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Abstract: Roads are the most heavily affected aspect of urban infrastructure given the ever-increasing
number of vehicles needed to provide mobility to residents, supply them with goods, and help
sustain urban growth. An important indicator of degrading road infrastructure is the so-called bump
features of the road surface (BFRS), which have affected transportation safety and driving experience.
To collect BFRS, we can collect discrete-sampled, non-homogeneous multi-sensor stream data. We
propose a BFRS detection method based on spectrum modeling and multi-dimensional features.
With the sampling rate of GPS at 1 Hz and a gyroscope and accelerometer at 100 Hz, multi-sensor
stream data are recorded at three different urban areas of Nanjing, China, using the smartphone
mounted on a vehicle. The recorded stream data captures a geometric feature modeling movement
and the respective driving conditions. Derived features also include acceleration, orientation, and
speed information. To capture bump features, we develop a deep-learning-based approach based
on so-called spectrum features. BFRS detection experiments using multi-sensor stream data from
smartphones are conducted, and 4, 14, and 17 BFRS are correctly detected in three different areas,
with the precision as 100%, 70.00%, and 77.27%, respectively. Then, comparisons are conducted
between the proposed method and three other methods, and the F-score of the proposed method is
computed as 1.0000, 0.6363, and 0.7555 at three different areas, which hold the highest value among
all results. Finally, it shows that the proposed method performs well in different geographic areas.

Keywords: bump feature of road surface; spectrum modeling of multi-sensor stream data; discrete-
sampled and non-homogeneous dataset; movement feature

1. Introduction

With the rapid advancement of smart sensors and the influx of crowdsourced data,
geospatial information for road surfaces has become increasingly accessible, crucial for the
development of smart cities and, more specifically, for maintaining and optimizing road
assets [1,2]. Roads, a vital component of urban infrastructure [3–5], endure significant wear
due to growing traffic volumes, resulting in various surface irregularities such as bumps,
cracks, potholes, and speed breakers—collectively known as bump features of the road
surface (BFRS) [6,7]. Effective collection and analysis of BFRS data are essential not only
for maintaining road quality but also for ensuring transportation safety and enhancing the
driving experience in urban environments [8,9].

Vision-based methods, widely used for their ability to capture road surface conditions
through cameras, employ techniques such as computing gradients and Haar features from
video frames and images to detect BFRS [10,11]. These methods, alongside advanced ma-
chine learning techniques for pothole and crack segmentation [12], and the use of mono and
binocular stereo cameras for depth imaging [13–15], form the core of intuitive vision-based
BFRS detection. Recent developments in deep learning have significantly improved these
detection methods, tailoring them more effectively to the nuanced challenges of BFRS identi-
fication [16]. However, these approaches are susceptible to issues like variable lighting, data
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noise, and obstructions caused by environmental conditions [10,11]. Alternative approaches
using accelerometers and GPS have been developed to monitor road surface anomalies
directly from driving data, offering a robust complement to visual methods [9,17]. Further-
more, professional settings increasingly utilize advanced sensor technologies like LiDAR to
capture precise geometric details of road surfaces, identifying BFRS through deviations
from standard models [18–20]. Additionally, some methods leverage the combination of
acceleration sensors, GPS, and auxiliary sensors to capture vehicle vibrations during travel,
indirectly detecting BFRS by analyzing unusual sensor data patterns [3,21]. The integration
of Internet of Things (IoT) technologies further enhances these methods by facilitating
extensive data collection from a network of sensors, thereby creating multi-source datasets
essential for addressing complex BFRS detection challenges [3,8,22]. Multi-sensor setups,
particularly those incorporating smartphone technologies, offer substantial advantages over
traditional methods by enhancing robustness and data diversity. The widespread adop-
tion of smartphones has transformed these devices into powerful tools for crowdsourced
data collection on BFRS, which can improve the efficiency of BFRS detection operations
and combine user convenience with extensive data coverage [3,7,17,23–25]. Despite these
advancements, challenges remain, including (1) managing discrete-sampled, multi-sensor
stream data from smartphones in randomly positioned vehicles, (2) limited dataset cover-
age, and (3) the complexity of detecting and representing BFRS from non-homogeneous
datasets collected under varied driving conditions.

To address these challenges and detect BFRS using the widely used motion sensor, this
article concentrates on multi-sensor stream data obtained from smartphones positioned
in arbitrary poses. The following was carried out: (1) modeling BFRS and augmenting
the training dataset with movement features; (2) generating spectral features through fast
Fourier transform (FFT) and introducing a deep learning-based BFRS detection method
utilizing non-homogeneous, discrete-sampled, multi-sensor data; and (3) representing
BFRS using a weighted clustering method. Rather than the numerical measurement of
acceleration data from multiple smartphones or varying vehicle types, the contributions of
this article are as follows: (1) the modeling of vehicle movement that can deal with the BFRS
in different frequencies and driving conditions, along with the augmentation of the training
dataset; (2) the representing and detecting of BFRS in account with the noisy sampling; and
(3) the presentation and integration of BFRS locations based on the weighted clustering
method. To evaluate our approach, we conduct experiments at different geographic areas
in the urban area of Nanjing, China. A part of the dataset is used as the training dataset,
and others are used as the evaluation dataset; then, comparisons are conducted between
the proposed method and three different methods.

2. Related Work

As an important factor for transportation safety and driving experience, BFRS detec-
tion has long been the heated point for years [3,6,11,16]. Hence, based on the sampling
device, related research can be categorized into intuitive vision-based methods and sensor-
based methods.

In the intuitive vision-based method, BFRS is collected directly by the camera through
images or videos [10,11,13,26]. Images or videos can be collected by specially designed
cameras or smartphones during the movement on the road surface. Then, collected images
or videos are resampled as a single image with a selected time interval, and then gradients,
edges, Haar feature, and some other similar features are computed for BFRS. These image-
based techniques are well demonstrated by several recent studies, each employing different
methodologies to detect and analyze road surface conditions. Li et al. [27] focused on
detecting cracks in road surface images using a Back Propagation Neural Network (BPNN).
After successfully identifying the cracks, they utilized image processing techniques to
extract the related geometric shapes of each crack, demonstrating the practical application
of neural networks in road maintenance. Following a somewhat similar approach but
with different tools, Azhar et al. [28] applied histograms of oriented gradients (HOG) to
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capture textural features of the road surface. They fed these HOG features into a Naïve
Bayes classifier to detect potholes. Once identified, the potholes’ geometric information was
extracted using the graph-cut image segmentation method, highlighting the integration
of machine learning and advanced image processing techniques. Expanding on these
methods, Wang et al. [10] computed the Haar feature of each sampled image and trained a
classifier using the Adaboost algorithm to detect cracks on the road surface. This approach
emphasizes the robustness of feature-based machine learning algorithms in identifying
specific types of road damage. Ouma et al. [29] collected RGB images of road surfaces along
with the GPS sensor to detect the accurate geometric information of potholes. The RGB
image is first enhanced as the gray image, transformed and filtered using the 2D discrete
wavelet transformation algorithm, and BFRS are clustered using the fuzzy-c means method.
Finally, BFRS are morphologically reconstructed and compared with ground truth objects
for validation. In addition, based on photogrammetry or computer vision theory, a mono
camera can also detect the generated depth image using the binocular stereo camera. There
are various innovative approaches using both image processing and machine learning
techniques. Xiao et al. [14] developed a hybrid method that fuses monocular images with
LiDAR point clouds to detect road surfaces in diverse scenarios. They utilized classifiers for
both images and point clouds based on boosted decision trees and integrated the classifica-
tion results using Conditional Random Fields (CRFs). Building on the use of imaging for
detection, Zhang et al. [13] constructed a pothole detection system based on stereovision. By
calculating distances from stereo camera-collected image pairs and utilizing auxiliary GPS
data, they were able to precisely determine the size, volume, and position of each pothole,
demonstrating the effectiveness of integrating stereo vision with geospatial data. Further
exploring stereo imaging, Fan et al. [15] detected potholes using stereo images mounted on
a vehicle. They employed random sample consensus (RANSAC) to mitigate the effects of
potential outliers during the 3D road surface reconstruction, transformed dense disparity
maps to enhance the distinction between damaged and undamaged road areas, and used
threshold selection for BFRS detection. These methods underscore the growing influence of
deep learning technologies in improving the accuracy of detection systems. Continuing this
trend, Kulambayev et al. [16] developed a real-time road surface detection model using a
Mask Region-based Convolutional Neural Network (Mask R-CNN), trained and validated
with images manually labeled using Microsoft Visual Object Tagging Tool (VoTT). This
approach represents a significant leap forward in applying deep learning to road surface as-
sessment, providing high accuracy and real-time processing capabilities. Jenkins et al. [12]
proposed pixel-wise road crack segmentation using U-Net, another kind of CNN model,
and made a comparison with traditional machine learning algorithms, such as SVM and
KNN. A more detailed comparison of vision-based methods can be found at Ma et al. [11],
along with some related BFRS-detecting datasets. However, since the collected image or
video can be affected by the light, noise samplings, and obstructed sampling, especially
in the environment with poor ambient light, or BFRS is blocked on the ground by turbid
water and other objects, it becomes difficult to detect BFRS for these vision-based methods.

