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Featured Application: Increased cognitive demands during motor tasks emerged as a critical
discriminator of functional patterns among older adults, shedding light on the intricate interplay
between cognitive function and motor performance in fall prevention strategies in community-
dwelling older adults.

Abstract: A wide range of outcomes makes identifying clinical and functional features distinguishing
older persons who fall from non-fallers challenging, especially for professionals with less clinical
experience. Thus, this study aimed to map a high-dimensional and complex clinical and functional
dataset and determine which outcomes better discriminate older adults with and without self-
reported falls. For this, clinical, functional, and cognitive outcomes of 60 community-dwelling older
adults classified as fallers and non-fallers were selected based on self-report of a single fall in the last
12 months. An unsupervised intelligent algorithm (Self-Organizing Maps—SOM) was used to cluster
and topographically represent the data studied. The SOM model mapped and identified two different
groups (topographic error: 0.00; sensitivity: 0.77; precision: 0.42; accuracy: 0.53; F1-score: 0.55) based
on self-report of a single fall. We concluded that although two distinct groups were mapped and
clustered by the SOM, participants were not necessarily fallers or non-fallers. The increased cost of
cognitive demands regarding a motor task (Timed Up and Go Test) and the effect of the Trail Making
Test (TMT) Part B regarding TMT Part A could discriminate the functional and cognitive patterns
in community-dwelling older adults. Therefore, in clinical practice, identifying patterns involving
the interaction between cognition and motor skills, even in once-only faller older adults, can be an
efficient approach to assessment and, consequently, to compound intervention programs to prevent
falls in this population.

Keywords: falls; artificial intelligence; functional mobility; unsupervised algorithm; older adults

1. Introduction

Functional mobility impairment is a crucial factor associated with falls in older
adults [1]. Physical injuries and psychological impacts resulting from falls can lead to
a loss of autonomy, disability, low quality of life, and even increased incidence of death in
older adults [2]. Those with recurrent self-reported falls exhibit reduced muscle strength,
impaired body balance [1], and a decline in cognitive function, including executive function,
attention, memory, visuospatial capacity, and processing speed [2].
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Several studies have tried to discover one or more clinical and functional performance
outcomes to identify older adults at greater risk of falling [3,4]. However, given the large
data volume in geriatric assessment, selecting outcomes that better represent cognitive,
executive, intellectual, and motor functions is challenging in clinical practice [5]. An
umbrella review of instruments assessing gait, balance, and functional mobility concluded
that no univariate outcome could predict the risk of falls in older adults since this event
has multifactorial causes [6].

Furthermore, identifying nuances from many outcomes can be challenging, especially
for professionals with less clinical experience [7]. Thus, this task becomes relevant not
only to understanding the causes related to the risk of falls [6] but also to analyzing the
applicability of intelligent and multivariate methods in the assessment and grouping of
individuals with similar characteristics [8], i.e., clinical and functional patterns related to
falls in older adults.

Machine learning (ML) is at the core of the Big Data Revolution because of its ability
to learn from data and provide data-driven insights, decisions, and predictions. It promises
to transform how we live, work, and think by optimizing processes, empowering insight
discovery, and improving decision-making [9]. In this context, several ML-based models,
such as random forest (RF), logistic regression (LR), support vector machine (SVM), light
gradient boosting machine (LightGBM), and extra trees (ET) have been applied to analyze
functional dependency in basic activities of daily living (ADL) and instrumental activities
of daily living (IADL) in middle-aged and older adults [10]. ML-based models have also
been used to analyze motion, clinical, cognitive, and functional outcomes [11,12]. Ensemble
techniques, such as AdaBoost, clustering models (e.g., k-means), and SVM, have presented
promising measurement properties in identifying and differentiating the functional features
in community-dwelling older adults undergoing exercise protocols [12].

From a wide range of ML methods, the Self-Organizing Map (SOM) [13] is an un-
supervised artificial neural network capable of reducing data with great dimensionality
and complexity [14,15]. The SOM can also classify individuals more efficiently regarding
computational resource time spent than traditional statistical methods. Furthermore, as it
is an unsupervised method, it does not require specific and advanced training for use in
the clinical context [8].

