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Abstract: The inexplicable distribution of souring wells (presence of H,S gas) of the unconventional
Montney Formation hydrocarbon resource (British Columbia; BC) is investigated by analysing sul-
phur and oxygen isotopes, coupled with XRD mineralogy, scanning electron microscopy (SEM), and
energy dispersive spectroscopy (EDX). The sulphur isotopic analysis indicates that the sulphur iso-
topic range for Triassic anhydrite (534S 8.9 to 20.98 %, VCDT) is the same as the H,S sulphur that is pro-
duced from the Montney Formation (534S 9.3 to 20.9%. VCDT). The anhydrite in the Triassic rocks is
the likely source of the sulphur in the HyS produced in the Montney Formation. The deeper Devonian
sources are enriched in S and are not the likely source for sulphur (534S 17.1 and 34%, VCDT). This
is contradictory to studies on Montney Formation producers in Alberta, with heavier (3*S-enriched)
sulphur isotopic signatures in H,S gas of all souring Montney Formation producers. These studies
conclude that deep-seated faults and fractures have provided conduits for sulphate and/or H,S
gas to migrate from deeper sulphur sources in the Devonian strata. There are several wells that
show a slightly heavier (®*S-enriched) isotopic signature (534S 18 to 20%. VCDT) within the Montney
Formation HjS gas producing within close proximity to the deformation front. This variation may
be due to such deep-seated faults that acted as a conduit for Devonian sulphur to migrate into the
Montney Formation. Our geological model suggests the sulphate-rich fluids have migrated from the
Charlie Lake Formation prior to hydrocarbon generation in the Montney Formation (BC). Sulphate
has concentrated in discrete zones due to precipitation in conduits like fracture and fault systems.
The model fits the observation of multi-well pads containing both sour- and sweet-producing wells
indicating that the souring is occurring in very narrow and discrete zones with the Montney Forma-
tion (BC). Government agencies and operators in British Columbia should map the anhydrite-rich
portions of the Charlie Lake Formation, together with the structural elements from three-dimensional
seismic to reduce the risk of encountering unexpected souring.

Keywords: hydrogen sulphide; thermochemical sulphate reduction; Triassic Montney Formation;
souring; isotopic analyses; faulting; fractures

1. Introduction

Hydrogen sulphide (H,S) gas is co-produced in some petroleum systems and is highly
toxic, flammable, and corrosive. H,S gas is encountered in Canada, United States of
America, the North Sea (Europe), and the Middle East [1]. H,S is an environmental and
safety issue [2] and can also reduce the economic value of a well due to increased costs in
upgrading evacuation infrastructure (i.e., sour service pipe) or the need to use chemicals
(i.e., Triazine) to remove the H,S from the hydrocarbons.

The formation of H,S occurs due to several mechanisms. For example, H;,S in petroleum
systems can develop by (1) bacterial sulphate reduction {BSR; [3-5]}; (2) thermal sulphate
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reduction {TSR; [6]}; (3) sulphur-rich kerogen cracking [7]; and (4) sulphide oxidation and/or
decomposition of surfactants used for well completions [8]. The process in point (4) is only
a short-lived production of HpS compared to the other processes listed. Hydrogen sul-
phide is generated when sulphate present within the reservoir comes into contact with
hydrocarbons and goes through a chemical reduction process that is catalysed by either
microbial communities below 60-90 °C [3,5] or by abiotic thermochemical processes above
90 °C [6,9,10]. Thermochemical sulphate reduction (TSR) develops when petroleum reser-
voirs are at temperatures of 100-140 °C [6] and the required temperature to catalyse the
TSR reaction can vary due to the gas diffusion rates, gas types present, catalysts involved,
and wettability and permeability of the reservoir [6,9]. Aqueous sulphate ions are needed
in the TSR process, which could include dissolved sulphates within the pore water from
ancient seawater, evaporative brines, or the dissolution and migration of sulphate-rich
minerals (i.e., anhydrite, gypsum). Reactive organic compounds are also needed to be
within the reservoir, and this could include organic matter, crude oil, microbial methane, or
thermogenic gas/condensate.

Researchers have used isotopic signatures of sulphur and oxygen to understand the sul-
phur sources of the H,S gas which involves analysing the H,S gas from the producing forma-
tion and the minerals of the formations that may be responsible for the generation [3,5,6,11-20].
The difference in the isotopic data (**S and '80) is due to the changes in isotopic ratios of
sulphur within seawater over geological time [21-25]. The study by [24] shows that the sul-
phur isotopic range for Triassic seawater is between 634S 10 and 20%. VCDT, and the oxygen
isotopic signature is between 5180 12 and 16%. (SMOW), compared to a sulphur signature
of 16-28%0 and an oxygen isotopic signature between 12 and 18%. for Devonian seawater.
This means that anhydrite formed during each of these geological periods will have specific
sulphur and oxygen isotopic fingerprints, which will result in distinct TSR-generated H,S
gas. For example, ref. [14] identified a Devonian evaporite as the source of the sulphur
for the Triassic Montney Formation in Alberta using cross-plots of sulphur and oxygen
isotopic ratios. This study concluded that sulphate or the H,S gas has migrated through
deep-seated faults and soured the Montney Formation [14]. Researchers combine their
isotopic results with textural analyses to provide insights into the sulphur-rich minerals
formation which includes petrographic analyses (i.e., [14,18]) and SEM (i.e., [26]).

In the Western Canadian Sedimentary Basin (WCSB), a high portion of producing
hydrocarbon wells is sour. In 2006, 33% of the 1.6 trillion cubic feet of total gas produced
in Alberta was sour [27] and souring occurs in both conventional and unconventional
petroleum systems. The presence of H,S gas in the Triassic Montney Formation, British
Columbia (BC), can be inexplicable in its occurrence and this study has investigated
the sources of sulphur that contribute to the formation of hydrogen sulphide to reduce
the uncertainty regarding the encountering of hydrogen sulphide during drilling and
production operations.

1.1. Hydrogen Sulphide Gas in the WCSB and the Triassic Montney Formation

The Triassic Montney Formation in western Canada is an unconventional to hybrid
petroleum system that provides significant contributions to the Canadian energy portfolio.
For example, the Montney Formation provided a significant proportion (67%) of the natural
gas volumes of British Columbia (BC; [28]) and up to 34% of natural gas to the total Cana-
dian gas production in 2017 [29]. One major issue facing upstream and midstream operators
and regulators in developing the Triassic Montney Formation (BC) is the presence of trace
to significant amounts of hydrogen sulphide (H;5) in the produced gas (Figure 1). The H,S
distribution within the Montney Formation (BC) is highly variable. A significant portion of
BC Montney producing wells are sweet gas (i.e., zero percent H,S; Figure 1); though more
recently, operators have drilled sour Montney wells that can produce alongside sweet wells
on the same multi-well pad (Figure 2) which can reduce its predictability. The concentration
of H,S is much lower in British Columbia Montney producers (<1%) than is observed in
Alberta Montney producers (>1%) which points to different processes at play (i.e., [14]).
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The sulphur isotopic composition of H»S gas varies across the Western Canadian
Sedimentary Basin (WCSB) because (1) it is either generated via the BSR or TSR path-
way, or (2) the sulphate source is from different age seawater (i.e., Triassic versus Devo-
nian; [24]). Laboratory experiments and modelling have shown the sulphur isotopic ratio
for BSR-generated H,S gas is less positive than sulphur derived from TSR-generated H,S
(—30%o; [5]). Ref. [30] found the Triassic Doig Formation anhydrite to be 26.3 %o while H,S
gas generated by BSR (using this Doig Formation anhydrite) found in the overlying Triassic
Halfway Formation reservoir has a sulphur isotopic signature of only 6.3 %.. The change
in isotopic signature is due to fractionation, as the lighter (**S-depleted) sulphur isotope
is preferentially metabolised by microorganisms, as the slightly weaker bonds of lighter
sulphur isotopes are easier to break [5]. There is no preferential use of different sulphur
isotopes in TSR-generated HyS gas and the source of the sulphur will be in the same range
of sulphur isotopic ratios. For example, ref. [30] observed the anhydrite of the Triassic
Charlie Lake Formation to have a similar sulphur isotopic signature to the H,S found in
the Montney Formation in the west central Alberta Basin, which indicates that the H,S
was generated via TSR processes. An exception to this case is when the reservoir contains
organic sulphur that can fractionate during TSR (i.e., [31]).