In the sensor-based method, BFRS is captured using different kinds of sensors, such
as LiDAR, accelerometer, gyroscope, GPS, and related auxiliary sensor [9,19–21], with the
assumption that abnormal changes caused by BFRS can be recorded during the driving
period. One way to collect BFRS is by utilizing the LiDAR sensor, which scans the road
surface and detects BFRS based on abnormal changes between the point cloud-fitted
surface and typical road surface. Building on the high-accuracy methods described by
Siegemund et al. [18], which utilize a 3D point cloud from stereo cameras for detecting
and reconstructing curbs and road surfaces, there is a shift in the approach with Sharma
et al. [30]. It employed an ultrasonic sensor to monitor road surfaces, using the Dynamic
Time Warping (DTW) technique for image processing to match and locate different kinds
of BFRS via a GPS sensor. While both methods provide precise measurements of the
shape and type of BFRS, they also entail significant costs due to the professional tools
required. An alternative approach involves the use of specially designed IoT sensors to
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collect BFRS data. Mednis et al. [31] proposed a road surface monitor method using the
on-board vehicular sensor system, which was composed of a regular PC computer, low-cost
microphone sensor, and GPS receiver. Potholes were detected based on selected thresholds
for the microphone sensor recordings. In addition, sensor recordings can be uploaded to
the web server through IoT networks [2,4], and BRFS is detected based on multi-source
datasets. These methods detect BFRS based on the vibration of vehicles during the driving
period, with an acceleration sensor, GPS sensor, and related auxiliary sensor. In recent
years, smartphones equipped with multiple sensors have emerged as a popular tool for
collecting road condition data. Li et al. [3] utilized this technology to develop a road
roughness assessment method. By leveraging the built-in GPS receiver and accelerometer
in smartphones, they gathered a spatial series of geo-referenced vertical accelerations of
the road surface. They further enhanced this approach by creating a mobile crowdsensing
system, which integrates data from multi-source smartphones and a web-based server. This
system computes the International Roughness Index (IRI) for each road segment to assess
surface quality. Building on this foundation, Rajamohan et al. [8] conducted experiments
and developed a prototype system named MAARGHA, designed to estimate the condition
and surface type of road surfaces. This work is part of a broader trend in which researchers
such as Yi et al. [6], Allouch et al. [32], Mihoub et al. [33], and Mednis et al. [24] have
also contributed, each exploring similar methodologies to evaluate and improve road
surface assessment using advanced sensor technology and innovative data integration
techniques. Zang et al. [34] mounted the smartphone on the bicycle and collected the stream
data of the accelerometer and GPS sensor, then BFRS were detected based on abnormal
changes using the selected threshold. However, it is the result based on the direct detection
from acceleration, which can be affected by the noise of the original recordings. Different
from the previous work, Li et al. [7] applied the continuous wavelet transform (CWT)
to extract features of acceleration time series using the collected multi-sensor data from
smartphones. It took the spatial transformation for the three-axis acceleration dataset,
computed the coefficient matrix of CWT, and detected the BFRS based on the threshold
of the coefficient. There are also some BFRS detection methods based on multi-sensor
data of smartphones that utilize machine learning methods, such as random forest, SVM,
KNN [23,25,35], or even the deep learning methods [36,37]. To encode the BFRS feature from
collected multi-sensor recordings from smartphones, Chen et al. [17] designed the vibration
detection system based on smartphones, accelerometers, and cameras, installed them
in the vehicle, conducted the short-time Fourier transform to acceleration, and detected
BFRS using the CNN. However, the acceleration recordings were collected at a specific
speed with fixed multiple sensors, which limited the feasibility of the application. As
described from the above methods, the sensor-based method can collect the actual road
conditions and detect BFRS without the limitations of intuitive vision-based BFRS detection
methods, with the advantage of multi-sensors and crowd-sourced smartphone datasets.
The utilization of non-professional multi-sensor smartphones offers significant advantages,
such as accessibility and crowd-sourced data collection, enabling widespread monitoring
of road surface conditions. However, the inherent noise in data collection, stemming from
varied sensor quality and the randomness of smartphone orientation, presents substantial
challenges. These factors lead to non-homogeneous, discrete-sampled stream data that
vary under different driving conditions. Feature encoding and detection are crucial in
this context as they can effectively handle the uncertainty and variability of data quality,
extracting meaningful patterns and insights from the noisy, complex datasets collected
by smartphones.

To deal with the non-homogeneous, discrete-sampled multi-sensor stream data from
smartphones, the bump feature is analyzed based on the spectrum model; BFRS is detected
using different feature channels and is further represented as cluster centers. In addition,
the specific deviation and computation of IRI are not going to be conducted in this article,
as are the shape and measurement accuracy of BFRS, since the multi-sensor stream data



Appl. Sci. 2024, 14, 6744 5 of 31

from the crowd-sourced smartphone device just has limited accuracy and cannot be taken
as the replacement of professional surveying tools.

3. Methodology

Based on the analysis of related studies, there are intentions for designing the BFRS
detection method using smartphones. With the multi-sensor stream data collected at
three different urban areas in Nanjing, China, experiments were conducted based on the
proposed method. This section introduces the methodological framework and implemen-
tation details for BFRS detection. Different from the traditional IoT sensor, it does not
extensively describe the data acquisition and measurement process across different sensors
or vehicles. Instead, it focuses on acceleration, orientation, and GPS data acquired from
smartphones’ built-in motion sensors. Here, smartphones, placed in vehicles in arbitrary
positions, record the vehicle’s location, orientation, and acceleration changes during travel.
This allows for the analysis of trajectory records to extract vehicular movement features
on the road, such as speed and direction of movement. Subsequently, spectral analysis
techniques [38] are employed to represent the spectral features of the acceleration sampling
data, which does not rely on direct numerical changes in acceleration to measure BFRS
due to inherent sensor noise. Additionally, by simulating different vehicular movement
situations based on these movement features, data augmentation is applied to the limited
neural network training dataset to enhance the extraction of BFRS and improve the accuracy
of the neural network. Finally, the results detected by the CNN [39] are integrated using a
mean-shift-based weighted clustering method [40] to represent BFRS.

3.1. Motivation and Background

Smartphones currently contain a large array of sensors. Using smartphone sensor
data, particularly acceleration data for BFRS detection, is akin to “listening” to road surface
changes through an accelerometer, much like how a song records information about its envi-
ronment. However, unlike voice signals, where a speaker’s speed remains relatively stable,
vehicle speed and acceleration fluctuate in real-time according to actual road conditions.
This variability can cause the same signal to manifest in multiple ways. Consequently, one
of the innovations of the proposed method is on analyzing and modeling the relationship
between BFRS characteristics and vehicle speed and on enhancing features based on this
relationship to accurately capture BFRS information under various speed conditions. The
following are relevant for our use case: (1) the GPS sensor to collect two-dimensional
location data P(x, y); (2) a gyroscope sensor to collect 3-axis orientations Ori

(
ox, oy, oz

)
; and

(3) the accelerometer sensor to collect 3-axis accelerations Acc
(
ax, ay, az

)
. This multi-sensor

data are discretely collected at different frequencies and time stamps as a data stream S
denoted by (1).

S
{

P(x, y), Ori
(
ox, oy, oz

)
, Acc

(
ax, ay, az

)}
(1)

When the vehicle passes an object with the bump of the road surface, abnormal shakes
should appear, and they can be recorded by the smartphone placed or mounted in a vehicle.
Data stream S captures the state of the road surface. Our goal is to detect BFRS using these
data. Challenging issues are that the quality of smartphone sensors varies across devices
(denoted as Snoise), smartphones are arbitrarily placed, and driving behaviors vary (denoted
as Dspeed), as denoted by (2). All these conditions lead to a non-homogenous multi-sensor
data stream, making it difficult to extract BFRS.

BFRS = Detect(Snoise) s.t. discrete & non-homogenous (2)

In this article, smartphones are used as sources for road surface data collection. The
sensors within the smartphone are highly integrated and encapsulated within the device.
However, compared to professional surveying equipment, the accuracy of sensor data from
smartphones is limited. Therefore, to obtain road surface information, the following two
issues must be analyzed from both macroscopic and microscopic perspectives:
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(1) Smartphone installation/placement in macroscopic aspect: The sensors in smart-
phones are integrated and fixed on the mainboard, meaning the spatial attitude information
of the smartphone is consistent with the accelerometer and orientation sensor data. Thus,
it is possible to transform the acceleration records at any moment into an initial posture
perpendicular to the road surface along the z-axis using the orientation sensor. This means
the smartphone can be placed in any orientation within the vehicle as per the method
described in this article.

