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Abstract: The rise of knowledge graphs has been instrumental in advancing artificial intelligence (AI)
research. Extracting entity and relation triples from unstructured text is crucial for the construction
of knowledge graphs. However, Chinese text has a complex grammatical structure, which may
lead to the problem of overlapping entities. Previous pipeline models have struggled to address
such overlap problems effectively, while joint models require entity annotations for each predefined
relation in the set, which results in redundant relations. In addition, the traditional models often
lead to task imbalance by overlooking the differences between tasks. To tackle these challenges,
this research proposes a global pointer network based on relation prediction and loss function
improvement (GPRL) for joint extraction of entities and relations. Experimental evaluations on the
publicly available Chinese datasets DuIE2.0 and CMeIE demonstrate that the GPRL model achieves
a 1.2–26.1% improvement in F1 score compared with baseline models. Further, experiments of
overlapping classification conducted on CMeIE have also verified the effectiveness of overlapping
triad extraction and ablation experiments. The model is helpful in identifying entities and relations
accurately and can reduce redundancy by leveraging relation filtering and the global pointer network.
In addition, the incorporation of a multi-task learning framework balances the loss functions of
multiple tasks and enhances task interactions.

Keywords: knowledge graph; joint entity and relation extraction; overlapping triplets; multi-task learning

1. Introduction

Currently, knowledge presents explosive growth in the world, and people pay more
attention to seeking valuable information online. In the data-driven world, the primary
challenge is learning and extracting valuable information from text. Knowledge graphs
have been a popular tool in many research fields, helping individuals to access knowledge
more intuitively [1]. Now, knowledge graphs are widely used in healthcare [2], financial
services [3], intelligent transport, and other fields [4]. However, most of the information is
unstructured or semi-structured data, for which the direct understanding and construction
of knowledge graphs by computer systems are not possible [5]. So, natural language
processing (NLP) is applied to extract valuable structured information from large amounts
of unstructured or semi-structured text [6]. Entity recognition and relation extraction
are two crucial subtasks of information extraction in NLP; they have been popular in
identifying triplets from unstructured text in the form of <subject, relation, object> [7].

During the triplet extraction process, complex relationships within a single sentence
lead to the phenomenon of multiple triplets in the same subject, object, or relation, as
well as nested entities. According to the degree of entity overlap, the problem of triple
overlap is divided into three categories: normal, entity pair overlap (EPO), and single-entity
overlap (SEO) [8]. Entity pair overlap indicates that multiple relations are present between
a pair of entities, while single-entity overlap refers to multiple relationships and entities
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sharing the same entity. Many researchers choose to operate within a single sentence and
assume only one entity pair per sentence, which struggles to identify overlapping triplets
and nested entities effectively. Focused on the above problems of overlapping triples and
nested entities, several models have been proposed to address these two issues. However,
a lot of models often require entity annotations for each predefined relation in the set,
which leads to redundant relation judgments. In addition, the multi-task problem also
remains during the joint extraction of entities and relations. Optimizing the loss function is
a key strategy in multi-task learning; many entity relation extraction models neglect the
differences between input and output among subtasks, which may lead to domination by a
certain task and a significant reduction in the impact of losses from other tasks. A common
approach is to manually set weights, which can result in extensive experimentation and
development costs.

This research proposes a global pointer network based on relation prediction and loss
function improvement (GPRL) to address the issues mentioned above. The GPRL involves
relation filtering and adaptive loss weight adjustment. The method of relation filtering
is used to solve the problem of redundant relation judgment, which includes predicting
relations first, filtering out impossible redundant relations, reducing computational costs,
and extracting entity relation triplets. The model has two subtasks: relation filtering and
joint extraction of entities and relations, which employs a multi-task learning strategy
to learn multiple tasks simultaneously through shared models. Fixed weights can also
affect the model’s performance because of different convergence speeds for various tasks.
Therefore, this research adopted an adaptive loss weight adjustment strategy to balance
the loss functions of multiple tasks, which can dynamically adjust performance based on
learning speeds, difficulty levels, and effectiveness of learning.

The main contributions of this research can be summarized as follows:

1. A global pointer decoding approach is introduced in this research to address the
issues of overlapping triplets and nested entities. Entity and relation information is
encapsulated in a dual-head matrix, which effectively resolves the problems.

2. The global pointer-based model is expanded to implement two enhancements. Firstly,
relation filtering is applied to combat redundant relationships, leading to a notable
reduction in the evaluation of such redundancies. Secondly, a dynamic loss balancing
strategy is applied to solve the complicated problems of multi-task learning, and the
team has embraced it, encouraging improved interactions among various tasks.