The complex distribution of H,S in Canadian Triassic rocks was first identified by [11].
Ref. [11] observed, when examining formation water chemistry from drill stem test (DST)
data, higher dissolved sulphate ion concentrations in areas that are overlain by anhydrite-
rich Charlie Lake Formation. This observation indicates that there is fluid communication
between the Triassic Doig, Halfway, and Montney formations (Figure 3) and they can act
as a single unit [11]. Anhydrite, the likely sulphur source in TSR souring in the WCSB,
can be readily found in Triassic, Mississippian, and Devonian rocks within the WCSB.
Primary depositional anhydrite is observed in the Triassic Charlie Lake and Doig for-
mations [30,32-34] as well as in the Mississippian Debolt, Banff, and Shunda formations
(i-e., [35]). Only secondary anhydrite in the form of pore, vug, and fracture fill has been
observed in the Montney Formation [14,36,37] as well as in the Halfway Formation and the
sandstone of the Doig Formation [38,39]. The Charlie Lake Formation can contain thick
layers of evaporitic anhydrite [32,34]. The Doig Formation is also a potential source of
sulphate in the form of anhydrite associated with phosphatic nodules [30,33] as well as pore
cements in the Doig sandstone [39]. Ref. [33] suggests the dissolved sulphate has moved
from the Charlie Lake into the Montney Formation in areas where the Doig/Halfway sub-
crop is absent and there is direct contact between the Charlie Lake and Montney formations
towards the eastern part of the WCSB. It is further suggested that sulphate ions migrate
along an unconformity surface in the geographical centre of Montney Formation [40] via
fluid migration [33]. Sulphate recycling via solution and redeposition as secondary cements
has also been observed in the Halfway Formation, and the origins of the sulphate were
interpreted to be from the overlying Charlie Lake Formation [38].

The Montney Formation contains varying amounts of anhydrite [14,36,37], which is
more common and concentrated in Alberta than in British Columbia [14]. Ref. [14] suggests
that this is the reason the Montney Formation has higher H,S concentration in Alberta than
in British Columbia. In Alberta, ref. [36] observed anhydrite cements within the coquinas
of the Montney Formation, as well as a mineral replacement of fish fossils. Anhydrite
is observed as either fine crystalline anhydrite cements in British Columbia or as coarse
crystalline, vug, and fracture fill cements in Alberta [14]. Geochemical analyses by [14]
suggest the anhydrite within the Montney Formation in western Alberta is sourced from
the deeper Devonian rocks via deep-seated faults/structures; however, no interpretation
was given for the anhydrite within the Montney Formation in British Columbia. The exact
mechanism(s) for souring of the Montney Formation, particularly in British Columbia,
is/are still not well understood.
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Figure 1. Location map for the four wells (blue stars) that were analysed to determine the sources
of sulphur and the origins of the hydrogen sulphide in British Columbia. In addition, the sulphur
isotopic analyses from other studies have been included in this report with a total of 218 mineral and
organic matter samples analysed (see Table A1). The Well Authorization number for the four wells are
also shown on the map. The green squares represent towns, the small black lines are horizontal wells,
and small black circles are vertical wells that are Montney (sweet) producers in British Columbia. The
red circles represent Montney sour producers. The pink box is the location of the well pads shown in
Figure 2 and the green star is the location of stratigraphy and log response shown in Figure 4.
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Figure 2. An example of the inexplicable distribution of sweet- (no H;S present) and sour- (H,S present)
producing wells in the Triassic Montney Formation in British Columbia. Sour wells occur in all
three informal Montney members (lower, middle and upper) and a sour well can be producing only
hundreds of metres away from a sweet well. Our model incorporates this observation seen within
the producing fields of British Columbia. The location of this group of wells is shown in Figure 1 as a
pink box. The log signatures of the upper, middle, and lower Montney can be seen in Figure 4.

NW SE

PERIOD / EPOCH / AGE FOOTHILLS - HALFWAY PEACE RIVER FOOTHILLS - BOW

TO PINE RIVER SUBSURFACE TO SUKUNKA RIVER
Fernie Fm.
2095 Rhaetian
8
Norian >
[
@ -
. Y £
g E :
Carnian 5 e § Starlight
E Chariie Lake Fm.| Z | Evaporite Mor.
] a
'} o
Liard Fm. (f = Llama Mbr.
2|
5 @ | £
L% z| € Whistler Mbr.
2 “=
g 2 | Vega-Phraso
5 Mbr.
Grayling Fm. 2

Fantasque Fm. / Belloy Fm.

Figure 3. The Triassic stratigraphy of British Columbia that includes the Halfway, Doig, and Montney
formations, which unconformably overlie the Permian Belloy Formation. The Montney Formation
corresponds to the Lower Triassic section and is part of the Daiber Group, along with the overlying
Doig Formation (modified after [41-44]; eustatic levels after [45]).
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Figure 4. Stratigraphy and log response (gamma, bulk density, and resistivity) of the Halfway, Doig,
Montney, and Belloy formations in well 200/C-078-C-094-H-05/00 (see Figure 1 for location). The
Montney Formation is informally subdivided into the upper, middle, and lower Montney formations
based on the sequence stratigraphic model of [46]. Abbreviation: TVD, total vertical depth.

1.2. Geological Background

The Montney Formation (Figures 3 and 4) is considered to have been deposited along a
passive continental margin and consists of a westward thickening, siliciclastic, prograding
wedge [36,41,47-51]. More recently, a tectonically influenced model for the deposition
during the Middle Triassic [42], and fore-arc basin configuration starting during the Early
Triassic and persisting through the Middle Triassic [52,53] have been proposed.

The Montney Formation is part of three transgressive-regressive (T-R) cycles that
deposited the Triassic strata in northeastern British Columbia [43,47]. The depositional
setting for the Montney Formation is described as an open shelf marine environment [47].
Palaeogeographic reconstruction for Triassic sedimentation suggests a palaeoshoreline that
prograded during sea level regressions to just east of the Fort St. John and the Alberta/BC
border [54]. During this time, shallow shelf muds covered the eastern part of the basin
with deeper marine muds deposited to the west. The Montney Formation was deposited
within an inner to distal shelf setting which varied from tempestites in the distal shelf to
mudstones and deltaic/shoreline sandstones at the eastern margin [47].