(2) Multiple sensor calibration in microscopic aspect: At the hardware level, the rel-
ative positions of the sensors are fixed during integration within the smartphone. At
the system level, calibrations can be made through the smartphone’s system settings to
calibrate between multiple sensors (for example, in iOS, settings can be conducted via
“System”->”Privacy”->”Location Services”->”System Services”->“Compass Calibration”
and “Motion Calibration and Distance”). Although “data flow/drift” occurs in motion
sensors like gyroscopes, where errors accumulate over time, the data preprocessing algo-
rithms provided by smartphone operating systems, such as the “sensor fusion algorithm”
in the iPhone’s Core Motion framework, can transform this “dirty data” into “clean data”.
Consequently, the collected dataset, including acceleration and orientation, is preprocessed
and filtered. Additionally, before initiating data collection, the smartphone is restarted
and left idle for a period to ensure the activation of the device’s sensor calibration features.
During data collection, the sampling frequency of the smartphone’s accelerometer and
orientation sensors is consistent, and the impact of the sensors operating at short intervals,
such as 100 Hz, on the results is limited compared with vehicle speeds ranging from 0 km/h
to 60 km/h. Therefore, linear interpolation techniques have been employed to perform
time alignment for the collected data from multiple sensors.

Additionally, the calculation of the smartphone’s posture within the sensor array
requires reference to electronic compasses, magnetometers, and other sensors. Therefore,
during data collection, the smartphone should be kept away from strong magnetic fields to
ensure the accuracy of data collection.

Therefore, the first step in our process is temporal alignment for S due to the different
time stamps and sampling frequencies. The acceleration timestamp is used as a reference,
and stream data from the gyroscope sensor is aligned to the acceleration recordings using
linear interpolation. GPS samples are aligned in a similar fashion.

The speed information is computed based on the distance and time duration between
consecutive GPS position samplings (cf. Section 3.3 for details). It is assumed that under
normal driving conditions (speeds of 0–60 km/h, without sudden traffic accidents, and
consistent movement), changes in speed and position over a 1-s interval are continuous. Fur-
thermore, given that GPS signals inherently possess an error greater than 5 m, employing
linear interpolation for estimating GPS positions is considered reasonable. Consequently,
to correlate acceleration sampling moments with GPS location data, linear interpolation is
used to estimate GPS positions at each acceleration sampling moment.

Using the smartphone’s recorded 3D orientation information, spatial transformations
are performed on the corresponding acceleration data at each moment. This process con-
verts the arbitrarily oriented 3D acceleration data into acceleration information that is
parallel to the xy plane and perpendicular to the z-axis of the road surface, thereby accu-
rately representing the vertical acceleration relative to the road surface and the horizontal
changes in vehicle movement at each moment. The proposed method implements the
coordinate system rotation using the Direction Cosine Matrix (DCM) method. At each
sampling moment of acceleration, linear interpolation is utilized to temporally align sensor
attitude data. Using the three-dimensional posture data corresponding to that moment,
a DCM is established. This matrix is then multiplied with the corresponding tri-axial
acceleration data to achieve spatial transformation, yielding acceleration data with the
z-axis perpendicular to the road surface and the xy-axis parallel to it. The 3-axis acceleration
Acc is affected by vehicle acceleration. Hence, the spatial pose of the accelerometer is
reoriented by the timestamp-aligned orientation recordings Orialigned, and the transformed
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acceleration Acctrans
(
ax, ay, az

)
consists of a z-axis acceleration that is always vertical to the

ground and x-axis and y-axis accelerations parallel to the ground (cf. (3)).

Acctrans
(
ax, ay, az

)
= SpatialTransform

(
Acc, Orialigned

)
with az⊥ground &

(
ax, ay

)
∥ ground

(3)

With the preprocessed multi-sensor stream data S, BFRS can be detected through the
following steps: (i) preprocess the dataset, (ii) study the relations between driving speed
and BFRS, augment the training dataset, (iii) compute the spectrum of BFRS using FFT
algorithms, and (iv) extract the specific bump feature according to the modeling result;
then, (v) create a deep learning model (CNN), train and validate the model, and (vi) collect
BFRS in selected areas; and (vii) finally, represent the BFRS detection result based on the
weighted clustering method. The BFRS detection workflow is also depicted in Figure 1.
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3.2. Model BFRS and Analyze Driving Behavior

In this work, BFRS is defined as situations/road surface conditions, including speed
breakers and transverse gutters, potholes, and cracks distributed on the road surface that
cause abnormal changes in the recorded data stream, as shown in Figure 2. Taking a speed
breaker shown in Figure 2a as an example, vehicle A is passing the BFRS B with speed v.
The length (between front wheels and rear wheels) of the vehicle and BFRS is lA and lB, and
the accelerometer sampling frequency is h. Hence, the sampling period for object B can be
denoted as (4).

∆t =
lB
v

(4)
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breaker shown in Figure 2a as an example, vehicle A is passing the BFRS B with speed v. 
The length (between front wheels and rear wheels) of the vehicle and BFRS is lA and lB, 
and the accelerometer sampling frequency is h. Hence, the sampling period for object B 
can be denoted as (4). 
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Figure 2. The BFRS detection process and different kinds of BFRS. (a) The BFRS detection process, 
(b) speed breaker, (c) transverse gutter, (d) pothole, and (e) crack. 
Figure 2. The BFRS detection process and different kinds of BFRS. (a) The BFRS detection process,
(b) speed breaker, (c) transverse gutter, (d) pothole, and (e) crack.

However, based on Nyquist’s theorem, a continuous signal has a maximum frequency
of fmax, and to fully reconstruct this signal, the sampling frequency fs must be at least twice
the maximum frequency of the signal. Mathematically, it can be represented as fs ≥ 2 fmax.
Therefore, the minimum frequency H to catch the bump feature can be denoted as shown
in (5).
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H =
2

∆t
(5)

It can be observed that the faster the speed v or the smaller the BFRS length lB, the
higher minimum frequency H is needed. For example, in a vehicle with a length lA = 2.7 m,
a length lB = 0.6 m, and a driving speed v ranging between 1 km/h and 60 km/h, the
optimal minimum sampling frequency H should be larger than 0.93 Hz, and the frequency
of BFRS ranging between 0.93 Hz and 55.56 Hz, based on (4) and (5).

Accordingly, in this work, the sampling frequency of the accelerometer and gyroscope
is set at 100 Hz. On the other hand, suppose a vehicle is driving at the speed v = 30 km/h
and the length lB is 0.6 m, then the BFRS recorded frequency is 13.98 Hz. However, the
length lA between front and back wheels is 2.7 m; there can be a feature with a frequency of
3.09 Hz detected from the recordings since two bump features are recorded by front wheels
and back wheels, i.e., the BFRS is recorded twice, and a new signal is generated.

3.3. Speed Computation and Data Augmentation Based on Movement Feature

BFRS also causes acceleration vertical to the road surface and a decrease in driving
speed. Hence, the acceleration along all 3-axis should be taken into consideration to detect
BFRS. The speed is computed using consecutive GPS samples as denoted in (6).

vi =

√
(xi+1 − xi−1)

2 + (yi+1 − yi−1)
2 ∗ HGPS/2 (6)

In (6), the average speed vi is taken as the instant speed of Pi(xi, yi), and it is computed
based on the distance between Pi−1(xi−1, yi−1) and Pi+1(xi+1, yi+1), along with the sampling
frequency HGPS. In addition, since the accelerometer and GPS sampling frequencies are
usually different and BFRS are usually detected based on the time stamp of the accelerom-
eter, the computed speed needs to be interpolated to align with the accelerometer time
stamp. Here, the linear interpolation method is applied, as denoted in (7).

vk = a(vk − vi) + b, vk ∈ Dspeed (7)

In (7), vi is the computed average speed at point Pi in (6); vk is the speed interpolated
for time stamp k; and a and b are coefficients of the linear interpolation function. When
aligning the speed with the accelerometer time stamp, the speed vk is computed using the
precomputed speed vi and time stamp k in sequence.

The movement feature refers to the speed and direction of the vehicle, which is
recorded in the multi-sensor stream data by different driving behaviors. Based on the
modeling result and movement feature, recordings containing BFRS are manually selected.
However, there are only limited bump features in the training dataset. The intuitive solution
is to simulate the driving behavior and augment the dataset based on the movement feature.
In our work, two kinds of data augmentation methods, as shown in Figure 3, are used.
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3.3.1. Data Augmentation Based on Driving Direction

In the context of BFRS within trajectory recordings, a recording s is composed of
n samples, denoted as s

{
r1, r2, · · · rn

}
, with driving directions indicated by time

stamps. BFRS can be sampled at arbitrary positions in these segments due to different
labeling methods. Typically, BFRS is positioned at the center of the recording during the
manual labeling process. However, various scenarios exist for BFRS labeling, such as
labeling at the beginning or end of the recording. To simulate these different scenarios,
each recording undergoes a spatial transformation with a random time seed m ∈ [0, w],
and this operation is repeated 2k times (with k iterations for pre-resamples and k iterations
for post-resamples). To maintain the length of the resampled recordings as the original,
the samples on the other side of the resampled recording are repeated and mirrored. For
instance, if the recording s is pre-resampled by n − m, it is represented as s

{
spre, sn−m

}
(as

depicted in Figure 3a). However, there is a lack of samples for the previous recordings spre.
Thus, the sampling spre is first represented as sm and then mirrored as s−1

m to maintain the
connectivity of the recordings. The resampled recording s is then denoted as s

{
s−1

m , sn−m
}

(illustrated in Figure 3b), and the entire process is represented in (8).