Thus, the present study aimed to: (i) map a high-dimensional and complex clinical
and functional dataset; and (ii) determine which outcomes better discriminate community-
dwelling older adults with and without self-reported falls in the previous 12 months. The
premises of this study are that: (i) self-organizing mapping will accurately identify the
participants with self-reported falls based on clinical and functional outcomes; and (ii) the
costs between physical and cognitive performance will be more relevant among the other
outcomes addressed in this study to identify and differentiate community-dwelling older
adults with and without self-reported falls.

2. Materials and Methods
2.1. Study Design and Ethical Aspects

This observational, analytical, cross-sectional study was designed and developed
following the guidelines for Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) [16].

The data analyzed in this study came from the baseline of the first version of the
Study on Falls in Older Adults (EQUIDOSO-I) [17]. This study was developed following
the Declaration of Helsinki, the recommendations of the World Health Organization,
the General Data Protection Law, and the International Committee of Medical Journal
Editors. This study was approved by the Research Ethics Committee of the University of
Pernambuco (CAAE: 71192017.0.0000.5207, Opinion Number: 2.415.658). All participants
gave their written agreement to participate in this study.
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2.2. Participants

A total of 60 community-dwelling older adults aged between 60 and 80 participated
in this study. Of these 60 participants, 22 who self-reported falling in the last 12 months
were labeled “fallers”, and 38 were considered “non-fallers”. This definition considered
that fallers are usually distinguished from non-fallers in clinical and scientific practice by
their self-reporting of falls [18] in the last 12 months [19,20].

Participants with a score ≥ 52 points (up to a maximum of 56 points) on the Berg
Balance Scale [21], scoring ≥ 24 points on the Mini-Mental State Exam (MMSE) (score
maximum of 30 points) for those with >4 years of formal education or ≥18 points those
with <4 years of formal education [22], and who were able to walk uninterruptedly for a
distance of 60 m at a self-selected speed of at least 1 m/s (without the help of third parties
or walking aids) were included. Potential participants were excluded if they: (i) had any
restrictions in postural balance or cognition; (ii) self-reported two or more falls in the last
12 months; (iii) were participating or had participated in any regular and structured exercise
program physical exercise two or more times a week in the last six months; (iv) had any
chronic health condition for which physical exercise was contraindicated; (v) had any upper
or lower limb fracture in the last six months; (vi) had evidence of any surgical procedure on
the knees, ankles, or hips or muscle injuries in the last six months; or (vii) had a diagnosis
of uncontrolled diabetes.

For the sample size calculation in the EQUIDOSO-I study [17], the gait speed under
dual-task [21] (the primary outcome) was adopted. Aiming to achieve a minimum clinically
important difference of 0.05 m/s, an effect size of 0.20 [23], a test power of 95% (1 − β),
an alpha of 0.05, and a repeated-measures F-statistic design, with between- and within-
subject and interaction effects were considered. The initial sample size of EQUIDOSO-I
was 48 individuals, which was increased by 20% to account for potential sample loss.
Thus, a total of 60 participants was assessed to adequately provide the required power
for traditional statistical tests employed in the EQUIDOSO-I study. The sample size was
calculated using the G* Power 3 program [24].

2.3. Database

The data analyzed in this study were the walking speed under single gait and dual-
tasking [25], the conventional [26] and cognitive Timed Up and Go test (TUG) [27], the
TUG effect, the time obtained in the Five-Time Sit-to-Stand Test [28], the distance from the
Anterior Functional Reach Test [29], the time during the Trail Making Test (TMT) A and
B [30], TMT B cost, Black and White and Color Stroop Test [31], the Colored Stroop Test
effect, the scores from the Brazilian versions of the Activities-Specific Balance Confidence
Scale (ABC Scale) [32], Falls Efficacy Scale–International (FES-I) [33], and the Geriatric
Depression Scale [34].