The Montney Formation unconformably overlies Carboniferous or Permian strata
and consists of variable amounts of interbedded mudstone, siltstone, and sandstone [50].
Strata of the Montney Formation developed during the first of three major T-R cycles.
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Within British Columbia, ref. [55] subdivided the Montney Formation into the lower
siltstone—sandstone and the upper mudstone members based on lithostratigraphy. Mem-
bers are separated by a basin-wide unconformity that developed due to tectonic uplift of
the basin margin [49]. The mudstone member is absent within Alberta and progressively
becomes thicker (up to 159 m) towards the foothills of British Columbia to the west [49].
North of the study area (Figure 1), ref. [56] subdivided the Montney Formation into two T-R
couplets which correlate with the siltstone-sandstone and mudstone members of [55]. The
upper Montney mudstone member is more organic-rich and radioactive than the lower
Montney siltstone—sandstone member [55]. More recently, the Montney Formation has
been subdivided based on sequence stratigraphic analyses and consists of upper, mid-
dle, and lower units ([46]; Figure 4). These subdivisions more or less correlate with the
siltstone—sandstone and mudstone members by [55]. This study has used the subdivisions
of [46] to identify any stratigraphic differences in H,S presence and concentration.

Diagenetic processes are important influences on reservoir quality of the Montney
Formation. Dolomite, ankerite, calcite, quartz, and anhydrite are common cements within
the Montney Formation in west-central Alberta [37]. Structural features located within
the study area consist of asymmetrical pull-apart grabens with failed arms, shallow fault
systems that developed during the Laramide thrusting and deeper basement faults that
follow the basement terranes [57-59]. Graben faults within the Peace River Embayment
were active during the Triassic, which affected the deposition of the Montney and Doig
formations. It has been argued that structural lineaments exert some control on the location
of sweet spots in the conventional and unconventional Montney Formation plays, through
the formation of localized thickened sections and migration pathways [59].

2. Materials and Methods
2.1. XRD Mineralogical Composition

A total of 59 drill cuttings samples were evaluated for mineralogical composition
using X-ray diffraction (XRD) analyses (Table 1). Crushed samples (<250 um) were mixed
with ethanol, hand-ground with a mortar and pestle, and then smear-mounted on glass
slides. A normal-focus cobalt X-ray tube was used on a Diffraktometer D5000 (Siemens,
Munich, Germany) at 40 kV and 40 mA. The mineral composition was quantified [60] by
Rietveld analysis [61] using the Bruker AXS Topas® V3.0 software.

Table 1. Mineralogy from X-ray diffraction and Rietveld analyses for four of the wells, Well Authorisation
numbers 30,876, 3944, 8183, and 29,453 (see Figure 1 for locations). Mont. is an abbreviation for Montney
Formation, Mon HZ is Montney Formation horizontal well sampled, HFY is Halfway Formation, C.L. is
Charlie Lake Formation, S.P. is Slave Point Formation. * Illite/Muscovite 1M; Fluorapatite.

g >
Q — +
A g - - % P s g
= z 2 E i E @ s é g g g 3 s £ =
= o = < 17 = |5} ] = =) = o 3}
£ : € & ¢ & :F & =2 5 & 2 3 2 & £
& = 8 A < © a S © 2 p o
5 2 )
= =]
PBN-1 30876  CL. 1392 426 03 0 91 365 17 25 0 0 15 0 6
PBN-2 30876 CL. 1430 199 0. 0 115 508 38 3 0 0 13 0 9.6
PBN-3 30876 CL. 1467 217 0 0 146 397 37 56 24 0 58 66 0
PBN-4 30876 CL. 1542 186 0 0 131 396 96 66 22 0 28 75 0
PBN-5 30876 HFY 1597 04 01 08 655 186 37 16 0 0 12 8 0
PBN-6 30876  Doig 1642 04 0 12 315 203 298 14 0 7 16 7 0
PBN-7 30876  Doig 1722 07 0 15 215 24 18 92 02 59 37 17 0
PBN-8 30876  Doig 1757 03 0 24 197 192 332 36 0 73 14 129 0
PBN-9 30876 Mont. 1770 09 0 17 339 173 149 32 0 25 37 47 172
PBN-10 30876  Mont. 1790 1 0 22 267 201 67 45 0 0.3 2 54 31
PBN-11 30876 Mont. 1815 09 0 18 278 188 32 59 11 0 23 59 322
PBN-12 30876 Mont. 1857 0.6 0 24 309 183 64 64 18 0 21 53 26
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PBN-13 30,876 Mont 1972 0.6 0 2.6 25.8 15.8 6.8 6.8 3 0 1.8 7 299
PBN-14 30,876 Belloy 2073 0.6 1.7 05 9.4 824 3.3 0 0.5 0 0.5 1.1 0
CL 5570 3944 C.L. 1698 17.6 1.6 0 11.4 39.9 0.3 19.4 2.3 0 7.7 0 0
CL 5620 3944 CL. 1713 22 1.8 0 82 45 0.6 16.3 12 0 4.9 0 0
CL 5650 3944 C.L. 1722 16.9 1.8 0 15.2 35.5 4.6 18.9 17 0 54 0 0
CL 6010 3944 CL. 1832 5.9 1.3 0 18.9 41.8 7.5 18.3 17 0 4.7 0 0
HF 6280 3944 HFY 1914 0.7 0 0 44.6 18.8 22.5 10.1 0 0 34 0 0
HF 6400 3944 HFY 1916 3.3 0 0 447 294 2.7 11.7 0.2 0 79 0 0
Doig 6570 3944 Doig 1951 37 2.6 0 401 21 0 21.6 0 1.3 9.7 0 0
UM 6870 3944 Mont 2094 1 0 17 30.5 15.7 7.7 239 1.8 0.8 17 0 0
UM 7180 3944 Mont 2189 1.9 0 1.3 33 244 77 16.7 0 1.3 14 0 0
MM7670 3944 Mont 2338 15 0 12 36.6 18.2 5.6 16.3 7.4 13 12 0 0
LM 7930 3944 Mont 2417 0.4 0 2.7 30.3 10.7 37 38.1 5.6 0 8.7 0 0
Bell 1875 3944 Belloy 2451 0 0 15 48.6 9.8 325 325 0.1 0 3.3 0 0
DEB 8180 3944 Debolt 2493 0 0 0 4.4 0 95.4 0 0 0 0.2 0 0
DEB 8110 3944 Debolt 2472 0 0 0 2.7 0 97.2 0 0 0 0.1 0 0
CL 1425 8183 C.L 1425 5.6 0 0 19.1 37.1 0 293 6.4 0 2.6 0 0
Cl11480 8183 CL. 1480 12 0 0 453 16.2 6.6 18.4 0.7 0 12 0 0
HY 1530 8183 HFY 1530 0.3 0 0 57.1 17 13 14.5 0.8 0 9 0 0
Doig 1585 8183 Doig 1585 0.7 0 1.3 24.8 224 15.3 232 0 4 8.3 0 0
UM 1675 8183 Mont 1675 0.7 0 2.1 243 18.9 221 224 1 0 6.2 0 0
MM 1780 8183 Mont 1750 1.3 0 2 29 16.2 14.6 23 42 0 7.6 0 0
LM 1827 8183 Mont 1827 0.2 0 2.7 33.1 14.3 42 333 8.4 0 3.8 0 0
BEL 1875 8183 Belloy 1875 04 0 2.8 27.5 9.1 2.8 36 5.4 2 14 0 0
DEB 1915 8183 Debolt 1915 0.4 0 0 22 3.7 77.8 15.6 0.1 0 0.2 0 0
DEB 2130 8183 Debolt 2130 0.1 0 0 5.1 4.4 72 18.2 0 0 0.2 0 0
DEB 2270 8183 Debolt 2270 0 0 0 12.6 55 56.5 23.8 0.5 0 0.5 0 0
DEB 2690 8183 Debolt 2690 0.2 0 0 6.6 4.6 73.7 12.2 2.3 0 0.5 0 0
DEB 2855 8183 Debolt 2855 0.2 0 0 17.8 72 36.4 25.6 11.6 12 0 0 0
DEB2935 8183 Debolt 2935 0.2 0 0 23.8 5 12.4 36 215 0 1.1 0 0
DEB 8183 8183 Debolt 3055 0.3 0 1.6 14.3 8.9 0.3 40.9 294 0 42 0 0
SP 3302 8183 S.P. 3302 0 0 14 10.4 54.4 17.8 15.1 0.5 0 0.4 0 0
SP 3342 8183 S.P. 3342 0 0 0.6 16.2 41.6 14.3 26.1 0.6 0 0.7 0 0
SP 3326 8183 S.P. 3326 0.3 0 0 16.9 5 0.9 34.8 26.6 0 15 0 0
SP 3400 8183 S.P. 3400 0.1 0 05 3 10.4 69.3 15.9 0.6 0 0.3 0 0
CL1590 29,453 CL. 1590 6.4 0 0 10.7 34.3 27 21.8 0.9 0 32 0 0
CL 1805 29,453 C.L. 1805 9.8 0 0 12.9 39.1 5.6 28.6 1.1 0 3 0 0
HF 1880 29,453 HFY 1880 1 0 0.7 56.3 10.9 6.1 24.1 0.2 0 0.8 0 0
Doig 1888 29,453 Doig 1888 3.1 0 0.6 34.8 12.1 11.7 21.7 0.8 6.4 89 0 0
Doig 1940 29,453 Doig 1940 3 0 12 16.6 14.3 25.6 243 15 4.5 9 0 0
UM2004 29,453 Mont 2004 13 0 12 32.1 225 8.9 28 0.2 0 5.8 0 0
MM 2140 29,453 Mont 2140 2.9 0 15 28.9 222 5.6 292 0.4 0 8.3 0 0
LM 2250 29,453 Mont 2250 1.6 0 12 29.1 15.9 6.5 31 8.2 0 6.5 0 0
LM 2330 29453 MonHz 2330 1.1 0 0.8 23.7 20.9 5.7 33.7 7.4 0 6.8 0 0