S = AugmentDirection(S, m, 2k)m ∈ [0, w], k ∈ N (8)

Considering a trajectory where the vehicle moves from r5 to r10, the augmentation
process involves creating continuity in the sequence. For pre-resample augmentation,
if the result lacks initial recordings (e.g., {r2, r3, r4}), we mirror the existing sequence
(e.g., {r5, r6, r7}) to fill in the gaps. In the case of post-resample augmentation, where the
recording extends beyond the original sequence (e.g., {r11, r12, r13}), the same mirroring
technique is applied to maintain continuity. This approach, though simple, ensures the
original sequence’s continuity and effectively simulates various labeling scenarios. The
augmentation process is automated and repeated to ensure a diverse dataset.

3.3.2. Data Augmentation Based on Driving Direction

In the BFRS modeling process, it is recognized that vehicles travel at varying speeds,
which influences the detection of BFRS based on recordings and movement features. While
multi-sensor recordings are captured at specific times and locations, they are inherently
logged at a singular speed, omitting the diversity of speed scenarios encountered in real-
world driving. To address this limitation, a simulation process that accounts for varying
driving speeds is necessary to accurately model BFRS under different speed conditions.
Let us assume the vehicle’s average speed is v, and the number of multi-sensor recordings
is n. To construct more realistic scenarios, it is essential to simulate speeds v′ within a
range v′ ∈ [vmin, vmax]. The original recording s is then modified based on the comparison
between v and v′. If v > v′, indicating slower driving conditions, the sampling period of
BFRS is extended, and the recording s is stretched. Conversely, if v < v′, suggesting faster
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conditions, the recording s is compressed. These stretching and compressing operations are
executed using up-sampling and down-sampling methods, respectively. This augmentation
is repeated k times with randomly selected speeds v′. For instance, when v > v′, a scale factor
u is calculated, and only m samples sm{s1+m/2, sn−m/2} are chosen (as depicted in Figure 3c).
To maintain the same length as the original recording s, up-sampling is performed through
linear interpolation, resulting in sstretch (illustrated in Figure 3d), interpolated with n
timestamps to match the length of s.

S = AugmentSpeed
(
S, v, v′, k

)
v′ ∈ [vmin, vmax], k ∈ N (9)

In both (8) and (9), the maximum duration w for the random seed m for spatial
transformation is typically set as half the average data length. For example, if the average
dataset length is 170, w can be set to 80, and the operation repeated 40 times (k = 20).
Similarly, the randomly selected speed v′ ranges from 0 km/h to 60 km/h, with operations
also repeated 40 times (k = 40). Moreover, while the spectrum feature remains stable during
driving direction-based data augmentation, it changes after speed-based augmentation;
the frequency of BFRS increases with higher speeds and decreases with lower speeds, as
denoted in (4) and (5).

3.4. Spectrum Modeling for Discrete-Sampled Recordings

With the analysis result of BFRS, the next step is representing the bump feature based
on the Fourier transform and related spectrum. The Fourier transform provides insights
into the frequency aspects of signals in the time or spatial domain. It shifts a signal from its
inherent domain, typically time or space, to a depiction in the frequency domain. This shift
involves breaking down a series of data points into its individual frequency components.
The FFT is a computational technique for determining the discrete Fourier transform (DFT)
of a dataset or its reverse, as denoted in (10), where D(k) is the output sequence in the
frequency domain, acc(n) is the input acceleration sequence in the time domain, N is the
number of sample points, and k is the frequency index, ranging from 0 to N − 1.

D(k) = ∑N−1
n=0 Acc(n)e−j(2π/n)kn (10)

Analyzing the spectral components focuses on understanding the frequencies present
in sampled datasets, and this mathematical equation switches a signal from its original
time or spatial representation to a version defined by frequency. According to (10), the
spectrum Sf is computed using sliding window w with overlap rate e that moves along
the time dimension and computes FFT in a short time period. In this article, the spectrum
is applied to represent the bump feature from spatially transformed Acctrans, as denoted
in (11).

S f = SpectrumAnalysis(Acctrans, lw, ow, Hb f rs) (11)

Since the abnormal change in BFRS is recorded twice by the front wheel and back
wheel of vehicles, as depicted in Figure 2, the sliding window length lw of the BFRS to
generate spectrum is set as 170, which can cover the average abnormal change under
the speed condition v ∈ [1, 60] km/h according to (4). Moreover, the frame duration is
set as 50, the hop duration is set as 5, and the specific frequency Hbfrs of BFRS ranges
from 3 to 50 Hz, based on the BFRS modeling result in Section 3.2. Assumption that the
original acceleration recording is depicted in Figure 4a–c, the spectrum computed based on
FFT is depicted in Figure 4d–f. It can be observed that abnormal changes in the original
recordings are distributed along the time direction from the spectrum view, and the feature
of the abnormal change can be represented by frequency domain. The heavier changes
in the acceleration, the brighter (represented by the yellow color, in respect to the blue
color) the color in the frequency domain. Moreover, compared with one-dimensional
changes in the original acceleration recording in the upper row, abnormal changes in the
low row are depicted just like the magnifier in the frequency domain, and the directional
non-homogenous feature can be more clearly represented.
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3.5. BFRS Collection Using Non-Homogeneous Spectrum Feature

As analyzed in the previous section, the abnormal changes can be observed via the
z-axis acceleration records, while there are also similar abnormal change features in the
x-axis and y-axis acceleration recordings. Therefore, the spectrum for 3-axis accelerations is
computed based on (7), and four-dimensional spectra are generated, as denoted in (12).(

s f x, s f y, s f z

)
= MultiSpectrum

(
Acctrans

(
ax, ay, az

))
(12)

With these multi-dimensional spectra, BFRS are initially detected based on the CNN
model. As a type of feed-forward neural network that learns feature engineering by itself via
filter (or kernel) optimization, CNN can automatically learn meaningful features without
manual engineering. By training on vast amounts of data, CNN can learn a hierarchy of
features, from simple to complex, and achieve or surpass human-level performance in
various tasks. Due to its exceptional performance in computer vision tasks such as image
classification and object detection, CNN has become a standard technique in this domain,
and it is particularly well-suited for processing matrix data. Hence, the CNN model is
applied in this article to deal with the multi-dimensional spectrum data. The CNN model
usually consists of the convolutional layer, activation function, pooling layer, and fully
connected layer, as follows:

(1) A convolutional layer uses a set of learnable filters (or kernels) to scan input.
(2) The batch normalization layer normalizes the data on each mini-batch to accelerate

the model.
(3) The activation layer is used to introduce non-linearity, with the ReLU function usu-

ally employed.
(4) The pooling layer down-samples the input data to reduce the data’s dimensionality.
(5) The dropout layer turns off a subset of neurons at random during training to pre-

vent overfitting.
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(6) A fully connected layer is used for tasks like classification at the end of a CNN.
(7) The softmax layer converts a set of values into a set between 0 and 1, the sum of which

equals 1.
(8) A classification layer is used for classification tasks.

In this article, a simple CNN model is designed and applied with 5 convolutional layers,
5 batch normalization layers, 5 activation layers, 4 pooling layers, 1 dropout layer, 1 fully
connected layer, 1 softmax layer, and 1 classification layer. The 3-axis acceleration data are
initially encoded as a spectrum feature in dimensions of 30 × 25 × 3 and converted to the
size of 30 × 25 × 12 by the first round of convolution operations, followed by the batch
normalization. Then, the process is repeated for the other four times, with the dimensions
becoming 15 × 13 × 24, 8 × 7 × 48, 4 × 4 × 48, and 4 × 4 × 48, followed by the dropout, fully
connection, and softmax operations with dimension finally becoming 1 × 1 × 2. Through
these operations, the CNN model can “hear” the voice of the road surface and detect BFRS
from the input dataset. The detailed structure is depicted in Figure 5.
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In Figure 5, the input three-dimensional spectra are input into the CNN model, fol-
lowed by a convolutional layer with bath normalizations and an activation layer (using
the ReLU function), a pooling layer (using the max pooling function), then the operation is
repeated for another three rounds; finally, the BFRS are generated by the full connected
layer with dropout and softmax functions. In addition, some complex CNN models can
also be applied since they are just a module of the BFRS detection framework. After the
training and predicting process, the BRFSinfo can be collected, as denoted in (13).