2. Related Work

The extraction of entities and relations based on deep learning is mainly divided
into pipeline and joint extraction methods [9]. Previous pipeline methods primarily used
two major classes of structures to separate entity and relation extraction: Convolutional
Neural Networks (CNNs) [10] and Recurrent Neural Networks (RNNs) [11]. Subsequent
research based on CNNs and RNNs led to many variants such as Long Short-Term Memory
(LSTM) [12] and Bidirectional Long Short-Term Memory (Bi-LSTM) [13]. Xu et al. devel-
oped an SDP-LSTM relation extraction model based on the shortest path of the syntactic
dependency parsing tree and improved its accuracy by incorporating word vector features,
part-of-speech features, WordNet features, and syntactic type features [14]. Zhang et al.
utilized the Bi-LSTM model to combine information before and after the current word for
relation extraction [15]. Ling et al. introduced an attention mechanism to Bi-LSTM for
capturing both local and global features of input sentences [16]. Although the pipeline
method has achieved more success in entity relation extraction, its splitting approach often
overlooks the connections between entity relations, which leads to issues such as inter-
action omissions, error propagation, and entity redundancy. The joint extraction method
involves extracting entities and relations simultaneously, which can leverage the interaction
information between entities and relations to enhance the model’s performance. Miwa et al.
developed an end-to-end entity relation extraction method to share parameters between
entity recognition and relation extraction tasks to strengthen the correlation between such
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two tasks [17]. The above models only shared the bidirectional sequence LSTM representa-
tion at the encoding layer and only treated named entity recognition and relation extraction
as two separate tasks rather than performing true joint extraction. However, the intro-
duction of these models still laid the foundation for subsequent joint extraction methods.
Zheng et al. proposed a joint tagging strategy called NovelTagging, which achieved joint
decoding. They transformed the entity relation extraction problem into a sequence labeling
problem, enabling the simultaneous identification of entities and relations [18].

Focused on the problems of overlapping triples and nested entities, several models
have been proposed to address these two issues. For example, Yu et al. proposed a new
strategy called ETL-Span, which decomposed the joint extraction task into two tasks based
on Span’s labeling scheme. The two tasks applied are divided into head entity extraction
and tail entity relation extraction [19]. Based on ETL-Span, Wei et al. proposed a cascaded
binary annotation framework known as CasRel, which first identified all possible subjects in
a sentence by using a start position classifier and an end position classifier. Further, for each
subject, span-based labeling is applied to identify the corresponding objects with a classifier
based on each relation [20]. Several researchers have also improved relative methods by
introducing sentence encoding with the general framework of this model, with examples
including IDCNN (Iterated Dilated CNN) and Bi-LSTM [21]. The CB-Chinese-Bert inte-
grated self-attention mechanism for Chinese text encoding was presented, and it can be
effective in obtaining richer semantic features in sentences [22]. In addition, though Casrel
addresses the overlap issues, its framework still suffers from low computational efficiency and
numerous requirements for evaluating redundant relationships. Moreover, the framework
identification of nested entities requires more accurate results. Wang et al. proposed a model
called TPLinker designed to extract information in a single stage. The model unifies the extrac-
tion tagging framework into a character pair linking problem, which allows for multi-head
tagging through matrices and aligns the subject with the object under specific relations [23].
Subsequently, based on TPLinker and CasRel, Zhang et al. proposed a triple joint extraction
framework called PRGC, which is based on latent relationships and global communication.
However, this method still needs to improve the generalization ability of overlapping
entities. Additionally, the structure of PRGC is complex and requires high training pro-
cesses [24]. Su et al. proposed a global normalization approach called GlobalPointer for
identifying both nested and non-nested entities [25]. The approach involves constructing
an entity matrix with a tagging method similar to TPLinker and training the model by incor-
porating a new multi-label cross-entropy loss function. Based on GlobalPointer, researchers
proposed a joint entity–relation extraction model called GPLinker, which utilizes multiple
GlobalPointers for extracting entities and relationships [26]. Regular multiple pointer
networks have been applied to recognize multiple entity relationship categories. Each
pointer network introduced two modules to identify the head and tail of the entity [19,20].
During training and evaluation, a single module can only consider the information of either
the entity’s head or tail, which results in inconsistencies in taking the global information
of the entity into account during training and prediction processes. However, the global
pointer network treats the head and tail positions of the entity simultaneously, which can
supply the global perspective for the model. So, consistency in training and prediction
goals can be achieved, and the performance of the entity relationship extraction model can
be enhanced [27]. TPLinker also introduced the multi-label cross-entropy loss function
from GPLinker and TPLinker-plus to solve category imbalance problems [23]. However,
the discussed models often require entity annotations for each predefined relation in the
set, which leads to redundant relation judgments. In addition, the multi-task problem also
remained during the joint extraction of entities and relations.

Multi-task learning (MTL) is a powerful machine learning algorithm that leverages
the inherent relationships between multiple related tasks to enhance overall model per-
formance [28]. Further, MTL can be valuable in overcoming the challenges associated
with data scarcity, which can alleviate model overfitting and significantly enhance model
performance. MTL generally employs parameter sharing for learning, which can pro-
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vide data augmentation in scenarios for multiple tasks that share commonalities. Such
approaches can enhance the model’s performance compared to training separate models
on individual datasets [29]. With a focus on language processing, MTL is widely employed,
especially for the main tasks of entity relation extraction and relation filtering. The varying
importance and data distributions of different tasks often lead to imbalance when directly
summing the loss functions from all tasks in most models. So, more research has been
focused on strategies and optimization methods for adjusting loss function weights in MTL
to improve model performance and training effectiveness. The advanced methods include
Gradient Normalization (GradNorm), Dynamic Weight Averaging (DWA), Dynamic Task
Prioritization (DTP), and Uncertainty to Weigh Losses (UWL). GradNorm was defined to
equalize the gradient magnitude of different tasks, aiming to ensure similar learning speeds
across tasks [30]. DWA, like GradNorm, aimed to balance learning speeds among tasks
but focused on adjusting weights based on the change ratio of each task’s loss to assess
its difficulty. If tasks with a faster decrease in loss were easier to learn, the higher weights
assigned to tasks presented slower learning speeds [31]. DTP introduced the concept of
task priority by categorizing tasks based on difficulty, adaptively adjusting weights, and
assigning higher weights to harder tasks during each training session [32]. UWL introduced
noise as a measure of task difficulty, assigning higher weights to tasks with lower noise
levels and higher certainty [33].