2.2. Anhydrite, Pyrite, and Organic Matter Separation

Anhydrite was chemically separated from a total of 37 samples from four wells (see
Figure 1 for location) and included the Charlie Lake, Halfway, Doig, Montney, Belloy, and
Muskeg formations. The bulk drill-cutting samples were crushed to a particle size finer
than 60 mesh sieve, and chemical separation of anhydrite was performed by adding 5%
(mass) of sodium carbonate (NayCO3) solution to dissolve anhydrite/gypsum from the
samples. The mixture was acidified by adding HCI until the pH dropped below 4.0, filtered,
and then 10% (mass) of barium dichloride dihydrate (BaCl,-2H,0) was added to precipitate
barite (BaSO;). The barite precipitate contains the original sulphur and oxygen (as SOy)
from the anhydrite.
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To test if sulphur could be sourced from organic matter or pyrite, a selection of
Montney Formation samples was processed to concentrate kerogen (n =5) and pyrite
(n = 3). Silicates are removed from the samples by concentrated hydrofluoric acid (HF)
within a fume hood. The mixture is filtered, and the solid residue is treated with HCI (conc.)
to remove carbonates. This is repeated until no reaction occurs. The residual solid contains
both kerogen and pyrite as these components do not react with HF or HCl. The kerogen
and pyrite are physically separated in heavy liquids with densities of 1.2 g/cc and 3.5 g/cc,
respectively. Kerogen is collected as a float within the 1.2 g/cm? heavy liquid and the pyrite
is concentrated in the sink portion of the 3.5 g/cm? heavy liquid. As kerogen and pyrite
can be finely associated, the pyrite concentration was treated with concentrated hydrogen
peroxide, until no reaction was present, to remove any finely intermingled kerogen.

2.3. Isotopic Sulphur Analysis—Solids

Once the barite is dried, the concentrates were sent to the Jan Veizer Stable Isotope
Laboratory at the University of Ottawa, Ontario, Canada. The sulphur and oxygen isotopic
ratios that were measured are the average ratios for all anhydrite present in the formation.
The 34S/32S and 180/16Q ratios were measured on the generated SO, and CO gases,
respectively, using Thermo Finnigan DeltaPlus XP Isotope ratio mass spectrometer (IRMS).
Results are reported in per mil (%o) relative to the international standard Vienna-Canyon
Diablo Troilite (%0 V-CDT) for §%4S and Vienna Standard Mean Ocean Water (%o V-SMOW)
for 6180. The analytical precision is reported to be +/— 0.3 per mil for the IRMS. An
additional 181 samples were used from a variety of studies (see Table A1). The kerogen and
pyrite concentrates were then sent to Jan Veizer Stable Isotope Laboratory at the University
of Ottawa for sulphur isotopic analyses. Note, no oxygen isotopes were measured for
the kerogen or pyrite samples as the sulphur is not in the form of sulphate like in the
anhydrite concentrates.

2.4. Isotopic Sulphur Analysis—H,S Gas

The H,S sampling for this study was performed by Stratum Reservoir, LLC (Cal-
gary, AB, Canada) at the request of operators, and sent to Stratum Reservoir’s Isotech
Laboratory in Champaign, IL, USA. This is a specialised procedure due to the toxic nature
of the H;S gas that can only be performed by this company or by the University of Calgary.
A total of 120 sulphur isotopic samples from H;S gas in the Montney Formation were used
in this study, which includes the 42 samples from this study (see Table 2).

Table 2. Sulphur Isotopic Ratio for Hydrogen Sulphide Gas in the Montney Formation of the WCSB.

UWID 834S (VCDT) Latitude Longitude Sample Depth (m; TVD) Formation or Zone
100/01-29-082-19W6/02 17.4 56.13250 —120.929690 1794.5 Montney (Upper)
100/01-29-082-19W6/02 16.9 56.13250 —120.929690 1794.5 Montney (Upper)
200/a-064-h 094-b-08/00 12.4 56.38534 —122.042120 2127.6 Montney (Upper)
200/a-064-h 094-b-08/00 12.5 56.38534 —122.042120 2127.6 Montney (Upper)
203/d-010-G 094-G-08/00 12.2 57.33831 —122.242510 1707.8 Montney (Upper)
202/¢c-050-B 094-G-08 /00 11.4 57.29098 —122.250180 1777.5 Montney (Upper)
202/¢-070-B 094-G-01/00 12.6 57.05420 —122.248120 1827.6 Montney (Upper)
200/ c-089-C 094-G-01/00 14.1 57.07321 —122.360750 1942.7 Montney (Upper)
200/ ¢c-057-C 094-G-01/00 13.3 57.04778 —122.333910 1919.1 Montney (Upper)
202 /b-100-K 094-G-07/00 14.7 57.49365 —122.875210 1858.0 Montney (Upper)
202/¢c-069-C 094-G-08/00 14.0 57.30685 —122.361710 1794.8 Montney (Upper)
100/14-05-080-17W6/00 14.7 55.91107 —120.623690 2183.0 Montney (Upper)
105/16-04-080-17W6/00 15.8 55.91047 —120.589920 2167.5 Montney (Upper)
102/04-15-072-09W6 /00 14.4 55.23079 —119.305230 2598.6 Montney (Upper)
100/16-34-071-08W6/00 12.3 55.19846 —119.130820 2442.8 Montney (Upper)
100/16-34-071-08W6/00 12.6 55.19846 —119.130820 2442.8 Montney (Upper)
102/16-25-071-09W6 /00 15.8 55.18300 —119.236910 2507.7 Montney (Upper)
100/02-15-072-09W6/00 14.8 55.23162 —119.294740 2644.5 Montney (Upper)
100/12-25-071-09W6 /00 15.7 55.17811 —119.252130 2570.8 Montney (Upper)
102/04-15-072-09W6 /00 14.4 55.23079 —119.305230 2622.1 Montney (Upper)
100/16-34-071-08W6 /00 12.3 55.19846 —119.130820 2442.8 Montney (Upper)
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Table 2. Cont.