Thus, in this secondary analysis, using the SOM, we employed a high-dimensional and
representative dataset of 60 community-dwelling older adults aged 60 to 80, with or without
a fall history, to guarantee the quality of the final clustering model. This methodological
feature was sufficient to ensure that the SOM attained sufficient convergence, improved
data-innate patterns, improved participant grouping, and stability and interpretability of
the generated clusters.

Clinical and functional outcomes considered most relevant for this study were selected
based on previous analyses carried out by two physiotherapists (F.T.S. and R.R.C.) with
more than ten years of experience in functional analysis of older adults. Variables with
autocorrelation values equal to or greater than 0.80 among themselves and outcomes with
lower weights were excluded.

2.4. Analysis

The SOM algorithm was programmed using the open-source application Jupyter Note-
book, the Python programming language (version 3.8) and the os, numpy, pandas, sompy,
matplotlib.pyplot, BmuHitsView, HitMapView, sklearn.metrics, classification_report li-
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braries, and View2D for file manipulation, data mining, SOM calculation, specific statistical
metrics and graphical plotting, respectively. These procedures provided a set of topological
maps whose visual representation demonstrates the spatial arrangement of the processing
units distributed along two-dimensional matrices with a spatial resolution of 5 × 8 neurons
(height × width), totaling 40 neurons.

Models were developed using the SOM algorithm and combinations of chosen out-
comes to select the one that best preserved the implemented input data and obtained valid
values in evaluating the algorithm’s performance concerning the generated grouping.

First, two metrics within the SOM algorithm quantify the degree of similarity be-
tween the original data set and the obtained clustering. Topographic error quantifies the
discrepancy (or preservation of similarity) between the spatial organization of neurons
(processing units) and the topological relationships in the original data. A smaller model’s
value indicates that the spatial organization of neurons in the topological map adequately
preserves the existing structure in the input (original) data [35].

The quantization error measures the distance between each data sample and its win-
ning neuron (BMU—Best Matching Unit) in the SOM; then, the average of these distances
is calculated for all samples. It is a measurement that denotes the map’s resolution. A
smaller quantization error indicates that the SOM neurons are being more precisely tuned
to represent the patterns in the original data [35].

The Adjusted Rand Index (ARI) was used to evaluate the quality of the clusters gener-
ated by the SOM. Values close to 0 indicate that the clusters are independent, and negative
values suggest a disagreement between the clusters [36,37]. The degree of similarity among
the assigned groupings was graded by Adjusted Mutual Information (AMI), which varies
from 0 to 1, in which 1 indicates a perfect match and 0 indicates a random match [36].

Accuracy represents the SOM’s ability to correctly group data into clusters that corre-
spond to the actual class of the data (true data labels) or the negative class.

The F1-score provides a way to balance accuracy and sensitivity by considering both
false positives and negatives, which is useful when a significant imbalance exists between
classes. High values indicate a good balance between precision and recall. In contrast, a
low F1-score suggests that there are problems with data clustering. Precision, recall, and
F1-score can provide a more complete view of the quality of the classification [37].

Descriptive statistical analyses and univariate inferences of the demographic, anthro-
pometric, and functional variables of the falling and non-falling older adult groups were
performed using the t-test (variables with parametric distribution) and the Mann–Whitney
U test (non-parametric variables). The Kruskal–Wallis test for independent samples was
used to initially compare the four age groups. All statistical analyses were performed in
the Statistical Package for Social Sciences (IBM SPSS, version 22; IBM Corp, Armok, NY,
USA), adopting a significance level of 5%.

3. Results

Firstly, participants were divided into four age groups to verify any significant dif-
ference in physical and cognitive function inherent to age, as follows: 60–64 years old
(y.o.) (n = 19; 31.7%), 65–69 (n = 21; 35.0%), 70–74 y.o. (n = 14; 23.3%), and 75–80 y.o.
(n = 6; 10.0%). The Kruskal–Wallis test for independent samples confirmed no significant
functional and cognitive differences as follows: gait speed (p = 0.446), conventional TUG
(p = 0.455), cognitive TUG (p = 0.621), dual-task effect (TUG) (p = 0.398), Sit-to-Stand from a
chair 5 Times (p = 0.245), and Anterior Functional Reach Test (p = 0.282).