3. Materials and Methods

The GPRL model proposed in this research is applied for extracting entities and re-
lationships with a global pointer network, which is integrated with relation filtering and
multi-task learning methods. Figure 1 depicts the model structure consisting of three mod-
ules: the coding, the global pointer network decoding, and the relation filtering decoding.
Firstly, the set {x1, x2, . . . , x11} represents a segment of text, where xi denotes each word in
the text. These words are processed through the Chinese-BERT-WWM encoding module
for pre-training, converting the text into word vectors containing contextual information,
i.e., (h0, h1, h2, . . . , hn). Secondly, the global pointer module skillfully extracts entities from
the word vectors in the form of a matrix. Here, S(sh,st) represents the extraction of the
head and tail of the subject, and S(oh,ot) represents the extraction of the head and tail of
the object. Figure 1 shows that the subject (x1,x2) and the object (x4,x6) have been extracted.
Simultaneously, the relation filter extracts potential relationships from the word vectors
through a pooling layer, a linear layer, and a Sigmoid activation function. Further, r1 is
extracted as the potential relationship for this sentence, and all potential relationships are
placed in the set {r1, r2, . . . , ri}. Finally, by using the global pointer network and combining
the extracted subjects, objects, and potential relationships, the final triplet information
can be extracted. For example, the final triplet information (x1x2, r1, x4x5x6) is extracted
through the head of the subject, the head of the object, and the relation S(sh,oh|r), as well
as the tail of the subject, the tail of the object, and the relation S(st,ot|r).

3.1. Coding Module

Chinese-BERT-WWM is a pre-trained model [34] for the Chinese language based on
BERT (Bidirectional Encoder Representations from Transformers) [35]. Machine learning
models are taken as pre-trained models in research on large datasets in advance, and
they can convert text files into word vectors to obtain a general language representation.
Chinese-Bert-WWM has been specifically trained on a large corpus of Chinese text. One of
its unique features is the “Whole Word Masking” (WWM) technique used in the pre-training
process. Compared with the traditional BERT model, it can mask individual characters, and
an entire word masked in Chinese-BERT-WWM can better capture word-level semantic
information. The process is as follows: Firstly, sentences are converted into word vector
embeddings. The Chinese-Bert-WWM model can learn the vector representations of each
word through contextual semantic information. Compared with traditional pre-trained
language models such as One-hot [36] and Word2Vec [37], the Chinese-Bert-WWM model
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takes advantage of the consideration of the word position vector. Since a word may express
different meanings in different positions, the position information of words is not ignored
during the entire word embedding process, which can solve the problem of polysemy. The
input sequence S = [w1, w2, . . . , wn] of the Chinese-Bert-WWM model maps S, where the
sequence length is n. The beginning and end of the sequence are marked with “[CLS]” and
“[SEP]”, respectively, so the text vector representation output after Chinese-Bert-WWM
encoding is as follows:

V = ([CLS], w1, w2, . . . , wn, [SEP]) = (h1, h2, . . . , hn) (1)

where V represents the output text vector result after encoding, wi represents the ith
character of the input sequence, and hi represents the corresponding embedding vector of
each character.
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3.2. GlobalPointer Decoding Module

This research utilizes a global pointer network to annotate entities, and the net can
treat the start and end positions of entities as a whole, which can distinguish them and
offer a more global perspective. The matrix labeling approach of the global pointer network
addresses the issues of overlapping triplets and nested entities. A method called Rotary Po-
sition Embedding (RoPE) is used to design the scoring matrix using a dot-product attention
mechanism and relative position encoding [38]. The RoPE enhances sensitivity to the length
and span of entities, making it easier to differentiate between genuine entities. The matrix
[h1, h2, . . . , hn] obtained at the encoding layer undergoes the following transformations:

qi,a = wq,αhi + bq,α, (2)

ki,a = wk,αhi + bk,α (3)

where 1 ≤ i ≤ n, wq,α represents the weight parameter of the current linear transformation,
bq,α is the bias term, wk,α represents the weight parameter of the current linear trans-

formation, and bk,α is the bias term. The resulting sequences
[
q1,α, q2,α, . . . , qn,α

]
and

[k1,α, k2,α, . . . , kn,α] are vector sequences used for identifying entities of type α. The scoring
function is defined at this point as:

sα = qT
i,αkj,α (4)

sα indicates the scoring of a continuous segment from i to j as an entity of type α,
using the dot product of qi,α and ki,α as the score for the entity segment. Subsequently,
incorporating relative position information involves introducing a transformation matrix
Ri that satisfies the relation RT

i Rj = Rj−i and applying it to q and k to obtain the scoring
function infused with relative positions sa(i, j):

sa(i, j) = (Riqi,α)
T(Rjkj,α

)
= qT

i,αRT
i Rjkj,α = qT

i,αRj−ikj,α (5)

where Ri, Rj are the transformation matrices used to add the relative position information
for the satisfaction relation RT

i Rj = Rj−i.
The task of entity relation extraction entails extracting triples in the form of <subject,

relation, object>, i.e., (s, r, o). However, in practice, it involves extracting quintuples
<subject head, subject tail, relation, object head, object tail>, i.e., (sh, st, r, oh, ot). From
a probabilistic graph perspective, it suffices to design a scoring function S(sh, st, r, oh,
ot) for the quintuples. During training, annotated quintuples are set to be greater than
zero, while the remaining ones are less than zero. All quintuples are then enumerated,
and the part where the quintuple is greater than zero is outputted. Nevertheless, directly
enumerating all quintuples leads to many possibilities. Assuming a sentence length of m
and n relationships, the total number of quintuples is given by

n× m(m + 1)
2

× m(m + 1)
2

=
1
4

nm2(m + 1)2 (6)