BFRSin f o = CNN
(

s f x, s f y, s f z

)
(13)

3.6. BFRS Representation Based on the Weighted Clustering

After the processing of the CNN model, the labels of BFRS and probability are collected
as BFRSin f o{BFRSlabel , BFRSprob}, while there is still noise and isolated detection results
that have inadequate confidence and cannot be taken as proper detections. In addition,
the bump feature for the same BFRS can be different, and how to deal with the non-
homogeneity remains a challenge in the traditional signal processing operation. To solve
the problem, the detection result is first refined based on the buffered windows that keep
the consecutive confidence of the detection result. After the process, each BFRS is labeled
as a segment of the original recording; hence, the second step is representing the BFRS as a
single position according to the weighted clustering. The refinement and clustering process
can be depicted in Figure 6.
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3.6.1. Refinement Using the Buffered Window

Suppose the detected result is subtracted with a buffered window wbu f that
slides from the start time to the end of the recording, which can be denoted as
wbu f {BFRSi

in f o, BFRSi+1
in f o, · · · , BFRSi+n

in f o}. Then, the refinement process is conducted for
each result in wbu f . The detected result in wbu f is judged as BFRS under the following
three conditions:

(1) More than half of the detected result BFRSlabel is not labeled as “road”.
(2) More than 60% percent of detected results in the buffered window wbu f is BFRS.
(3) The probability BFRSprob of a detected result is larger than the probability thresh-

old Probmin.

The point in the buffered window is relabeled as “true” and taken as the right detected
BFRS, or the detected is taken as “false”, and the operation can be depicted in (14).

BFRSre f ined = Refine
(

BFRSin f o, wbu f , Probmin

)
(14)

In (14), the length n of the buffered window wbu f is usually set as 10, or some other
larger value that with the high confidence of the detection result, and the probability
threshold Probmin is set as 0.7, which is a little higher than the probability detected by the
CNN model, as depicted in Figure 6a.

3.6.2. Representation Using Weighted Clustering

With the refinement process, the detected result BFRSre f ined is converted to each
segment BFRSgroup, which is composed of consecutive points BFRSgroup{b1, b2, · · · , bn}.
However, the BFRS is the specific position, such as the speed breaker or pothole, so the next
step is to distinguish the segments BFRSgroup from each other and convert the consecutive
segment into a specific object location BFRSobj, as depicted in Figure 6b. The operations
are as follows:

(1) Compute the difference index of each detected sampling point based on the index
orders from the original recordings.
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(2) Segment detected sampling points into each group BFRSgroup if the index difference
is within the threshold value d, as denoted in (15).

BFRSgroup = Cluster
(

BFRSre f ined, d
)

(15)

(3) Each detected sampling point in BFRSgroup is composed of the specific coordinate
Pi(x, y) and the related probability BFRSi

prob; hence, points in each BFRSgroup can be
further integrated into a single point BFRSobj (depicted in Figure 6c) based on the
weight of BFRSi

prob, as denoted in (16).

BFRSobj = Weight
(

BFRSgroup, BFRSprob

)
(16)

In (15), there is a key parameter d that segments the consecutive detected sampling
point into each group, and it can be selected depending on the data quality of the original
recordings. Usually, d can be set as 3 if too many noisy samplings are not included. While
in (16), the coordinate of BFRSobj in each BFRSgroup is automatically computed based on
each detected sampling point and the related BFRSprob (depicted as the graded green color
in Figure 6c), and no other parameters are needed.

3.7. BFRS Detection Algorithm from Multi-Sensor Stream Data

The BFRS detection framework consists of the following four steps: Firstly, preprocess
the collected discreet multi-sensor stream data from smartphones, including (1) timestamp
alignment for multi-sensor recordings based on linear interpolation and (2) spatial trans-
formation for the 3-axis acceleration data. Secondly, augment the training dataset based
on the movement feature, model BFRS using the driving speed and 3-axis acceleration
recordings, and represent the bump features based on spectrum modeling. Thirdly, design
the CNN-based deep learning network to deal with the non-homogenous BFRS spectrum
and collect BFRS. Finally, represent the BFRS detection result based on the weighted cluster
method. The algorithm is depicted in Algorithm 1.

Algorithm 1 The BFRS detection algorithm

Input : Snoise denoted as (1) and (2)
Output: BFRS denoted as (2)

BFRSDection(Snoise )
{

P(x, y), Ori
(
ox, oy, oz

)
, Acc

(
ax, ay, az

)
, Dspeed

}
//step 1: preprocessing and spatial transformation
Orialigned = AlignOrientation

(
Ori

(
ox, oy, oz

)
, tacc ); //Align the Orientation with Acceleration

Acctrans
(
ax, ay, az

)
= SpatialTransform(Acc

(
ax, ay, az

)
, Orialigned); //based on (3)

//step 2: data augmentation and BFRS spectrum modeling
Hbfrs = BFRSModeling(Snoise, Dspeed) //based on (4) and (5)
S{P, Acc} = AugmentDataset(Acctrans, Dspeed)//based on (6)–(9)
Sf (sfx, sfy, sfz) = ComptueSpectrum(S, Hbfrs); //based on (10)–(12)
//step 3: BFRS collection based on CNN
paraCNN = TrainCNN(Sf );
FOREACH Sfi IN Sf

Wi = SildingWindow(Sfi ); //slice the spectrum
BFRSi

info{BFRSlabel, BFRSprob} = PredictCNN(Wi, paraCNN ); //based on (13)
END
BFRSrefined = BFRSRefine(BFRSinfo, wbuf, Probmin) //based on (14)
//step 4: BFRS representation based on weighted clustering
BFRSgroup{PBFRS, BFRSprob} = Clustering(BFRSrefined, d); // based on (15)
BFRSobj = WeightedIntegration(BFRS group); // based on (16)
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4. Experiments and Discussion

This section focuses on the performance of the BFRS detection method. The multi-
sensor stream data are acquired using smartphones with GPS, gyroscope, and accelerometer
sensors. GPS locations, three-axis orientations, and three-axis acceleration datasets are col-
lected. Smartphones are used as the source for sensor data collection, utilizing the inherent
data processing techniques of the smartphone operating system. This setup effectively
addresses the issue of “data flow/drift” in motion sensors (such as the gyroscope). The
raw acceleration data are preprocessed using these techniques before being recorded by the
MATLAB Mobile 2023 app and subsequently sent to the proposed method. Each dataset
collected typically lasts no longer than 10 min. Due to the robust preprocessing capabilities
of the smartphone, extra calibration for the motion sensors is not conducted during the data
collection process. BFRS is modeled after timestamp alignment between the accelerometer
and GPS and gyroscope sensors. Then, the direction of the three-axis accelerometer is
reoriented by the three-axis acceleration information, and the spectrum model is applied
to the accelerometer data. The BFRS is computed based on CNN and represented using
the weighted cluster method. After that operation, the cluster result is compared with
the actual BFRS positions, treating detections within 10 m of the actual BFRS as correct
and those outside this range as wrong. These criteria serve as our evaluation metrics,
and precision, recall, and F1-score are calculated. Based on the criteria, comparisons are
conducted with different BFRS detection methods; in addition, BFRS in different areas is
computed, and results are evaluated with different methods.

4.1. Multi-Sensor Stream Data Collected Using Smartphone

As shown in Figure 7, the total length computed based on GPS recordings is 6411 m
with speed ranges from 0 km/h to 39.65 km/h, in an area of 0.92 km2. The time duration of
the stream data is 860 s, with 860 sampling of GPS points and 86,662 records of three-axis
acceleration and three-axis orientation records. In the research area, BFRS refers to surface
features that have variations in elevation greater than 3 cm and extend horizontally along
the road for more than 4 cm. Due to the geographic coordinates inherent in the detection
results, which differ from traditional methods of evaluating neural network models, data
from a specific spatial area was selected as the training set, and data from a different area
(not included in the training set) was used for testing. In Area A, the dataset is divided
into a training dataset (outside the black dotted rectangle area) and a test dataset (inside
the black dotted rectangle area, i.e., Area A), and the training dataset is used to train and
validate the CNN model, while the test dataset is used to make validation and comparison
with other related methods. The detailed statistics of the collected multi-sensor stream data
are depicted in Table 1.

Table 1. Statistic of collected multi-senor stream data.

Length Duration GPS Records Acceleration
Records

Orientation
Records

Area A 6411 m 860 s 860 86,662 86,662
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4.2. Non-Homogeneous Analysis and BFRS Modeling

The smartphone is arbitrarily mounted or placed in the vehicle, but there is an ex-
tensive abnormal change in the direction vertical to the road surface, and the spatial
transformation is necessary to convert the z-axis acceleration into the vertical direction of
the road surface. With timestamp-aligned three-axis acceleration and three-axis orientation
recordings, the real-time spatial transformation is applied to the three-axis acceleration.
The spatial transformation for the acceleration stream data is depicted in Figure 8.