Table 1 shows no significant difference between faller and non-faller participants
regarding demographic, anthropometric, functional, and clinical outcomes.

The variables considered for each group (fallers and non-fallers) in the defined model
are organized in the radar graphs shown in Figure 1. The length of each ray in this graphical
representation is proportional to the magnitude of the variable for the data point. This
figure shows that the data from the non-faller (label 0) and faller (label 1) groups presented
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very similar graphical representations, reiterating the conventional statistical analysis that
did not identify significant between-group differences, as shown in Table 1.

Table 1. Univariate comparisons of demographic, anthropometric, functional, and clinical outcomes
of faller and non-faller groups.

Variables Fallers
n = 22

Non-fallers
n = 38

n (%) n (%)

Female 19 (86.4%) 33 (86.8%)
Male 3 (13.6%) 5 (13.2%)

Mean (SD) or
Median (Q1–Q3)

Mean (SD) or
Median (Q1–Q3) Cohen’s d p-Value

Age (years) 65.50 (62.00–71.00) 67.50 (64.00–70.25) 0.70 0.210 §

Boby mass (kg) 68.75 (63.37–74.55) 59.17 (68.67–75.55) 1.49 0.645 §

Height (m) 1.54 (0.06) 1.56 (0.07) 0.31 0.187 *
BMI (kg/m2) 29.55 (3.96) 28.07 (5.03) 0.32 0.244 *
Gait speed (m/s) 1.32 (0.14) 1.34 (0.16) 0.13 0.512 *
Conventional TUG (s) 9.15 (9.99–11.25) 8.45 (9.55–10.90) 0.72 0.398 §

Cognitive TUG (s) 10.77 (12.20–14.12) 10.47 (12.25–14.50) 0.19 0.860 §

Effect of TUGCog (%) −0.17 (−0.39–−0.08) −0.40 (−0.25–−0.08) 1.35 0.623 §

STS-5X (s) 13.70 (11.55–15.72) 14.35 (11.47–16.25) −0.19 0.724 §

AFRT (cm) 16.44 (3.35) 16.73 (4.24) 0.07 0.785 *
TMT-A (s) 57.80 (44.87–66.47) 63.69 (50.30–87.80) −0.24 0.129 §

TMT-B (s) 137.00 (92.67–224.25) 176.71 (120.77–227.62) −0.46 0.211 §

Effect of TMTB (%) −141.91 (−274.31–−78.10) −160.72 (−257.78–−77.67) 0.14 0.914 §

BW Stroop Test (s) 33.30 (30.40–40.60) 35.90 (31.82–39.65) −0.40 0.500 §

Color Stroop Test (s) 87.40 (70.85–113.95) 78.00 (65.46–91.35) 0.38 0.308 §

Color Stroop Effect (%) −153.24 (−243.37–−99.04) −138.41 (−154.82–−86.20) −0.19 0.133 §

ABC Scale (0 to 100%) 71.14 (15.58) 70.45 (20.35) 0.04 0.892 *
FES-I (16 to 64 points) 29.00 (21.00–30.00) 25.00 (21.00–32.25) 0.51 0.817 §