Simplification of the above equation is achieved based on the following decomposi-
tion strategy:

S(sh, st, r, oh, ot) = S(sh, st) + S(oh, ot) + S(sh, oh|r) + S(st, ot|r) (7)

where S(sh,st) and S(oh,ot) represent the head and tail scorings of the subject and object
entities, respectively. If both parameters are greater than zero, it indicates the presence
of both subject and object entities. S(sh,oh|r) signifies relationship matching based on
the head features of the subject and object entities. When there are no nested entities
and S(sh,oh|r) > 0, all relationships can be determined. When there are nested entities,
consideration is required for S(st,ot|r), the tail features of the subject and object entities.
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3.3. Relation Filtering Decoding Module

The entities and relations extracted by the global pointer network are redundant
relations, which shows that the number of relations identified in a sentence is much lower
than the expected number. To address such issues, this research integrates a relation
filtering decoding module into the GPLinker model. This module allows for the filtering
and selection of predefined relations, which can improve the accuracy of entity relations
identified by the global pointer network. The specific operational process is illustrated in
the structural diagram.

Given a predefined set of relations R = {r1, r2, . . . , rk} (with k denoting the size of set
R), the embedding vectors hi corresponding to each character obtained from the output
V = (h1, h2, . . . , hn) at the encoding layer are subjected to pooling:

hr
i = Pooling(hi) (8)

where hi represents the corresponding embedding vector of each character. hr
i represents

the result after pooling of vector hi, hr
i ∈ Rd×k, d represents the embedding dimension.

Subsequently, the pooled results are passed through a linear layer and a non-linear
activation function to obtain relation probabilities:

Pr = Sigmod(Wrhr
i + br) (9)

where Pr ∈ Rk denotes the probability of the text regarding relations, Sigmoid represents
the non-linear activation function with a range of (0, 1), Wr ∈ Rd×k denotes the trainable
weights, and br ∈ Rk represents the bias term.

Finally, a threshold µ is set to filter out redundant relations, and it can be taken as a
multi-label binary classification task. If the relation probability Pr is greater than µ, it is
considered a relation to be retained; if it is less than µ, it is deemed a redundant relation.

3.4. Loss Function

For entity extraction, the task involves extracting the heads and tails of subjects and
objects for a specific relation. This model employs a sparse version of the multi-label
cross-entropy loss function, which compares the scores of target categories with non-
target categories to balance the weight of each category and address the issue of class
imbalance [39]. The sparse version of the function reduces the transmission cost by only
transmitting the indices corresponding to positive classes, instead of transmitting all the
negative classes. The formula for this method is represented as follows:

L = log(1 + ∑
i∈p

e−si) + log(1 + ∑
i∈N

esi)

= log(1 + ∑i∈p e−si) + log(1 + ∑i∈A esi) + log(1− elog(∑i∈p esi )−log(1+∑i∈A esi ))
(10)

where L represents the loss of the global pointer network decoding module, P and N are the
sets of positive and negative classes, A = P∪N, and P calculates the loss corresponding
to negative classes, while the loss for positive classes remains unchanged. Si denotes the
predicted value for the ith position in the label. The entity extraction task is divided into
entity extraction, extraction of subject heads for a specific relation, and extraction of object
tails for a specific relation. Since these three tasks are similar, they all use Formula (10) for
the loss function. Therefore, the total loss combines the loss functions of the three tasks
directly, as follows:

LGP = LGP_entity + LGP_head+LGP_tail (11)

where LGP represents the total loss, LGP_entity represents the loss value for entity extraction,
LGP_head represents the loss value for the head entity based on a specific relation, and
LGP_tail represents the loss value for the tail entity based on a specific relation.

For the relation filtering task, a cross-entropy loss function is employed:
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Lrel = −
1
k

k

∑
i=1

[yilog(Pr
i ) + (1− yi)log(1− Pr

i )] (12)

where Lrel denotes the loss of the relation filtering decoding module and K represents the
total number of relations in the predefined relation set. yi represents the true label of the
relation r, and Pr

i represents the probability corresponding to the ith relation.
Since entity extraction and relation filtering are distinct tasks, this research adopts a loss

function optimization strategy using the uncertainty weighting method from reference [32]
to adaptively adjust the weights of the loss functions for these two tasks. This strategy
allows the weights of the loss functions for the two tasks to be adaptively adjusted, based
on maximizing the likelihood of Gaussian uncertainty with the same variance. Tasks
with low noise and high certainty are assigned higher weights, enabling adaptive weight
adjustments during model training and thereby saving time on parameter tuning. The
derived multi-task loss function is as follows:

L(W, Σ1, Σ2) =
1

Σ2
1

LGP(W) +
1

Σ2
2

LREL(W) + LOGΣ1Σ2 (13)

where σ1 and σ2 represent the noise parameters for the entity relation extraction by the
global pointer and for the relation filtering.