As shown in Figure 8, there is an obvious change in the three-axis acceleration before
and after the spatial transformation. In Figure 8a, both x-axis, y-axis, and z-axis accelerations
change during the sampling period, and the average acceleration for the three axes is
2.2278 m/s2, −0.6017 m/s2, and 9.4296 m/s2, respectively. In Figure 8b, the average x-
axis and y-axis acceleration becomes 0.0513 m/s2 and −0.0533 m/s2, which is consistent
with the actual case (as the vehicle moves forward at a nearly constant speed), and the
z-axis acceleration is to 9.7075 m/s2; however, abnormal changes are concentrated on the
z-axis, while there are also related slight changes in the x-axis and y-axis. It shows strong
relations with BFRS after spatial transformation. Additionally, it can be observed that BFRS
impacted both the vertical (z-axis) and horizontal (xy-axis) directions of the vehicle. In
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the z-axis direction, the changes in acceleration are quite noticeable, typically fluctuating
above ±3 m/s2. In the x-axis direction (assuming it is the direction of vehicle travel), a
noticeable deceleration effect is also presented, although the changes in acceleration were
relatively minor. However, employing a threshold method to determine BFRS can lead
to significant errors due to the inherent noise in acceleration recordings. Therefore, the
proposed method utilizes spectral features to detect BFRS, which also aids in mitigating
the impact of acceleration noise to some extent.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 32 
 

4.2. Non-Homogeneous Analysis and BFRS Modeling 
The smartphone is arbitrarily mounted or placed in the vehicle, but there is an exten-

sive abnormal change in the direction vertical to the road surface, and the spatial trans-
formation is necessary to convert the z-axis acceleration into the vertical direction of the 
road surface. With timestamp-aligned three-axis acceleration and three-axis orientation 
recordings, the real-time spatial transformation is applied to the three-axis acceleration. 
The spatial transformation for the acceleration stream data is depicted in Figure 8. 

(a) (b)

− − 

 
Figure 8. Spatial transformation for the acceleration data. (a) Before spatial transformation. (b) After 
spatial transformation. 

As shown in Figure 8, there is an obvious change in the three-axis acceleration before 
and after the spatial transformation. In Figure 8a, both x-axis, y-axis, and z-axis accelera-
tions change during the sampling period, and the average acceleration for the three axes 
is 2.2278 m/s2, −0.6017 m/s2, and 9.4296 m/s2, respectively. In Figure 8b, the average x-axis 
and y-axis acceleration becomes 0.0513 m/s2 and −0.0533 m/s2, which is consistent with the 
actual case (as the vehicle moves forward at a nearly constant speed), and the z-axis accel-
eration is to 9.7075 m/s2; however, abnormal changes are concentrated on the z-axis, while 
there are also related slight changes in the x-axis and y-axis. It shows strong relations with 
BFRS after spatial transformation. Additionally, it can be observed that BFRS impacted 
both the vertical (z-axis) and horizontal (xy-axis) directions of the vehicle. In the z-axis 
direction, the changes in acceleration are quite noticeable, typically fluctuating above ±3 
m/s². In the x-axis direction (assuming it is the direction of vehicle travel), a noticeable 
deceleration effect is also presented, although the changes in acceleration were relatively 
minor. However, employing a threshold method to determine BFRS can lead to significant 
errors due to the inherent noise in acceleration recordings. Therefore, the proposed 
method utilizes spectral features to detect BFRS, which also aids in mitigating the impact 
of acceleration noise to some extent. 

BFRS is modeled with the relations between the geometric shape and driving speed 
in this research, and the BFRS training dataset is augmented based on the modeling result 
since the size and quality of the training dataset have a direct effect on the neural network. 
To have an intuitive visualization of the augmented results, the experiment is conducted 
on the actual collected recordings using the proposed augmentation method, as depicted 
in Figure 9. In the experiment, the spectrum of BFRS is computed using the FFT algorithm 
based on (10)–(12), with the parameter set as Section 3.3. 
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BFRS is modeled with the relations between the geometric shape and driving speed in
this research, and the BFRS training dataset is augmented based on the modeling result
since the size and quality of the training dataset have a direct effect on the neural network.
To have an intuitive visualization of the augmented results, the experiment is conducted
on the actual collected recordings using the proposed augmentation method, as depicted in
Figure 9. In the experiment, the spectrum of BFRS is computed using the FFT algorithm
based on (10)–(12), with the parameter set as Section 3.3.

As seen from the experiments in Figure 9, the spectra of BFRS are computed and
visualized for the acceleration of the x-axis, y-axis, and z-axis. In Figure 9a–c, it is the
comparison result of data augmentation by driving direction, and the original recording in
Figure 9b is pre-resampled with 33 samplings, while post-sampled with 41 samplings. In
Figure 9d–f, it is the comparison result of data augmentation by driving speed; the original
recording in Figure 9e is speed increased with 123% of the original speed in Figure 9d,
while decreased with 85% of the original speed in Figure 9e. In Figure 9a–c, the spectrum
feature keeps steady during the pre-resample and post-resample processes. However,
in Figure 9d,e the same spectrum features vary under different speed conditions; the
spectrum feature representation of the same BFRS is stretched or squeezed by different
vehicle speeds and becomes non-homogenous. In addition, to validate the effectiveness of
the data augmentation method, two different spectrum feature maps are generated based
on the actual acceleration recording under speed conditions of 18 km/h and 27 km/h, as
depicted in Figure 10.
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In Figure 10, the actual acceleration recording of the same kind of BFRS is collected
under different speed conditions. There is a strong saliency (the light-yellow color in
Figure 10b) in the lower frequency domain when recording under the speed of 18 km/h in
Figure 10a; however, the strong saliency (the light-yellow color in Figure 10d) moves to the
higher frequency domain when recording under the speed of 27 km/h in Figure 10c, which
is consistent with the assumption analyzed in Section 3.3. In addition, the augmentation
result based on the speed direction is not further experimented with, as the spectrum feature
keeps steady during the process. Despite the presence of noise in the original recordings, the
method transforms one-dimensional acceleration changes into two-dimensional spectral
features. By distinguishing BFRS characteristics from noise across different frequency
spectrum coefficients, the proposed method effectively reduces the impact of noise on
experimental results. Based on the proposed data augmentation, there are non-homogenous
feature representations under different speed conditions, and the feature can be extracted
and strengthened based on the spectrum modeling method, which would contribute to the
classification of BFRS in the next section.
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4.3. BFRS Detection and Representation

Since BFRS is affected by the abnormal changes in the three-axis acceleration, all the
spectra in three dimensions are computed and taken into the CNN model. In addition, the
non-homogenous is caused by different driving speeds, as discussed in the previous section.
The CNN model to detect BFRS is designed according to Section 3.3, with the spectrum in
the three-axis acceleration. The training parameters are set as follows: {number of filters:
12; mini batch size: 50; learning rate: 0.0001; max epochs: 30; dropout probability: 0.2;
padding mode: same}, with other parameters the same as Section 3.5. During the training
process, the dataset is divided into the following two categories: 80% of datasets are taken
as training datasets, and 20% datasets are taken into validate datasets. Furthermore, to
distinguish the BFRS from the normal road features, 166 segments of normal road segments
are randomly selected in the research area and further labeled as “background”. During
the training process, the detection result is validated after each epoch, and the CNN
model converges. Then, the BFRS detection operation is conducted on the test dataset of
Area A, with the trained learnable parameters. The multi-dimensional spectrum features
of acceleration recordings are sent to the CNN model, output with the detected labels,
segmented and refined as consecutive segments, and weight-clustered and represented as
BFRS, as depicted in Figure 11.
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In Figure 11a, the BFRS is initially detected based on the CNN model; each recording
is assigned the probability of BFRS and further visualized by the graded color in greed
(the darker the point, the higher the probability of the BFRS). In Figure 11b, the detection
result is further segmented and refined as each segment based on (14) and (15), which are
labeled with different colors. Finally, the BRFS is represented as the single BFRS in each
group using the weighted clustering process based on (16). In Figure 11, it can be seen
that the BFRS are dynamically generated based on the proposed BFRS detection method
in Section 3.7. The proposed method primarily aims at the positioning of BFRS, but it can
also represent the size of the obstacle. For the horizontal length of BFRS, it can be directly
represented by the results of continuous detection, that is, without clustering the BFRS
initially (as shown by the different BFRS group in Figure 11). The lateral width can be
inferred from multi-source data coverage of the road surface, which helps estimate the
lateral width of BFRS. The changes in z-axis acceleration from the recorded acceleration
corresponding to detection results can indicate the vertical dimension (as shown by the
actual acceleration recording in Figure 10).
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In addition, from the acceleration data recorded, ideally, when a vehicle passes over
a hump-type obstacle, it produces an upward acceleration followed by a downward ac-
celeration. Conversely, passing over a hole results in the opposite pattern of acceleration.
However, these features are not distinctly clear and are difficult to differentiate due to
inherent noise in the acceleration data. Theoretically, since it uses spectrum analysis coeffi-
cients to represent BFRS features, and these coefficients are absolute values from the Fourier
transform process, the directionality of accelerations caused by hump-type and hole-type
obstacles is neutralized by the absolute value operation. Therefore, it is not possible to
accurately capture the specific acceleration features of raised and lowered surface elements.
What is more, regarding road surface irregularities, such as selected thickness and type
of paint, it is possible to sample these characteristics, represent them using the spectrum
features, and input them into a neural network model as part of the training set. The
network is subsequently trained to learn the subtle variations and distinctions among these
features, thereby enabling the detection of these types of BFRS.