UWID 8§34S (VCDT) Latitude Longitude Sample Depth (m; TVD) Formation or Zone
102/16-34-071-08W6/00 12.6 55.19846 —119.130820 2442 .8 Montney (Upper)
102/16-25-071-09W6/00 15.8 55.18300 —119.236910 2507.7 Montney (Upper)
100/08-03-071-08W6/00 14.8 55.11631 —119.131420 2473.6 Montney (Upper)
100/05-24-068-05W6 /02 14.9 54.89891 —118.630140 2353.9 Montney (Upper)
100/05-24-068-05W6/02 15.2 54.89891 —118.630140 2353.9 Montney (Upper)
100/05-24-068-05W6 /02 16.3 54.89891 —118.630140 2353.9 Montney (Upper)

202/a-091-D 094-H-05/00 16.7 57.32852 —121.846040 1469.4 Montney (Upper)
202/a-091-D 094-H-05/00 16.9 57.32852 —121.846040 1469.4 Montney (Upper)
200/a-054-H 094-B-08 /00 20.9 56.37771 —122.041560 2336.0 Montney (Middle)
200/d-100-] 094-B-16/00 9.3 56.99588 —122.244410 2042.5 Montney (Middle)
100/08-03-071-08W6/00 14.8 55.11631 —119.131420 2473.6 Montney (Middle)
200/b-056-C 094-H-05/00 16.1 57.29443 —121.845010 1555.4 Montney (Middle)
200/b-056-C 094-H-05/00 17.2 57.29443 —121.845010 1555.4 Montney (Middle)
100/06-15-063-07W6/02 17.1 54.44887 —118.971560 3807.1 Montney (Lower)
100/13-23-080-17W6/02 13.2 55.95472 —120.553150 2261.1 Montney (Lower)
100/16-11-080-17W6/00 14.7 55.92461 —120.534820 2324.9 Montney (Lower)
100/10-30-079-17W6/00 154 55.87857 —120.647020 2523.5 Montney (Lower)
104 /16-09-080-17W6/00 11.9 55.92495 —120.589830 2357.4 Montney (Lower)
102/09-26-079-17W6/00 15.8 55.87733 —120.535080 2417.0 Montney (Lower)
106/09-10-080-17W6/00 11.9 55.92219 —120.534080 2314.6 Montney (Lower)
100/07-30-079-17W6/00 12.9 55.87510 —120.600820 2528.1 Montney (Lower)

2.5. Scanning Electron Microscopy

A total of 29 drill cutting samples were analysed from Well Authorization numbers
30,876, 3944, 8183, and 29,453 (Figure 1). These samples are a sub-sample of the anhydrite
mineral separation samples (prior to separation). Twenty-nine (29) thick sections were
cut and polished to a thickness of 30 um. Back-scattered electron microscopy (BSEM) was
performed on selected samples. BSEM analysis and photomicrographs were acquired using
a scanning electron microscope (SEM) with an accelerating voltage of 20 keV and at a
working distance between 10 and 11 mm. Elemental identification was obtained using
an energy-dispersive spectrometer (EDX), which allowed identification of the chemical
composition of mineral phases by their X-ray spectra using Bruker Espirits V1.9 software
with an accelerating voltage of 20 keV.

3. Results

The cross-plot of sulphur and oxygen isotopic ratios for anhydrite minerals from both
Triassic and Devonian samples are shown in Figure 5. Sulphur isotopic ratios of anhydrite
for Triassic rocks range between 8.9 and 20.98 %o (Table Al). The sulphur isotopic values
for anhydrite measured in Devonian rocks range between 17.1 and 34 %o for all studies
(Table A1 and Figure 5).

The dashed boxes in Figure 5 illustrate the sulphur isotopic ranges for H,S gas for
the Montney Formation (red dashed box, n = 120), the H,S gas for Devonian rocks (blue
dashed, shaded box) and kerogen (grey dashed box; n = 6), as these molecules do not have
oxygen attached, or in the case of kerogen, the oxygen values are not relevant as the oxygen
may not have formed with the sulphur. Pyrite results (n = 3) for the sulphur ratio range
between 2.9 and 49.9%0 which covers the entire range of the cross-plot and therefore no
dashed box is added. The sulphur isotopic data for H,S gas for all formations, including
the upper, middle, and lower Montney Formation, are shown in Table 2. Sulphur ranges
between 9.3 and 17.4%. (Figure 5) with one outlier of 20.9 %o for the Montney Formation.
The spatial distribution of Triassic Montney sulphur isotopic results for H,S gas are shown
for both British Columbia and Alberta (Figure 6). There are no significant stratigraphic
differences observed in the data when comparing the sulphur isotopic ratios range for
H,S gas, between the upper, middle, and lower Montney Formation (Figure 7) and there
is no regional trend across the play area (Figure 6). Sulphur isotopic data range between
14.0 and 26.0%o for H,S gas in Devonian-aged formations (Figure 5; [13,19]). There are no
stratigraphic differences observed within the Devonian samples.
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XRD analyses show that the Triassic Charlie Lake Formation contains the highest
proportions of anhydrite (Table 1). The Halfway, Doig, Montney, and Belloy formations
also contain anhydrite but at much lower concentrations than the Charlie Lake Formation.

Sulphur Isotope (634S %0 VCDT)

Sulphur Isotopes - Anhydrite, Kerogen, Pyrite and H,S
50 1 .
Pyrite Sulphur
40 - Formations
Devonian Evaporite Sulphate B Charlie Lake
30 Devonian H,S Sulphur AA;‘ A\ A + Halfway
E---uuuuu EEEEEEEEEEEE S SN A%A{-‘Q‘lzi":l.‘x_/{:“l """"""A .E
f A .4 ©Doig
T ixing Zone - :
20 Mixing Z :
EEEEEEE lllllllllllllll.llllllll*lllll ll‘. .Montney
o - : I
10 - .%6......................6 ........... e I:|.2§.S.ul.pﬁu; .......... X Belloy
B e ettt ADevonian Rocks
0 - Triassic Anhydrite Sulphate : AMuskeg
R A T s :
_10 1 1 I 1
-10 0 10 20 30
Oxygen Isotopes (630 %o SMOW)