4. Experiments
4.1. Data and Evaluation Metrics

In this research, in order to verify the effectiveness of the model proposed for Chinese
entity relation extraction, experiments were conducted on the Chinese medical information
extraction dataset CMeIE and the Baidu dataset DuIE2.0. The CMeIE dataset is a Chinese
medical information extraction dataset released in CHIP2020 [40]. The dataset mainly
focuses on pediatric diseases and one hundred common diseases, and it contains nearly
75,000 triples. The total number of training and validation sets is 17,924, which are randomly
divided into training, validation, and test sets. In addition, the DuIE2.0 dataset was used to
further validate the effectiveness of the model proposed in this research on other domain
Chinese datasets. The dataset is from the 2020 Language and Intelligence Technology
Competition, primarily sourced from Baidu Baike and Baidu News, which contains nearly
430,000 triples, 210,000 Chinese sentences, and 48 predefined relation types [41]. In order
to see the allocation and share of different data more clearly, the specific statistical analysis
of the two datasets is shown in Table 1. The approximate distribution is in the ratio of 6:2:2.

Table 1. Statistical analysis of the dataset.

Dataset Train (Ratio%) Test (Ratio%) Validation (Ratio%) All Relation

DuIE2.0 137,258 (68%) 34,044 (17%) 30,485 (15%) 201,787 48
CMeIE 11,651 (65%) 3584 (20%) 2689 (15%) 17,924 53

Both datasets exhibit complex overlapping and nesting issues. Therefore, using these
two datasets can effectively verify the model proposed in this research in addressing the
issues of relation overlap and entity nesting. The overlapping triple types mainly include
normal, SEO, and EPO, as well as cases of nested entities (subject object overlap, SOO).
The number and ratios of the four complex data types for the two datasets are shown in
Table 2. From the data, it can be seen that the normal and SEO types have the highest
percentage of data, occupying a major part of the dataset. In contrast, the EPO and SOO
types of data have a lower percentage, which undoubtedly increases the difficulty of
training. Nonetheless, the performance of the model is inferior compared with normal
and SEO types in identifying EPO- and SOO-type data. However, the model can still
accurately identify EPO- and SOO-type data with a relatively small amount of data, which
fully demonstrates the practicality and effectiveness of our model.
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Table 2. Quantitative statistics of the four complex data types.

Category
CMeIE DuIE2.0

Train (Ratio%) Test (Ratio%) Validation (Ratio%) Train (Ratio%) Test (Ratio%) Validation (Ratio%)

Normal 4375 (38%) 1329 (37%) 993 (37%) 87,591 (64%) 33,080 (97%) 27,043 (89%)
SEO 9678 (83%) 2979 (83%) 2257 (84%) 56,912 (41%) 704 (2%) 3168 (10%)
EPO 51 (0.4%) 12 (0.3%) 14 (0.5%) 6891 (5%) 126 (0.3%) 478 (1.5%)
SOO 1163 (9%) 375 (10%) 281 (10%) 2064 (2%) 273 (0.8%) 301 (0.9%)

Examples of the four complex data types are shown in Table 3. Generally, normal data
are the simplest, followed by SEO data, SOO data, and EPO data. Therefore, EPO data
have a smaller volume and are more difficult to extract.

Table 3. Examples of four complex data types.

Type Example Ternary

Normal “Hepatic hydrothorax may cause
breathing difficulties”

(Hepatic hydrothorax, clinical
manifestations, dyspnea)

SEO “Septic arthritis often involves the hips, knees, and
ankles, and symptoms can last for several days”.

(Septic arthritis, hip)
(Septic arthritis, knee)
(Septic arthritis, ankle)

EPO

“Obstructive shock is due to decreased cardiac
output not myocardial under function. Causes

include pneumothorax, cardiac tamponade,
pulmonary embolism, and aortic constriction, which

results in obstruction of extracardiac blood
flow pathways”.

(Obstructive shock, pathophysiology,
pulmonary embolism)

(Obstructive Shock, Related (Causes),
Pulmonary embolism)

SOO
“Gallbladder inflammation abdominal mass may be

palpable in the distended gallbladder in 30 to
40 percent of cases”.

(Gallbladder inflammation, site of onset, gallbladder)

In this research, the performance of the constructed entity–relationship joint extrac-
tion model is evaluated with entity–relationship extraction evaluation metrics, including
precision (P), recall (R), and F1 value. The formulas are as follows:

P =
TP

TP + FP
(14)

R =
TP

TP + FN
(15)

F1 =
2PR

P + R
(16)

where TP denotes the number of correctly predicted triples, FP denotes the number of
incorrectly predicted triples, and FN denotes the number of true triples not correctly
predicted. The joint entity–relationship extraction model constructed in this research
identifies a correctly predicted triad only if the head entity, relationship, and tail entity are
all correctly predicted.

4.2. Setup

In the experiments, Python 3.8 and the PyTorch framework in deep learning were used.
Model training and testing were mainly conducted on a Windows operating system with
64 GB memory, a 13th Gen Intel(R) Core(TM) i9-13900KF CPU, and an NVIDIA GeForce
RTX 4090 GPU. According to the hardware conditions in the laboratory, the Chinese-
Bert-WWM model was selected to obtain sequence feature vectors containing contextual
information. The Adam optimizer was employed, and the specific parameter values in our
model are shown in Table 4.
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Table 4. Statistics of our model parameter values.