4.4. BFRS Detection Comparison with Different Methods

To have an intuitive understanding of the performance of the proposed BFRS detection
method, different experiments are conducted, and related comparisons are made with other
methods. Firstly, it is the performance comparison between the original CNN model and
the proposed BFRS detection method on the test dataset (Area A shown in Figure 7). The
BFRS is detected using the original CNN model without the dataset augmented based on
the movement feature analyzed in Sections 3.2 and 3.3. The experiment is reconducted
based on the proposed method with the same parameter as that of the original CNN model,
and the result is depicted in Figure 12.
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In the test dataset of Area A, there are four ground truth BFRS distributed along the
road, as depicted by the gray square in Figure 12. In Figure 12a, it is the BFRS detection
result based on the original CNN model [17] without augmentation information. Although
four BFRS are covered by the detected BFRS groups, the results are over-detected, i.e., there
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are seven BFRS groups detected and three are falsely detected. In comparison with the
result in Figure 12a, the BFRS detection result in Figure 12b seems better; four BFRS are
successfully covered by the detected BFRS group, and no more false-BFRS results are further
detected. The over-detected BFRS result in Figure 12a is mainly caused by the insufficient
training dataset, and it cannot detect BFRS in different movement situations. Hence, the
proposed BFRS detection method turns out to be effective with augmentation information.

With the result in Figure 12, the BFRS detection results are further represented by the
method in Section 3.6. Secondly, BFRS detection experiments are further conducted and
compared with the adaptive threshold-based method [34] and the CWT-based method [7],
as depicted in Figure 13.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 23 of 32 
 

road segmentground truth BFRS

BFRS result by CWTBFRS result by adaptive threshold value

BFRS result by the proposed methodBFRS result by original CNN

(d) 

(c) 

(b) 

(a) 

 
Figure 13. Comparisons between different BFRS detection methods. (a) Adaptive threshold value. 
(b) CWT. (c) Original CNN. (d) The proposed method. 

In the result, the BFRS within the distance of 10 m is considered to be the correct 
BFRS, and the one out of the distance is taken as the wrong BFRS. In Figure 13a, it is the 
result by adaptive threshold value, computed based on the abnormal acceleration changes 
in its neighborhood. The first derivative of acceleration recordings is computed and taken 
as the abnormal change, along with the total standard deviation of the dataset. Then, the 
abnormal change larger than the standard deviation is adaptively selected as BFRS. Fi-
nally, seven BFRS are detected, with two correct BFRS and five wrong BFRS. In Figure 
13b, the BFRS is computed based on the CWT method, with the parameters {wave name: 
‘db3’, total scale: 256}, and the threshold value adaptively computed based on the absolute 

Figure 13. Comparisons between different BFRS detection methods. (a) Adaptive threshold value.
(b) CWT. (c) Original CNN. (d) The proposed method.



Appl. Sci. 2024, 14, 6744 23 of 31

In the result, the BFRS within the distance of 10 m is considered to be the correct BFRS,
and the one out of the distance is taken as the wrong BFRS. In Figure 13a, it is the result
by adaptive threshold value, computed based on the abnormal acceleration changes in
its neighborhood. The first derivative of acceleration recordings is computed and taken
as the abnormal change, along with the total standard deviation of the dataset. Then, the
abnormal change larger than the standard deviation is adaptively selected as BFRS. Finally,
seven BFRS are detected, with two correct BFRS and five wrong BFRS. In Figure 13b, the
BFRS is computed based on the CWT method, with the parameters {wave name: ‘db3’,
total scale: 256}, and the threshold value adaptively computed based on the absolute mean
value of the coefficient matrix. The acceleration recording with a related coefficient larger
than ten times the threshold value is selected as BFRS, and four BFRS are detected, with
two correct BFRS and two wrong BFRS. Consistent with the experiment in Figure 12, the
BFRS detection results of the original CNN and the proposed method are depicted in
Figure 13c,d. In Figure 13c, seven BFRS are detected by the original CNN, with four correct
BFRS and three wrong BFRS, while in Figure 13d, four BFRS are all correctly detected by
the proposed method.

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

To evaluate the performances of different methods, precision and recall are computed
based on (17) and (18). In the equation above, TP is the true positive BFRS (the true BFRS
that successfully detected), FP is the false positive BFRS (the BFRS that falsely detected),
and FN is the false negative BFRS (the true BFRS that are not detected). Finally, the F-score is
further computed based on these two quality indexes, as denoted in (19), and the statistical
result is depicted in Table 2.

F-score = 2 × Precision × Recall
Precision + Recall

(19)

Table 2. Statistic of the comparison results.

Detected BFRS Correct BFRS Wrong BFRS Precision Recall F-Score

Adaptive threshold value 7 2 5 28.57% 50.00% 0.3636
CWT 4 2 2 50.00% 50.00% 0.5000

Original CNN 7 4 3 57.14% 100.00% 0.7272
The proposed method 4 4 0 100.00% 100.00% 1.0000

In Table 2, the precision, recall, and F-score are also computed, with the number of
correct BFRS and wrong BFRS. For example, the number of detected BFRS, correct BFRS,
and wrong BFRS by the adaptive threshold value are 7, 2, and 5, respectively, and the
related TP, FP, and FN can be computed as 2, 5, and 2. Hence, the precision and recall are
28.51% and 50.00% based on (17) and (18), and the F-score is computed as 0.3636. The
precision, recall, and F-score for the CWT method {TP: 2, FP: 2, FN: 2} are 50.00%, 50.00%, and
0.5000, respectively, and these indexes for the original CNN method {TP: 4, FP: 3, FN: 0}
are 57.14%, 100.00%, and 0.7272. However, the precision, recall, and F-score for the proposed
method {TP: 4, FP: 0, FN: 0} are 100.00%, 100.00%, and 1.0000, since all BFRS are correctly
detected with no wrong result.

In the experiment result in Figure 13 and Table 2, more BFRS are detected than other
methods by the adaptive threshold method, while most of them are wrong results since
the threshold value cannot be adapted to every situation. It seems that the CWT method
can perform well with four detected BFRS, while it also faces the similar situation of the
adaptive threshold value method, and the threshold only fits limited conditions. In the
original CNN method, the detection standard can be learned from the training dataset,
with four corrected BFRS detected. However, the performance still depends on the training
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dataset, and it performs not so well since there are three wrongly detected BFRS. Finally,
four BFRS are successfully detected with the highest F-score by the proposed method
with a movement–feature-augmented training dataset. As shown in the experiments, the
proposed method achieved superior BFRS detection results, with the detected positions
closely aligning with the ground truth BFRS locations. Unlike the CWT method and
adaptive threshold method, the proposed method does not require the setting of specific
parameters. Furthermore, compared to the original CNN method, the proposed method
enhances the data by considering the characteristics of vehicle movements and multi-sensor
recordings, resulting in superior experimental outcomes. Hence, it can be concluded that the
BFRS detection result computed by the proposed method outperforms other results in the
experiment. In addition, variations in tire or suspension systems across different vehicles
may impact the BFRS detection results, and BFRS might not be adequately captured just by
a single vehicle type. However, it assumes general conditions, and the credibility of BFRS
detection results can be further improved through the integration of multi-source data.

4.5. BFRS Detection and Comparison in the Different Areas

To assess the capability of the proposed BFRS detection method, multi-sensor stream
data in different areas are collected using smartphones, and experiments are conducted
based on the trained deep learning model in the previous section. The sampling rate for the
GPS sensor is 1 Hz, and that for the gyroscope and accelerometer is 100 Hz. The research
area and discrete-sampled GPS stream data are depicted in Figure 14a,b, with augmentation
information visualized by graded color.
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In Figure 14, different kinds of BFRS in research Area B and C are visualized as the
related pictures of (i) cracks, (ii) speed breaker, (iii) transverse gutter, and (iv) pothole. The
detailed statistics of the collected multi-sensor stream data are depicted in Table 3.
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Table 3. Statistic of collected multi-senor stream data in different areas.