GDS (0 to 15 points) 3.50 (2.00–5.00) 3.50 (2.00–6.25) 0.00 0.551 §

SD: Standard deviation; Q1: Quartile 1; Q3: Quartile 3; BMI: Body mass index; TUG: Timed Up and Go test;
STS-5X: Sit-to-Stand Test 5 Times from a chair; AFRT: Anterior Functional Reach Test; TMT: Trail Making Test;
BW: Black and White; ABC: Activities-Specific Balance Confidence, FES-I: Falls Efficacy Scale–International; GDS:
Geriatric Depression Scale. § Intergroup comparison performed using the Mann–Whitney U test, with central
tendency and dispersion measures represented by the median and interquartile range, respectively. * Intergroup
comparison performed using the t-test, with central tendency and dispersion measures represented by the mean
and standard deviation, respectively.
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Figure 2 shows the result of the proposed model’s confusion matrix. Of the 22 partici-
pants who self-reported falls in the last 12 months, the model classified 17 (77%) as fallers
(sensitivity for class 1; fallers).
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The results presented in Table 2 show that the model has better sensitivity in iden-
tifying fallers (0.77) and a lower sensitivity in identifying non-fallers (0.39). Regarding
precision, the model showed better effectiveness in the proportion of non-falling positive
examples (0.75). The F1-score is the harmonic mean of precision and sensitivity; this metric
is helpful in classification problems with sample size imbalances as it considers both preci-
sion and recall, providing a more balanced view of model performance regardless of class
imbalance. The model presented the highest F1-score for identifying fallers (0.55) compared
to non-fallers (0.51). Accuracy is the proportion of cases correctly classified by the model
concerning the total number of cases, for which the model presented 0.53. In addition, the
model presented a low error and better preservation of the original data concerning the
neurons represented by the topographic error (0.00). The ARI and AMI values showed a
weak correspondence between clusters and true labels.

Table 2. Performance metrics for the SOM model.

Parameter Group Metric Value

Topographic error - 0.00
Quantization error - 2.62
Adjusted Rand Index - −0.01
Adjusted mutual information - 0.01

Sensitivity (recall) Fallers 0.77
Non-fallers 0.39

Precision
Fallers 0.42

Non-fallers 0.75

F1-score
Fallers 0.55

Non-fallers 0.51
Accuracy - 0.53

Figure 3 represents the distribution of neurons in each of the 14 functional variables in-
dividually, called conventional TUG (TUGconv_T1), cognitive TUG (TUGcog_T1), TUGCog
effect (DualTaskEffect_T1), TSL-5X (STS_5X_T1), TAFA (TAFA_T1), ABC Scale (ABC_T1),
FES-I (FES_T1) and EDG (GDS_T1), TMT-A (TMT_A_T1), TMT-B (TMT_B_T1), effect of
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TMT-B (TMT_Effect), Stroop PB test (StroopPB_T1), Color Stroop test (StroopColor_T1)
and Color Stroop effect (StroopColorEffect_T1). The result of this model showed that only
the cognitive TUG, the effect of the cognitive TUG regarding the conventional TUG, and
the effect of the TMT-B regarding the TMT-A were capable of signaling the existence of
two groups in the analyzed data set. The more diametrically opposed the darker-colored
neurons are, the greater the discriminative potential of a given outcome. In the topographic
distribution concerning the cognitive TUG (TUGcog_T1), it is possible to see that the
neurons representing the individuals with a pattern of the longer execution time of this
dual-task test are concentrated in the lower left corner (dark yellow), while the participants
who performed this test in a shorter time (better performance) are located in the upper right
corner (dark blue), i.e., in opposite directions. In the topographic distribution of the effect
of the cognitive TUG compared to the conventional TUG (DualTaskEffect_T1), the neurons
representing the individuals with the highest cost pattern are concentrated in the lower left
corner (dark blue), while those with the lowest cost are located in the upper right corner
(green and yellow). Finally, the topographic distribution of neurons referring to the effect
of the TMT-B regarding the TMT-A (TMT_effect) shows that individuals with less cognitive
difficulty (dark yellow) are concentrated in the upper left corner, while participants with
greater cognitive difficulty are located in the bottom right corner (dark blue).
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4. Discussion

The first purpose of this study was to map a high-dimensional and complex clinical
and functional dataset from community-dwelling older adults with and without self-
reported falls in the previous 12 months. The premise concerning this aim was that the
self-organizing mapping would accurately identify the participants with and without
self-reported falls based on these data. However, although the main results of the model
achieved a sensitivity of 77% in identifying participants with a self-report of a single fall,
the accuracy was roughly 50%. This accuracy percentage demonstrates that the proportion
of cases correctly classified by the model regarding the total number of cases was close to a
random classification.