Parameter Value Meaning

maxlen 300 Truncation length of the text
batch_size 16 Batch size of training data

epochs 100 Number of rounds of training iterations
learning rate 2 × 10−5 Initial learning rate

pool_kernel_size 2 Pooling layer size
gp_threshold 0 Entity–relationship extraction threshold

relation_threshold 0.9 Relationship filtering threshold
relation_adding 0.3 Relationship filtering threshold

4.3. Comparative Models

To evaluate the performance of the model proposed, comparisons were made with
the following state-of-the-art entity relation extraction models. Choosing these models for
comparison allows for a comprehensive and in-depth evaluation of the performance of the
model. It also highlights the innovative points and advantages of our model through the
comparison with different technical approaches and methods:

• NovelTagging: This model transforms the entity relation extraction problem into a
sequence labeling problem, enabling the simultaneous recognition of entities and
relations. While it does not address the issue of overlapping triples, it provides a
foundational reference for our research.

• CasRel: Based on sequence labeling, this model introduces a cascaded binary tagging
framework to tackle the problem of overlapping triples, which has become a critical
milestone in the field.

• TPLinker_plus: This model proposed a novel tagging scheme, which not only resolves
overlapping triple issues, but also addresses entity nesting problems.

• PRGC: Based on a table-filling approach, this model introduces a new end-to-end
framework that can resolve overlapping triple problems by separately predicting
entities and relations. The model reduces redundant information generation and offers
us a different perspective.

• GPLinker: Utilizing a global pointer-based model with matrix labeling, the model
enables entity relation prediction from a global perspective. It successfully tackles
overlapping triple issues and also resolves entity nesting problems, and it is taken as
an important reference model for us.

In the context of the aforementioned model experiments, the specific parameters
are detailed in Table 5. Given the substantial memory consumption of the TPLinker-
plus and PRGC models, when the batch size was set to 16, the models encountered a
memory overflow error, exceeding the available memory capacity of the current runtime
environment. So, the batch size was adjusted to 8 for both TPLinker-plus and PRGC
models. All other parameters were kept consistent with those described in our model,
thereby facilitating a more equitable execution of the comparative experiments.

Table 5. Statistics of comparison models’ parameter values.

Parameter NovelTagging CasRel TPLinker-Plus PRGC GPLinker

maxlen 300 300 300 300 300
batch_size 16 16 8 8 16

epochs 100 100 100 100 100
learning rate 2 × 10−5 2 × 10−5 2 × 10−5 2 × 10−5 2 × 10−5
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5. Results and Discussion
5.1. Model Comparative Experiment

The comparative experimental results of the model proposed and several existing
baseline models are for the CMeIE dataset and DuIE2.0 dataset (Table 6.)

Table 6. Comparison of model experiment results.

Model
CMeIE DuIE2.0

P(%) R(%) F1(%) P(%) R(%) F1(%)

NovelTagging 51.4 17.1 25.6 60.6 45.3 55.1
PRGC 40.8 46.4 43.4 48.8 81.4 61.3
CasRel 50.5 48.5 49.5 62.0 80.4 70.6

TPLinker_plus 50.7 49.8 50.2 64.3 74.4 69.0
GPLinker 51.2 47.5 49.6 61.7 81.0 70.4

GPRL (our model) 54.7 50.6 51.7 64.1 81.6 71.8

Table 6 shows that the GPRL model proved effective on the CMeIE dataset, achieving a
precision of 54.7%, a recall of 50.6%, and an F1 score of 51.7%. A comparative analysis shows
that the entity relation joint extraction model outperforms traditional pipeline methods like
NovelTagging, which demonstrates the issue of error propagation in pipeline approaches.
The CasRel model transforms relations into a function mapping from head entities to
tail entities, accurately identifying more entities in sentences. However, it falls short of
recognizing nested entities, resulting in lower accuracy compared to the model in this work.
TPLinker_plus can solve the nested entity problem but suffers from a more complex model
structure leading to resource wastage, ultimately yielding lower recall and F1 scores. PRGC
combines the strengths of CasRel and TPLinker. Inspired by PRGC’s relation filtering,
the GPRL model applies a similar approach. PRGC still inherits the complexity issues
of TPLinker, leading to resource wastage, longer training times, and lower effectiveness.
GPRL builds upon GPLinker by incorporating relation filtering and adopting a multi-task
learning strategy to balance task losses. It achieves better precision, recall, and F1 score,
with improvements of 26.1%, 8.3%, 2.2%, and 1.5% over other baseline models and a 2.1%
improvement over the original GPLinker model in F1 score.

To further validate the effectiveness of the model on Chinese datasets, comparative
experiments were conducted on the DuIE2.0 dataset compared with other baseline models
(Table 6). The GPRL model proves effective on the DuIE2.0 dataset, achieving a precision
of 64.1%, a recall of 81.6%, and an F1 score of 71.8%. Compared to other baseline models,
there are improvements of 16.7%, 10.5%, 2.8%, and 1.2% in F1 score, as well as a 1.4%
improvement over the original GPLinker model. The original GPLinker model already
excelled in model structure, training strategies, training speed, and results compared with
other baseline models, thereby demonstrating the significance of the improvements made
in this work to the GPLinker model.