Figure 5. Cross-plot of sulphur and oxygen isotopes from anhydrite, pyrite, kerogen, and HS gas
from both Triassic and Devonian sources. Point data are the oxygen and sulphur isotopic data for
anhydrite minerals for both Triassic and Devonian samples. The Triassic rocks include the Charlie
Lake, Halfway, Doig, Montney, and Belloy formations. Triassic-sourced sulphur from anhydrite
minerals all plot within the green box and are 3*S-depleted compared to the Devonian-sourced
sulphur (3*S-enriched) from anhydrite (blue box). Samples from the Devonian Muskeg Formation in
this study (purple triangles) have the isotopically lightest (3*S-depleted) Devonian sulphur/oxygen
anhydrite, and with the two samples from the Doig (grey diamonds) and Halfway (cross symbol)
formations, they have created a transitional zone between the two data sets (i.e., 18-20%.). Yellow
points are from published data for the Devonian sulphate minerals (Table A1). Concentrated pyrite
samples (1 = 3) have been separated from Montney Formation and are plotted as a grey dashed box
and grey shaded. Concentrated kerogen samples (1 = 5) are from the Montney Formation and are
represented by the purple dashed box as the oxygen data are not necessarily associated with the
organic sulphur and therefore not included in the plot. The isotopic sulphur data from the H,S gas
are also represented by dashed boxes (red = Montney H;S gas; blue = Devonian H;S gas) as the H,S
gas has no oxygen data associated with the sulphur (Table 2). Montney H,S gas is isotopically lighter
(3*S-depleted) compared to Devonian H,S gas and each data set divided by geological age reflects a
similar isotopic range as the anhydrite mineral from their respective geological period. These results
indicate the sulphur of the Montney H,S is most likely sourced from Triassic anhydrite or from a
mixture of Triassic and Devonian anhydrite sources if 34g_enriched (i.e., 5%*S is 14-21%. V-CDT).
Isotopic data for sulphate data are a combination of this study and from [15,22,23]. Isotopic data for
organic matter and pyrite are from this study (see Table A1). Isotopic data for H,S gas are derived
from this study and [11,14].
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Figure 6. Distribution of sulphur isotopic ratios (%) in the Montney Formation on the base map of
H,S concentration (%) distribution. Due to the H,S concentrations spanning orders of magnitude,
the long-dashed contour intervals are at 1% with short-dashed contour intervals at 0.1%. The sulphur
isotopic ratio for H,S gas in the Montney Formation shows no trends across the study area and has
less 34S -enriched ratios (9 to 21%o) compared to the range of sulphur ratios from Devonian reservoirs
(i.e., 14.0 and 26.0%o). There are also more wells across a larger geographic area that are sour in
Alberta than in British Columbia.

SEM and EDX analyses of the Charlie Lake and Montney formations are shown in
Figures 8-10. The anhydrite concentration in the Montney Formation is less than 2% by
weight. The anhydrite in the Montney Formation is observed by SEM as a massive texture,
as a diagenetic cement filling around fine-grained dolomite, or as part of a fracture fill
with a dolomite and anhydrite phase (Figure 8). The anhydrite does not show detrital or
evaporitic textures, which is observed within the Charlie Lake Formation (Figure 9). No
massive anhydrite was observed in Charlie Lake Formation samples but were observed as
a diagenetic cement between dolomite grains. As these samples are drill cuttings collected
during drilling operations, there is a possibility that the anhydrite observed in the Montney
Formation may be due to cave-in from the overlying Charlie Lake Formation; this is unlikely
however, since there was no massive anhydrite associated with the fine-grained dolomite
observed in the Charlie Lake Formation, which is observed in the Montney Formation.
SEM-EDX analysis of the Doig Formation indicates the nodules that are present are enriched
in apatite and anhydrite (Figure 10) and the anhydrite does exist as primary depositional
texture in the Doig Formation as observed by [30,33].
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Figure 7. The sulphur isotopic ratio range for the H,S gas subdivided into the upper, middle, and lower
Montney Formation from this study (1 = 60). The box-and-whisker plot indicates that there is no significant
difference between the isotopic signatures of these informal units. See Table 2 for details on samples.

C——— 10pm Mg K

Figure 8. Scanning electron microscope (SEM) images and energy dispersive X-ray spectroscopic
(EDX) mapping showing the textural relationship between dolomite (Do) and anhydrite (An) within
the upper Montney Formation. Well Authorization #30876 EDX maps show the concentration of
magnesium (Mg; (C,G)) and calcium (Ca; (B)) in the dolomite minerals (Do; (A)) and the concentration
of sulphur (S; (D,F)) and calcium (Ca; (H)) in the anhydrite minerals. The textural relationship shows
the replacement of dolomite by anhydrite as either a fracture fill or diagenetic cement, infilling around
dolomite grains (black arrow; (E)).
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Figure 9. Mineralogical textures in the overlying Charlie Lake Formation. The Charlie Lake Formation
shows both detrital anhydrite grains (An; (A)) and evaporitic textures (An; (E)). The detrital anhydrite
grains are also associated with quartz grains (Qz; (A)). The anhydrite is determined by the high
calcium (Ca; B,F) and high sulphur (D,H) contents. The evaporitic texture seen in (E) is similar to
the nodular texture seen in evaporites (i.e., [62]); dolomite anhydrite associations are interpreted as
evaporites in the Charlie Lake Formation [32]. Very large dolomite grains also form in the evaporitic
environment (E). The dolomite contains high magnesium (Mg; C,G) and calcium (Ca; B,F) contents.
Well Authorization #30876.
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Figure 10. The Doig Formation that overlays the Montney Formation shows phosphatic nodules that
are also rich in anhydrite (An), as illustrated by the high sulphur concentrations. The nodules are
concentrated in calcium (Ca; (C,G)), sulphur (S; B,F), and phosphate (P; D,H)and are found associated
with dolomite grains (Do in (A,E)). Anhydrite-rich phosphatic nodules have also been observed in
the Doig Formation by [33]. This detrital texture for the anhydrite shows that the sulphate would
need to be dissolved from the nodules and then migrated and deposited in the Montney Formation
as a cement in fractures.

4. Discussion
4.1. Isotopic Analyses

The isotopic signatures of the H;S gas in the Montney Formation in British Columbia
range between 9.3 and 17.4%.. There is no statistically significant difference in the isotopic
ranges between the upper, middle, and lower Montney members (Figure 7) which is
contrary to anecdotal evidence provided by some Montney operators. This HS isotopic
range is similar to the sulphur isotopic ratios for Triassic anhydrite, which range between
8.9 and 20.98%. (Figure 5). The sulphur isotopic ratio for anhydrite in Devonian rocks
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ranges between 17.1 and 34 %o, and when plotted with oxygen isotopic ratio shows a distinct
signature from that of anhydrite in Triassic rocks (Figure 5). There is a natural division or
separation of sulphur/oxygen isotopic data that occurs between Triassic and Devonian
anhydrite minerals due to the difference in sulphur and oxygen ratios in the seawater at the
time of anhydrite formation [24]. This difference is also seen within the data from this study
and published data from the WCSB (Figure 5), with the Triassic anhydrite (squares, crosses,
circles, asterisk, and diamonds within green box) being isotopically lighter (3*S-depleted)
than Devonian anhydrite (yellow and purple triangles in blue box).