Length Duration GPS Records Acceleration Records Orientation Records

Area B 1171 m 234 s 234 23,233 23,233
Area C 1475 m 1298 s 1298 129,081 129,081

With the test dataset in Areas B and C, BFRS are firstly collected using the proposed
method, refined and segmented as different BFRS groups, and clustered and represented as
BFRS objects. Then, comparisons are conducted using the adaptive threshold value method,
CWT method, and original CNN method, using the same parameter as that in Area A.
Comparisons with different BFRS detection methods in Area B are depicted in Figure 15.
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There are 24 ground truth BFRS in Area B, while the number of detected BFRS varies in
different results. In Figure 15a, there are 41 BFRS detected based on the adaptive threshold
value method, and 18 BFRS are correctly detected. However, there are 23 wrong BFRS in
the result, which holds the highest value compared with other methods. In Figure 15b,c,
there are 14 BFRS detected in each result based on the CWT method and the original CNN
method, while it performs a little better in the result of the CWT method with nine correct
BFRS and five wrong BFRS. In contrast to the result of Figure 15c, the performance of the
proposed method is dramatically improved, and 20 BFRS are detected, with 14 correct
BFRS and 6 wrong BFRS, since the model is trained with the augmented dataset based on
movement feature. The detailed statistics of the experiment results for Area B are depicted
in Table 4.

Table 4. Statistics of the comparison results in Area B.

Detected BFRS Correct BFRS Wrong BFRS Precision Recall F-Score

Adaptive threshold value 41 18 23 43.90% 75.00% 0.5538
CWT 14 9 5 64.29% 37.50% 0.4737

Original CNN 14 8 6 57.14% 33.33% 0.4210
The proposed method 20 14 6 70.00% 58.33% 0.6363

In Table 4, the precision, recall, and F-score are computed according to the experiment
result in Figure 15. Although there are 18 correct BFRS detected by the adaptive threshold
value method, the number of wrong BFRS is also the highest among all of the results, and
the related TP, FP, and FN are computed as 18, 23, and 6. Hence, the precision, recall, and
F-score are 43.90%, 75.00%, and 0.5538 for the first method. With the similar detection
result by the CWT method and the original CNN method, the related TP, FP, and FN
are computed as CWT: {TP: 9, FP: 5, FN: 15} and original CNN: {TP: 8, FP: 6, FN: 16},
respectively. Moreover, the precision, recall, and F-score are 64.29%, 37.50%, and 0.4737 for
the CWT method, and 57.14%, 33.33%, and 0.4210 for the original method. Finally, the
precision, recall, and F-score for the proposed method {TP: 14, FP: 6, FN: 10} are 70.00%,
58.33%, and 0.6363. With the highest precision, recall, and F-score, the proposed method
performs best among all results.

As shown in Figure 15 and Table 4 of Area B, where BFRS are more prevalent, detecting
all BFRS is challenging. However, the adaptive threshold method detected a higher number
of BFRS but resulted in many false detections, leading to low precision. The CWT method
applies continuous wavelet transformation to the acceleration data, resulting in complex
wavelet coefficient matrixes that are difficult to distinguish using specific thresholds. The
original CNN method, lacking training on a dataset enhanced based on movement char-
acteristics, did not perform well in the new experimental area, detecting only 14 BFRS. In
contrast, the method proposed in this article, which is based on the analysis and training of
vehicle motion characteristics, identified 20 BFRS with a high precision and the best relative
F-score, demonstrating the superior performance of our method.

To further evaluate the performance of the proposed detection method, the BFRS
detection operation is conducted in Area C, along with the related comparisons with the
adaptive threshold value method, CWT method, and original CNN method, and uses the
same parameter as that in Area A. The result is depicted in Figure 16.

In Area C, there are 23 ground truth BFRS spatially distributed, as shown by the gray
rectangle in Figure 16. In Figure 16a, 27 BFRS are detected by the adaptive threshold value
method, with 14 correct BFRS and 13 wrong BFRS. In Figure 16b,c, the detected BFRS are
11 by the CWT method and 9 by the original CNN method, and both of them perform
similarly with 4 wrong BFRS; however, there are more correct BFRS in Figure 16b than that
of Figure 16c. Compared with other results, there are 22 BFRS detected by the proposed
method, and 17 BFRS are correctly detected, which is the highest value among all results.
The detailed statistics of the experiment results for Area C are depicted in Table 5.
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Table 5. Statistics of the comparison results in Area C.

Detected BFRS Correct BFRS Wrong BFRS Precision Recall F-Score

Adaptive threshold value 27 14 13 51.85% 60.87% 0.56
CWT 11 7 4 63.64% 30.43% 0.4117

Original CNN 9 5 4 55.56% 21.74% 0.3125
The proposed method 22 17 5 77.27% 73.91% 0.7555

In Table 5, the precision, recall, and F-score are computed according to the experiment
result in Figure 16. With 14 correct BFRS and 13 wrong BFRS by the adaptive threshold value
method, the related TP, FP, and FN are computed as 14, 13, and 9, and the precision, recall,
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and F-score are 60.87%, 75.00%, and 0.5600 for the result in Figure 16a. With seven correct
BFRS and four wrong BFRS in Figure 16b by the CWT method, the result in Figure 16b
{TP: 7, FP: 4, FN: 16} outperforms that of Figure 16c by the original CNN method {TP: 5,
FP: 4, FN: 18}. However, the precision and recall of the proposed method are 77.27% and
73.91%, according to the statistic results {TP: 15, FP: 7, FN: 6}; hence, the F-score is the
highest among all results {adaptive threshold value: 0.5600; CWT: 0.4117, original CNN:
0.3125; the proposed method: 0.7555}. More correct BFRS and less wrong BFRS are detected
based on the proposed method, and it performs best among all experimented results.

As shown in Figure 16 and Table 5 of Area C, where the spatial distribution of BFRS
is denser compared to the experimental Area B, the adaptive threshold method detected
a larger number of BFRS, but many were incorrect, resulting in low precision. The CWT
method showed higher detection precision, yet selecting appropriate BFRS based on wavelet
coefficients remains challenging. The original CNN detected 9 BFRS, whereas the proposed
method detected 22 BFRS, with 17 being correct BFRS. Therefore, compared to these
methods, the F-score performance of the proposed method is the best, consistent with the
results from Area B.

With experiment results in Figures 15 and 16, Tables 4 and 5, BFRS can be detected
with high precision, recall, and F-score based on the proposed method. Although there are
more BFRS detected by the adaptive threshold value method, the precision is not good, as
there are also too many wrong BFRS in the result. The CWT method performs better than
the adaptive threshold value with a higher precision, but the number of detected BFRS is
small, as is the result of the original CNN method. However, using an augmented dataset
based on the movement feature and the learnable parameters, BFRS are detected with the
highest quality index, such as precision, recall, and F-score. Finally, the proposed method
performs best in the comparison. The experiments demonstrate that the proposed method
described in this article, which establishes a feature representation for BFRS through spec-
trum modeling, enhances the BFRS training dataset using vehicle motion characteristics,
and detects BFRS in different experimental areas using the CNN, achieves relatively supe-
rior experimental results compared to other methods. This indicates the applicability and
superior performance of the proposed method.

5. Conclusions and Future Work

Road infrastructure is a critical component of the geographic data required for the
development of smart cities. It plays a pivotal role in city transportation systems, where
the integrity of road surfaces directly influences transportation safety and the quality of the
driving experience. The detection and management of road surface irregularities, such as
BFRS, are essential due to the stresses imposed by extensive vehicle use and infrastructure
wear. To detect BFRS in an economical way, smartphones assembled with multiple sensors
are applied in this study. By harnessing the ubiquity and sophisticated sensor capabilities
of these devices, discrete-sampled and non-homogeneous datasets are collected. The
relationship between BFRS and vehicle speed conditions was analyzed, leading to the
development of a robust model that effectively identifies BFRS. Through preprocessing
of three-axis acceleration stream data, a comprehensive BFRS model is constructed and
augmented by the training dataset with movement features. Then, the deep learning neural
network is designed, and the multi-dimensional spectrum feature is input into the neural
network. Finally, BFRS are refined and weighted clustered according to detected points and
the related probability. Multi-sensor stream data at different areas are collected, training
datasets are augmented, spectrum features are constructed based on the modeling result,
and the deep learning neural network is trained and validated. The proposed approach
not only demonstrated superior performance in detecting BFRS compared to other existing
methods, but also provided initial locations of the distress or damages of the road surface,
which would contribute to the maintenance of road assets. The flexibility of the CNN model,
which can be adapted or replaced with alternative architectures, adds to the scalability of
the approach. The smartphone sensors used in this article are highly integrated within
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the device. However, in IoT sensor application scenarios, especially when dealing with
multiple sensors that lack necessary external enclosures and have lower levels of internal
integration, calibrating sensors is essential. Additionally, the external environment (such as
external magnetic fields) and the impact of different disturbances require in-depth study.

Future research aims to improve the performance of BFRS detection results with multi-
modal sensors; for example, since video datasets can also be collected using smartphones,
the deep learning neural network framework can be improved and redesigned to encode
multi-modal stream data. Moreover, for vehicles with different types of tires and suspension
systems, it is essential to explore the analysis of forces while overcoming an obstacle. This
could provide deeper insights into the interaction between the vehicle’s tires, suspension,
and road surface, which could be crucial for encoding the BFRS and interpreting the
results more accurately. Another aspect that needs to be further explored is BFRS detection
with crowdsourced datasets, which collect road surface conditions using volunteered
geographic information.
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