Furthermore, the experimental analysis indicates that model performance on the
CMeIE dataset is generally lower due to the dataset’s domain specificity in the medical
field. The Chinese-Bert-WWM pre-trained language model used was trained on large-scale
general corpora, leading to difficulties in semantic understanding of specialized medical
data. The examples of unpredicted correct triples are shown in Table 7. In the triple
(submucous cleft palate, related symptom, airway obstruction), “submucous cleft palate”
is a rare medical term that the entity recognition failed to identify, resulting in the triple
being unable to be predicted correctly. In the triple (gastritis (Chinese), Synonym, gastritis
(English)), the Chinese expression for gastritis was not recognized as a synonym for its
English expression. This is because Chinese-Bert-WWM is trained on a Chinese corpus,
and its recognition of English terms needs to be improved. Hence, the Chinese-Bert-WWM
model may exhibit a poor representation of medical data, resulting in errors or missed
extractions of many triples.



Appl. Sci. 2024, 14, 6832 12 of 17

Table 7. Examples of unpredicted correct triples.

Examples of Unpredicted Correct Triples Example

(Diseases, Related (Symptoms), Diseases) (submucous cleft palate, related (symptom), airway obstruction)
(Symptoms, Synonyms, Symptoms) (gastritis (Chinese), Synonym, gastritis (English))

To demonstrate the contribution of GPRL, it was compared with several existing
studies on entity and relation extraction based on the datasets CMeIE and DuIE2.0 (Table 8).
Despite variations in experimental environment configurations and parameters, the perfor-
mance of GPRL is better than most models, as indicated by the P, R, and F1 values, which
also suggests that GPRL outperforms some of the existing research results.

Table 8. Comparison of existing research.

Model
CMeIE DuIE2.0

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

HNNERJE [42] 48.49 46.37 47.40 / / /
FA-CBT [43] 54.51 48.63 51.40 / / /
DEPR [44] 47.51 46.11 46.80 71.06 65.35 68.09
REACT [45] / / / 68.5 66.0 67.2
CasRelBLCF [46] / / / 74.0 68.6 71.2
GPRL (our model) 54.7 50.6 51.7 64.1 81.6 71.8

5.2. Ablation Experiment

To analyze the contributions of each module in the entity relation joint extraction
model constructed in this research, relevant ablation experiments were conducted on
CMeIE and DuIE2.0 datasets. The performance indicators of different modules are shown
in Table 9. The results indicate that both the relationship filtering and the loss function
optimization integrated into this model have been proven to be effective.

Table 9. Results of ablation experiments.

Model
CMeIE DuIE2.0

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

GPlinker 51.2 47.5 49.6 61.7 81.0 70.4
GPlinker + Relation filter 53.5 48.3 50.8 63.6 81.3 71.5
GPlinker + Relation filter

+ Loss optimization 54.7 50.6 51.7 64.1 81.6 71.8

Relationship filtering can reduce relationship redundancy and improve the model’s
prediction accuracy. Table 9 shows that the relationship filtering component increased
precision by 2.3%, recall by 0.8%, and F1 score by 1.2% on the CMeIE dataset. On DuIE2.0
dataset, precision increased by 1.9%, recall by 0.3%, and F1 score by 1.1%. The main reason
is that predicting triplets requires judgment on many relationships, and the original model
consumes more resources and time, leading to a decrease in accuracy. Optimizing the loss
function dynamically adjusts the weights of multiple tasks based on noise during the model
training process, ultimately enhancing model performance. As shown in Table 9, adding
the loss function optimization component increased precision by 1.2%, recall by 2.3%, and
F1 score by 0.9% on the CMeIE dataset. On the DuIE2.0 dataset, precision increased by 0.5%,
recall by 0.3%, and F1 score by 0.3%. The results show that adding components to GPRL
on different datasets led to improvements, with the relationship filtering module having a
greater impact on GPRL and the effect of loss function optimization being relatively smaller
but still contributing to enhancements, indicating that both modules are effective for GPRL.
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5.3. Overlapping Triples and Nested Entities Experiment

To validate the effectiveness of the model in addressing overlapping triples, further
experiments were conducted on CMeIE and DuIE2.0 datasets. The dataset’s test data were
partitioned into four subsets based on different overlapping types: normal, EPO, SEP, and
SOO. Experiments were conducted on each of these four sub-datasets. The experimental
results are depicted in Figure 2.
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The analysis of the CMeIE dataset reveals that the SEO data show normal levels, while
the EPO, SOO, and normal data exhibit an overall lower performance. Such a phenomenon
may stem from the uneven distribution of the dataset, with a higher prevalence of SEO
data and a scarcity of other datasets, leading to lower overall results. However, The GPRL
model’s performance is compromised when dealing with normal-type data, possibly due to
error propagation. In this scenario, the relationship filter might extract inaccurate relation-
ships, leading to incorrect ternary extractions. Despite this setback, the F1 values achieved
for other types of overlapping data surpass those of other models. This outcome highlights
the effectiveness of GPRL in addressing overlapping and nested entity challenges.