Although the clinical and functional data considered in this study allowed the SOM
to make the topological distinction between the two groups, these results suggest that the
participants were not necessarily “fallers” and “non-fallers” as previously labeled based on
self-report of a single fall in the last 12 months. Hence, these results lead us to refute the
first premise of this study.

A possible explanation for the accuracy of approximately 50% may have been the
imbalance between the number of participants in the two groups, as the group of fallers
consisted of 22 participants while the non-fallers group contained 38 older adults. Although
this imbalance could negatively interfere with accuracy, this proportion is representative
of the prevalence of fallers in the general population, especially in Brazil [38]. However,
when analyzing the results of models with balanced samples (22 fallers and 22 non-fallers),
no significant improvement in the magnitude of accuracy was observed. Furthermore, the
F1-score value was not significantly modified with or without the imbalanced sample. It is
worth highlighting that the F1-score (the harmonic mean of precision and sensitivity) is a
valuable metric in classification problems with sample size imbalances as it considers both
precision and recall, providing a more balanced view of model performance regardless of
class imbalance. Therefore, the model with a sample imbalance was maintained, as it repre-
sents the proportion of fallers and non-fallers commonly presented in the literature [38].
Given the encouraging findings of this study, we recommend applying this model to a
more extensive database, even though the metrics and results of this study have confirmed
the SOM was effectively able to recognize and cluster the presented patterns, even in a
relatively modest but adequate sample size.

A conventional statistical method (t-test) was used to validate the SOM results, and
again, no significant between-group difference was found (fallers and non-fallers). Visually,
this result can be confirmed by the radar graphs, which show a marked similarity between
the participant groups. This result corroborates the topographic and quantization errors
found by SOM, confirming the absence of a significant difference between the two groups
initially considered in this study based on the self-report of just one fall episode in the
12 months before data collection.

Corroborating these results, older adults with self-reports of only one fall in the last
year did not exhibit significantly different patterns from those without self-reported falls
when considering most kinematic variables under dual-task conditions [39]. These results
are reinforced by another study in which it was demonstrated that older adults who self-
reported only one fall in the last 12 months did not present any differences from non-faller
older adults in terms of mean values for gait speed, cadence, step length, stride time,
single-leg stance time, or variability of stride time during a dual-task gait [18].

Thus, upon examining clinical and functional characteristics in this study, it was found
that these individuals categorized as fallers and non-fallers do not exhibit significant clinical
and functional differences that warrant their classification in this manner. Considering a
fall prevention point of view, these results may suggest that older adults with this type of
functionality pattern could be approached similarly from an operational point of view, thus
facilitating a collective approach process.

On the other hand, this study encourages a different approach to older adults who
self-report two or more falls within 6 or 12 months and are considered recurrent fallers. It is



Appl. Sci. 2024, 14, 7093 9 of 12

believed that these individuals may present more striking functional and clinical character-
istics and could be efficiently identified by this unsupervised self-organization algorithm.

The secondary aim of this study was to determine which outcomes better discriminate
community-dwelling older adults with and without self-reported falls by an unsupervised
algorithm. The second premise of this study was confirmed, especially for variables that
denote an increase in the cost of cognitive demands regarding a motor task (TUG) or in
concurrent cognitive tasks (such as TMT A and B or Stroop test versions Black and White
versus Colored). These outcomes proved to be capable of signaling a better grouping
capacity of the participants in this study.

However, it is worth highlighting again that based on the sensitivity, precision, F1-
score, and accuracy metrics, these groups are not necessarily fallers and non-fallers as
expected. With this result, it is only possible to infer that these variables could divide
the study participants into two groups with distinct motor-cognitive characteristics. It is
essential to highlight that SOM is an unsupervised learning algorithm, i.e., an ML algorithm
designed to initially deal with data sets in which samples do not have previously assigned
labels or categories. Unlike supervised algorithms, in which the training data includes
labeled input–output pairs, unsupervised algorithms explore the internal structure of
the data to discover whether there are possible hidden patterns, clusters, or relationships
without external guidance. The primary purpose of an unsupervised algorithm is to explore
the intrinsic structure of the data and find useful information without the need for pre-
defined labels or categories [13]. However, we chose to complement this study with metrics
such as sensitivity, precision, F1-score, and accuracy that could present the performance of
the SOM compared with the labels initially assigned to participants based on self-reported
falls in the 12 months preceding the study.