4.2. TSR versus BSR Processes

The sulphur isotopic ratio of the H,S from the Montney Formation is more similar to
the sulphur ratios in the Triassic anhydrite than in Devonian rocks, which indicates the
Triassic rocks, such as the Charlie Lake Formation, are the more likely sources of sulphur,
and not the Devonian rocks as seen in the Montney Formation in Alberta. The isotopic ratio
for sulphur is also too enriched in §3*S to have been generated by BSR. The sulphur ratio is
generally much lighter (up to 30%o less) in BSR-generated H;S gas than in TSR processes [5].
The basin modelling by [58] indicates the Montney Formation has been buried to a depth
up to 8500 m and the reservoir is more likely to have developed TSR-generated H,S gas
as the Montney Formation entered the oil window, while co-generating hydrocarbons
and H,S gas when the reservoir temperatures were well above 70-80 °C. Most bacterial
sulphate reduction reactions cease above 60 °C [5].

Sulphur isotopic data from the H,S gas in Mississippian- and Devonian-aged reservoirs
of Burnt Timber and Crossfield East gas fields, Alberta, range between 18 and 25.9%. [19]. This
is similar to the sulphur isotopic ratio for Devonian anhydrite and indicates that Devonian
TSR-generated H,S gas is generated by Devonian sulphur sourced from anhydrite. The
majority of the sulphur isotopic data from the H,S of the Montney producers shows a
signature that is too light (>*S depleted) to be sourced from the deeper Devonian sour pools.
However, data from this study have shown that there are few data points for isotopically
lighter (3*S-depleted) Devonian samples (purple circles; Muskeg Formation; Figure 5), as well
as two isotopically heavier Triassic samples (Halfway and Doig samples; Figure 5), which
results in a transitional zone between the two data sets (i.e., 18-21%o). Similarly, there is an
overlap between H,S gas sulphur isotope data from the Triassic (red-dashed box) and the
Devonian (blue-dashed box) within the same isotopic range for sulphur at 18-21%. (Figure 5).
Sour wells that have H,S gas sulphur isotope values in the 18-20%o may represent either
(1) the original Devonian or Triassic sulphur (anhydrite) sources that are in the transitional
zone, or (2) a mixture of H,S gas sourced from the Triassic and Devonian sour reservoirs. In
the data set analysed, this is the exception and not the rule.

The broad range for the isotopic ratios for the pyritic sulphur (2.9%o to 49.9%o) indicates
that the pyrite may have been microbially derived during the deposition of the Montney
Formation siltstone (i.e., [63]), as part of the TSR process (i.e., [64]) or may be due to the
microbial sulfate reduction (i.e., 2.9%o) process [65]. The large range of the sulphur isotopic
ratio in the syndepositional, microbially derived pyrite is governed by local to regional
factors [66] and would require a study of its own using SEM and in situ laser ablation
techniques. However, in the context of this study, the pyrite was measured to identify if there
is a narrow range of values and if it could be the source of the H,S gas through oxidation
processes where oxygen is brought into the reservoir like hydraulic stimulation. The results
indicate the broad range of isotopic ratio values cannot be used to determine if the sulphur is
the source of the H,S gas. Furthermore, a continuous supply of dissolved oxygen within frack
water or from meteoric groundwater would be needed, as the reservoir is under reducing
conditions, in order to oxidize pyrite and generate sulphate ions for H,S formation. Most
frack water only provides a limited supply of oxygen during hydraulic-fracturing operations
and this would only result in an initial H,S spike that would then rapidly decline. Most wells
in the Montney Formation that do sour do not show a rapid decline in H»S concentration
(i.e., Figure 5, [67]). It is also unlikely that oxygenated groundwater would be present at the
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current reservoir depths of the producing Montney wells in BC. In this study, the Montney
Formation contains none to very low concentrations (<1 ppm) of organic sulphur that is
associated with the kerogen. The trace amount of organic sulphur in the Montney Formation
kerogen would be available in insufficient volumes to provide continuous H,S gas production.
The sulphur ratios for the organic sulphur from kerogen indicate lighter isotopic signatures
(—6 to 6%0) compared to the sulphur ratios of the anhydrite and H,S gas. The difference
between the Montney H,S gas sulphur and the kerogen sulphur indicates that the organic
sulphur is also not the source of the H,S gas (Figure 5).

Overall, the cross-plot of sulphur and oxygen isotopes for the anhydrite minerals
shows distinct signatures for Triassic- and Devonian-source anhydrite sulphur (Figure 5),
and this distinction is also evident in the sulphur isotopic signature of the H,S from Triassic
and Devonian sour reservoirs. The strong overlap of Triassic H,S sulphur isotopes with
Triassic anhydrite sulphur ratio (i.e., 9.0-20.0%o) is strong evidence that the sulphur is being
sourced from Triassic evaporites (i.e., anhydrite; 8.9 and 20.98 %), which is derived from
the isotopically lighter (>*S-depleted) Triassic seawater and not purely from a Devonian
evaporite source. A H)S sulphur signature below 17-18 %o for Montney Formation sour
wells indicates the HjS is being sourced from a Triassic formation and not a Devonian
formation. Sour Montney Formation wells that have sulphur signatures in the 18-21 %.
range are potentially from a mixture of Triassic and Devonian H,S gas or from the lighter
isotopically Devonian Muskeg Formation. There is no evidence that sulphur isotopic
ratios will fractionate during sulphate or H,S migration which would result in a lighter
sulphur isotopic signature. There is no mechanism in place that would cause the sulphur
ratio to change during migration in the Montney play area (i.e., BSR, molecular sieve
processes). The range of sulphur ratios measured in the H;S gas from Montney Formation
and Devonian-aged sour wells suggest that the H,S gas has not fractionated and represents
the sulphur signature of the anhydrite sulphur source. This has also been seen in other
studies on H,S generation in WCSB (i.e., [13,19]).

4.3. H»S Gas Generation Model

A H;S gas generation model has been developed from the isotopic, XRD, and SEM-EDX
data (Figure 11). Model 1 represents an in situ conversion, which would be the conversion
of anhydrite that is derived from the Montney Formation (i.e., syn-depositional anhydrite).
This model is plausible as the Montney Formation does contain small amounts of anhydrite
(<5%); however, the presence of HyS would be more evenly distributed across multi-well
pads and we would not observe localised changes between sour and sweet lateral wells on
the same pad as the syn-depositional anhydrite would be more laterally continuous. This
is also true for any secondary migration of H,S from a downdip source; the H,S would be
laterally continuous across multi-well pads and this is not the case in BC. Figure 2 clearly
shows localised changes in sour and sweet wells on single multi-well pads. Model 2 is
structurally controlled through faults and fractures, with anhydrite or sulphate ions derived
from sulphate minerals within the Charlie Lake Formation migrating into the Montney
Formation through local fracture/fault systems via circulating groundwater flow (i.e., prior
to hydrocarbon charging and overpressuring). The H,S gas would form as hydrocarbons
generated within the Montney Formation react with the migrated sulphate ions. A similar
model has been shown for the migration of sulphate ions from the Charlie Lake and into the
Halfway Formation [38], and between the Charlie Lake and Montney formations within the
Fort St. John Graben structures [30]. SEM and EDX analyses have shown that the anhydrite
texture is massive in the Montney Formation (Figure 8). The texture appears to be part of
fracture fill cement (secondary texture) and did not form from sediment transportation or
evaporative processes (primary textures). As this analysis is performed on drill cuttings,
this observation may be due to contamination of the drill cuttings from the Charlie Lake
Formation above; however, the texture seen in the anhydrite in the Montney Formation
(secondary texture) is not the same as the anhydrite in the Charlie Lake Formation (primary,
evaporite textures; Figure 9). The anhydrite that is found within the Montney Formation is
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being sourced from another formation through solution and redeposition as a cement from
a sulphate-rich solution prior to hydrocarbon generation. Hydrogen sulphide gas then is
generated locally at the anhydrite-cemented fractures, as it reacts with the hydrocarbons being
generated in the Montney Formation. This would explain the localised souring of horizontal
wells adjacent to sweet horizontal wells on the same multi-well pad (Figure 2) and aligns
with the H,S generation Model 2 in Figure 11. The sulphur and oxygen isotopic data suggest
the anhydrite in the Montney Formation is from a Triassic source and most likely from the
Charlie Lake Formation, or potentially from the Doig Formation, which contains anhydrite
within the phosphatic nodules. The isotopic signature of the H,S gas that is produced from
the Montney Formation is also of similar ratio to the Triassic anhydrite, and it appears, in
most cases, the Triassic anhydrite is the source of the sulphur and generation of H,S gas.
Model 3 is a mixing of sulphur ions from Triassic and Devonian sources, and structural
controls would need to include a deeper connection with Devonian sources. This results in a
heavier (3*S-enriched) sulphur isotopic signature in the H,S compared to Model 2. Only sour
Montney Formation producing wells that contain sulphur isotopic ratios above 17 %o for H,S
may have been derived from a mixture of isotopically heavier H,S gas from Devonian rocks
with the isotopically lighter (3*S-depleted) Triassic H,S gas. [14] show evidence that dissolved
sulphate ions have migrated from the Devonian into the Montney Formation within Alberta
and deposited as anhydrite in fractures and vugs, but similar evidence is not observed in this
study for the Montney Formation in British Columbia.