In the analysis of the DuIE2.0 dataset, it is observed that all data types are within
normal ranges. This points out that the lower performance in the CMeIE dataset is due to
the dataset itself rather than the model. When normal triples are extracted from DuIE2.0,
performance drops again. When SEO triples are extracted, the model’s performance is
slightly better than the baseline model, and a significant improvement is observed over
the baseline model when EPO triples are extracted. EPO involves entity pair overlap,
which is a more complex form of overlap compared to SEO. This suggests that other
baseline models exhibit decreased performance when handling more complex overlap
scenarios, while GPRL performs better in such intricate situations. Furthermore, GPRL also
stands out in extracting SOO triples, proving its ability to recognize nested entities better
than others. Nevertheless, all models displayed a decreasing trend in addressing SOO
challenges, indicating that there is still ample room for improvement in the recognition of
nested entities.

In the training process, GPRL and GPLinker presented better in the training process,
while TPLinker_plus and PRGC incurred high training costs due to their intricate model
structures. This further underscores the superiority of GPRL over other baseline models
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across various aspects. The GPRL model proposed in this research excels in addressing
overlapping ternary and nested entity challenges, demonstrating efficient and accurate
extraction of ternary information compared to its counterparts.

5.4. Parameter Experiment

In this research, further investigation was conducted to explore the impact of different
relation filtering thresholds on model performance and determine the optimal model pa-
rameters. The results of experiments performed on the CMeIE dataset by adjusting relation
filtering thresholds are presented in Figure 3, where ‘relation_threshold’ represents the
threshold for determining relation filtering and ‘relation _adding’ represents the threshold
for adding after relation filtering to the original model.
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Figure 3a shows that when ‘relation_adding’ remains fixed, the ‘relation_threshold’
fluctuates up and down, reaching a peak at 0.9 before decreasing. Figure 3b shows that
when ‘relation _threshold’ is fixed, ‘relation _adding’ reaches a peak at 0.3 before stabilizing
around 51.7%. It is evident that these two thresholds do not exhibit a consistent or sensitive
pattern with the overall model. Therefore, after conducting threshold parameter compari-
son experiments, this work selected the optimal parameter values of ‘relation_threshold’ as
0.9 and ‘relation _adding’ as 0.3 to achieve the best performance for the model.

5.5. Discussion

Based on the experimental results above, the following advantages of GPRL can be
stated: Compared with traditional entity relationship extraction models, it does not require
a significant amount of manual involvement in feature extraction, thus saving valuable
time and resources. In the comparative experiments, GPRL outperformed the traditional
model NovelTagging. Additionally, compared with the common pointer annotation entity
relationship extraction model, GPRL can identify overlapping triples and nested entities
with a global view and performs entity relationship extraction accurately. In the nested
data experiment, GPRL outperformed the pointer-based model CasRel in terms of results.
The model is specifically designed for Chinese text, maximizing contextual learning and in-
ference within Chinese language data, and presents advantages such as superior efficiency,
cost-effectiveness, and better results compared with other baseline models.

However, GPRL faces challenges and limitations that require further improvement. It
may have difficulty in extracting specialized domain knowledge, particularly in domains
with complex and unique entity relations, which require more meticulous handling and
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learning. The main reasons are as follows: GPRL’s performance may suffer when dealing
with niche or specialized domains due to a lack of sufficient training data in those areas.
Complex entity relationships that are ambiguous or context-dependent can pose challenges
for GPRL in accurately capturing and understanding the underlying connections. Ad-
ditionally, the model may encounter limitations in handling long-distance dependency
relationships in lengthy texts or complex contexts, necessitating enhanced mechanisms for
capturing global contextual information. The model’s performance may also be impacted
by data scarcity and annotation quality, requiring enhanced robustness and generalization
for low-frequency relations or noisy data.

6. Conclusions

The proposed model GPRL, based on relation filtering and multi-task learning for
entity relation extraction, was introduced in this research. The model utilizes a global
pointer network to transform the extraction of triples into quintuples and converts the
extraction of entity heads and tails under specific relations into a form similar to scaled dot-
product attention. GPRL can identify overlapping triples and nested entities by employing
multiple specific relation matrices. Traditional pointer networks typically suffer from the
inability to consider entity positions globally, leading to inconsistencies between training
and prediction. On the other hand, the global pointer network used in GPRL enhances
model performance by enabling holistic discrimination of entity positions, which ensures
consistency between training and prediction objectives. In addition, the implementation of
relation filtering within the global pointer network considerably reduces the necessity for
repetitive relation judgments. This approach enhances the model’s accuracy and efficiency
by eliminating the requirement for manually annotating entities for each predefined relation
in the dataset, leading to more accurate triple extraction. Further, the use of a multi-task
learning strategy successfully handles inter-task imbalances, which is particularly beneficial
in situations with limited training data. This strategy also mitigates the challenge of
overfitting, resulting in significant improvement in the model’s performance. In comparison
experiments conducted on the publicly available Chinese datasets CMeIE and DuIE2.0,
as well as complex and ablation experiments, GPRL consistently outperformed current
baseline models and proved state-of-the-art performance in Chinese datasets for entity
relation extraction.

Future research will focus on advancing entity relation extraction by developing in-
novative approaches, refining model architectures, and optimizing training strategies to
improve generalizability and performance. We aim to enhance practical applications and
build knowledge graphs and intelligent Q&A systems that can understand user queries,
retrieve accurate answers, and engage in complex reasoning. This will elevate user experi-
ence and expand AI applications in sectors like customer service, education, healthcare,
and environmental resources.
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