On the other hand, the outcomes that denote functional performance related to pos-
tural balance did not show discriminatory capacity among the participants of this study,
signaling that they may not be the best way of distinguishing older adults with and without
self-reported falls. A systematic review on the use of the Functional Reach Test (FRT),
Single-Leg Stance Test, and Tinetti Performance-Oriented Mobility Assessment (POMA) to
predict falls in older adults showed that these clinical tests of postural balance should not re-
place a comprehensive assessment of the risk of falls and, therefore, should be incorporated
into practice only to identify and track balance impairments in older adults [4].

In the same field of research, another study [7] employed SOM and k-means clustering
(KM) to determine which gait characteristics best cluster individuals based on their age
groups, which ranged from 10 to over 50 years old. The researchers demonstrated that
these ML approaches efficiently clustered the main gait features based on the age of
the participants. According to the authors, these findings can be helpful, especially for
inexperienced professionals unlikely to identify subtle differences in walking metrics,
aiming to recognize functional ability and physical performance [7]. Thus, these clustering
methods can be valuable in supporting and guiding healthcare practitioners’ evaluation and
intervention processes based on age, history of falls, and functional or cognitive functioning.

It is worth noting, however, that the present study’s results cannot be generalized
to older adults with reports of recurrent falls or to dependent older adults due to the
characteristics of the sample used. However, these input data allowed us to demonstrate
the usefulness of the unsupervised method, such as the SOM, in recognizing nuances
between the proposed variables and groups, even with homogeneous data, as shown in
Table 1. It is also noteworthy that the results of this study are limited to outcomes from
community-dwelling older adults assessed cross-sectionally; thus, we suggest employing
this method to identify longitudinally the functional and cognitive patterns presented by
older adults at risk of falls. Although the SOM algorithm is usually intended to work
effectively with cross-sectional data [7,8], the valuable insights of this cross-sectional study
encourage further longitudinal investigation, especially in older adults at risk of falls.

Age-associated changes in walking parameters are relevant to recognizing functional
capacity and physical performance. However, the sensible nuances of slightly different
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walking parameters are hardly noticeable by inexperienced observers, especially regarding
the age-associated changes in gait relevant to recognizing functional capacity and physical
performance. Due to the complexity of this type of evaluation, another study employing the
SOM and k-means clustering (KM) showed this type of ML method efficiently clustered the
principal gait characteristics according to age. The authors concluded that these clustering
methods, when applied to the cross-sectional dataset, provide valuable information to
healthcare professionals concerning the subject’s physical performance related to age,
supporting and guiding the physical evaluation.

Finally, the fundamental strength of this study is the application of the SOM algorithm
as an intelligent self-organization method capable of mapping a set of functional and
clinical data of high dimensions and complexity in an unsupervised manner in a two-
dimensional topological space. Furthermore, this type of intelligence algorithm and the
clinical and functional criteria used may distinguish between fallers and non-fallers among
older adults.

5. Conclusions

The topological mappings generated by SOM revealed that outcomes such as func-
tional mobility, postural balance, cognitive performance, self-efficacy concerning balance,
concern about falls, and mood do not represent robust clinical and functional relationships
capable of distinguishing community-dwelling older adults with and without self-report of
a single fall in 12 months, as confirmed by conventional statistical methods. Nevertheless,
the SOM results suggest that the cost of cognitive demands regarding a motor task (TUG)
and the effect of the TMT-B regarding TMT-A could potentially identify functional and
cognitive patterns in community-dwelling older adults. Therefore, in clinical practice,
identifying patterns involving the interaction between cognition and motor skills, even in
once-only faller older adults, can be an efficient approach to assessment and, consequently,
to compound intervention programs to prevent falls in this population.
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