As a result, there exists a certain degree of 
error between the air suspension simulation curve and the test curve. However, the aver-
age error is small and within an acceptable range. The two curves basically coincide, and 
their trend is also essentially the same. This demonstrates the correctness and feasibility 
of the established air suspension model, and its simulation results have certain reference 
values for the analysis of active control strategies for air suspension. 

5. Simulation Analysis 
Selected B-grade road surface, with a vehicle speed of 50 km/h, for conducting simu-

lation analysis on the suspension model. 
The genetic algorithm optimization was utilized to compare the fuzzy PID-controlled 

active and passive suspensions of the air suspension system before and after optimization. 
Figures 14–16 depict the simulation results for vehicle vertical acceleration, suspension 
wheel travel, and dynamic tire load. The root mean square values and comparisons of 
each indicator are presented in Table 7. 

V
eh

ic
le

 V
er

tic
al

 A
cc

el
er

at
io

n 
(m

/s2 ) 4

2

0

−2

−4 0           5           10           15           20           25           30
t/s

Passive

Fuzzy-PID
GA Fuzzy-PID

 
Figure 14. Simulation of vehicle vertical acceleration. 

Figure 13. Comparison of response curves between simulation results and test results.

From Figure 13 it can be observed that due to the simplification of the system in the
construction of the simulation model, factors such as the damping of the air spring itself
and the stiffness of the damper were neglected. As a result, there exists a certain degree of
error between the air suspension simulation curve and the test curve. However, the average
error is small and within an acceptable range. The two curves basically coincide, and their
trend is also essentially the same. This demonstrates the correctness and feasibility of the
established air suspension model, and its simulation results have certain reference values
for the analysis of active control strategies for air suspension.

5. Simulation Analysis

Selected B-grade road surface, with a vehicle speed of 50 km/h, for conducting
simulation analysis on the suspension model.

The genetic algorithm optimization was utilized to compare the fuzzy PID-controlled
active and passive suspensions of the air suspension system before and after optimization.
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Figures 14–16 depict the simulation results for vehicle vertical acceleration, suspension
wheel travel, and dynamic tire load. The root mean square values and comparisons of each
indicator are presented in Table 7.
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Table 7. Test conditions of A-grade road surface at 70 km/h.

Evaluation Criteria Passive
Suspension Fuzzy PID GA-Fuzzy

PID

Percentage of
Fuzzy PID

Optimization

Percentage of
GA-Fuzzy PID
Optimization

Vehicle Vertical Acceleration
(m/s2) 1.0473 0.8169 0.7541 22% 28%

Suspension Wheel Travel
(m) 0.0156 0.0129 0.0117 17% 25%

Dynamic Tire Load
(kN) 4.3454 4.1281 4.0412 5% 7%

When the vehicle speed is 50 km/h and subjected to B-class road surface excitation
in the suspension model, as observed from Figure 14, the vertical body acceleration is
1.8062 m/s2. With the application of fuzzy PID control, the maximum acceleration attenua-
tion decreases to 1.3908 m/s2. Furthermore, employing GA F-PID control further reduces
the maximum acceleration to 1.2643 m/s2. According to Figure 15, the suspension travel
is approximately 0.0337 m. With fuzzy PID control, this value decreases to 0.0276 m, and
with GA F-PID control, it further decreases to 0.0249 m. Figure 16 indicates that the tire
dynamic load is around 6.0895 kN. After applying fuzzy PID control, this load decreases to
5.7241 kN, and with GA F-PID control, it further decreases to 5.5414 kN.

From Figures 14–16, it can be observed that the genetic algorithm-optimized fuzzy
PID controller significantly reduces the vertical acceleration of the vehicle, suspension
wheel travel, and dynamic tire load. After implementing the GA-fuzzy PID control strategy
on the air suspension system, the response curves of the entire system become smoother,
and the three performance indicators are optimized to some extent. The comfort, smooth-
ness, and operational safety of the vehicle are also enhanced, achieving a relatively ideal
control effect.

In order to comprehensively validate the effectiveness of the genetic algorithm-
optimized fuzzy PID air suspension control, smoothness simulations were conducted
in MATLAB under different road grades and at different speeds. The simulation results are
shown in Tables 7–9.

Table 8. Test conditions of B-grade road surface at 50 km/h.

Evaluation Criteria Passive
Suspension Fuzzy PID GA-Fuzzy

PID

Percentage of
Fuzzy PID

Optimization

Percentage of
GA-Fuzzy PID
Optimization

Vehicle Vertical Acceleration
(m/s2) 1.8062 1.3908 1.2643 23% 30%

Suspension Wheel Travel
(m) 0.0337 0.0276 0.0249 18% 26%

Dynamic Tire Load
(kN) 6.0895 5.7241 5.5414 6% 9%

From Tables 7–9, it can be observed that under the same conditions, compared to
passive suspension, both fuzzy PID and GA-fuzzy PID controlled air suspensions show
decreased values in suspension performance evaluation indicators, attenuating vehicle
body vibrations and enhancing driving smoothness and ride comfort. Taking Grade B
road surface as an example, fuzzy PID controlled air suspension, compared to passive air
suspension, showed a decrease of 23%, 18%, and 6% in the root mean square values of
vehicle vertical acceleration, suspension wheel travel, and dynamic tire load, respectively.
Under the same experimental conditions, the evaluation indicator values corresponding
to the genetic algorithm decreased by 30%, 26%, and 9%, respectively. Comparatively,
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the air suspension fuzzy PID control optimized by GA demonstrates more noticeable
control effects and superior suspension performance, further improving the smoothness
and comfort of the vehicle.

Table 9. Test conditions of C-grade road surface at 40 km/h.

Evaluation Criteria Passive
Suspension Fuzzy PID GA-Fuzzy

PID

Percentage of
Fuzzy PID

Optimization

Percentage of
GA-Fuzzy PID
Optimization

Vehicle Vertical Acceleration
(m/s2) 2.7638 2.0729 1.9070 25% 31%

Suspension Wheel Travel
(m) 0.0611 0.0489 0.0446 20% 27%

Dynamic Tire Load
(kN) 8.8378 8.3959 8.1308 5% 8%

6. Conclusions

Combining the operational characteristics of air springs and the complex nonlinear
properties of air suspension systems within the scope of vehicle ride comfort research, an
analysis is conducted on the vertical dynamics of the vehicle. This involves simplifying
the vehicle model and constructing a 1/4 two-degree-of-freedom vehicle model. Taking
into account typical driving conditions, a mathematical model of random road input is
established, and a road white noise model is built using MATLAB/Simulink. The study
includes determining air suspension system parameters and ride comfort evaluation criteria
for analyzing the ride comfort of the suspension system.

Integrating PID control methodology, the difference between the ideal vertical vibra-
tion acceleration (0) of the vehicle and the actual vibration acceleration is directly fed into
the controller. The active control force of the air suspension system serves as the output.
Using a trial-and-error method, the PID parameters are continuously adjusted based on
control effectiveness to optimize their values. Eventually, the PID controller parameters
are determined as follows: Kp = 1, Ki = 53, Kd = 0.1. In Simulink, combining the road input
system, air suspension simulation module, and PID control system, a PID-controlled air
suspension simulation model is established for simulation analysis.

Using fuzzy logic and PID control methods, PID parameters are dynamically opti-
mized based on specific fuzzy rules. The integration of fuzzy reasoning with PID control
adjusts parameter values according to system requirements to effectively manage the sus-
pension system. The input signals to this controller are the vehicle’s vertical acceleration
error e and its rate of change ec. Through processes such as fuzzy inference and parameter
adjustment, the controller generates the final output. By adjusting the switching time of
electromagnetic valves, the air pressure in the air springs is regulated to adjust the stiffness
of the air suspension system, thereby determining the optimal PID parameter values.

Using genetic algorithms to optimize the control rules and membership functions
of the F-PID controller, the performance indicators of active suspension vehicle body
acceleration, suspension deflection, and tire load are normalized by their counterparts
under the same conditions of passive suspension. This normalization forms the objective
function for genetic algorithm optimization, where the reciprocal of the objective function
serves as the fitness function. The genetic algorithm calls the F-PID controller model, with
ride comfort indicators inputted as optimization parameters in the main GA program, to
obtain the optimal values of F-PID controller parameters.

In MATLAB/Simulink, three different controllers were established to implement
distinct air suspension control strategies, and the performance of the suspension system was
studied through simulation. Time-domain response curves of the air suspension systems
were obtained, comparing the effectiveness of fuzzy PID control with and without genetic
algorithm (GA) optimization. Post-application of the control strategies, improvements
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were observed in various performance indicators of the air suspension system compared
to the passive suspension. Specifically, the root mean square values of body acceleration,
suspension travel, and tire dynamic load were reduced by 23%, 18%, 6%, and 30%, 26%,
9%, respectively, with fuzzy PID and GA-optimized fuzzy PID controls. Notably, the
GA-optimized fuzzy PID control demonstrated superior numerical evaluation metrics,
further lowering the root mean square values of body acceleration, suspension travel,
and tire dynamic load, indicating enhanced control efficacy. This study addresses the
limitations of traditional fuzzy PID parameter tuning and underscores the superiority of
GA-optimized fuzzy PID control strategies for air suspension systems, offering valuable
insights for optimizing active control of air suspensions.
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