Triassic H,S Gas Triassic Mineral Devonian H,S Gas 6 Devonian Mineral
Sulphur Evaporite Sulphur Sulphur Evaporite Sulphur
Model 1: | Model 2: | Model 3:
In-situ Sulphate Charlie Lake Sulphate Mixed Devonian/Triassic Sulphate

Source onl
Source only v H,S moves thru fractures or diffusion

H,S Gas
S o~ / Charlie Lake SO~ @ H,S Gas
/

T In=sTtu conversion .. . ..., / ------------

-]
/ Montney Reservoir

Devonian Mineral
Evaporite Sulphur

Devonian H,S Gas
Sulphur

I
I
I
! Devonian Rocks
|
|
|
1
i

Figure 11. H,S formation models for sour Montney Formation wells in BC. A total of 218 sulphur
sub-samples from mineral and organic matter samples and 120 sulphur subsamples from H;S gas were
isotopically analysed. Diamond symbols represent the sulphur in the mineral form, prior to being
converted to sulphate ions and used in the formation of H,S gas when in contact with hydrocarbons.
Circle symbols represent the sulphur once converted to H,S gas. Model 1 represents an in situ conver-
sion which would be the conversion of syn-depositional anhydrite that is derived from the Montney
Formation. This model is plausible as the Montney Formation does contain small amounts of anhydrite
(<5%). However, the H;S distribution would be more consistent and the localised changes between
sour and sweet lateral wells on the same pad (i.e., Figure 2) would not likely be observed. Model 2 is
structurally controlled, with anhydrite or sulphate ions derived from sulphate minerals with the Triassic
Charlie Lake Formation migrating through local fracture/fault systems into the Montney Formation
(prior to hydrocarbon charging and overpressuring). H)S gas is generated once hydrocarbons are
generated in the Montney Formation and the hydrocarbons react with the sulphate ions via the TSR
pathway. A similar model has been shown for the migration of sulphate ions from the Charlie Lake
and into the Halfway Formation [38]. Model 3 is a mixing of sulphur ions from Triassic and Devonian
sources and structural controls would need to include a deeper connection via structural features with
the Devonian source. This results in a more 3#S-enriched isotopic signature in the H,S compared to
Model 2. Ref. [14] shows evidence that dissolved sulphate ions have migrated from the Devonian into
the Montney Formation within the Alberta Montney play area.
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4.4. Future Work

Future work should include determining the sulphate concentration and distribution
within the Triassic rocks and mapping this distribution with structural features identified
by 2-D and 3-D seismic data. Risk modelling would then show areas where sulphate
is most likely controlled by structural lineaments, faults, and fractures that connect the
Montney reservoir with the overlying Triassic sulphate sources in the Doig and Charlie
Lake formations. Only when the Montney Formation contains sulphate ions/minerals and
has been buried to adequate depths/temperatures (i.e., 100-120 °C) will the producing
well in the Montney Formation sour due to TSR processes.

5. Conclusions

Isotopic analyses of sulphate-rich minerals and H,S gas in both Devonian and Triassic
rocks coupled with XRD and SEM-EDX analyses provides strong evidence of a Triassic
rock source for the H;S in the Triassic Montney Formation in BC. The geological model,
that best fits the observations of mixed sour and sweet wells on multi-well pads, textural
features, and isotopic ratios is Model 2 where the structural features connect the overlying
Triassic sulphate-rich rocks with the Triassic Montney Formation (BC). This is contrary
to the interpretation made on the Montney Formation in Alberta where the source of the
H,S is from deeper Devonian sources. Future research should include mapping structural
features to validate the geological model presented in this study. The workflow used in
this study can be adopted in any field that is showing unexpected souring to identify the
source of the H,S gas and reduce operational risks.
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Appendix A

Table A1. Sulphur and oxygen isotopic data for minerals and organic matter from this study. * are
repeat of same sample. OM is organic matter.

Formation Age Sample ID Well Licence Location §34S (VCDT) 6180 (SMOW) Sulphur Source
Charlie Lake Triassic PBN-1 30,876 WCSB 14.2 7.69 anhydrite
Charlie Lake Triassic PBN-2 30,876 WCSB 14.6 8.75 anhydrite
Charlie Lake Triassic PBN-3 30,876 WCSB 14.7 7.94 anhydrite
Charlie Lake Triassic PBN-4 30,876 WCSB 15 8.86 anhydrite
Charlie Lake Triassic 29,453-1 29,453 WCSB 16.22 12.38 anhydrite
Charlie Lake Triassic 29,453-2 29,453 WCSB 13.59 11.55 anhydrite
Charlie Lake Triassic 3944-1 3944 WCSB 14.84 10.78 anhydrite
Charlie Lake Triassic 3944-2 29,453 WCSB 15.02 10.88 anhydrite
Charlie Lake Triassic 3944-3 29,453 WCSB 15.77 12.26 anhydrite
Charlie Lake Triassic 8183-1 8183 WCSB 14.77 1091 anhydrite

Halfway Triassic PBN-5 30,876 WCSB 17 8.14 anhydrite
Halfway Triassic 29,453-3 29,453 WCSB 15.51 14.16 anhydrite
Halfway Triassic 3944-4 29,453 WCSB 20.73 12.88 anhydrite
Doig Silt Triassic PBN-6 30,876 WCSB 13.2 3.96 anhydrite
Doig Silt Triassic 29,453-4 29,453 WCSB 15.5 8.85 anhydrite
Doig Silt Triassic 3944-5 29,453 WCSB 20.98 13.45 anhydrite
Doig Shale Triassic PBN-7 30,876 WCSB 9.9 —3.69 anhydrite
Doig Shale Triassic 29,453-5 29,453 WCSB 15.41 8.56 anhydrite
Montney (upper) Triassic 32,908-1 32,908 WCSB 9.42 - anhydrite
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Table Al. Cont.

Formation Age Sample ID Well Licence Location 534S (VCDT) 6180 (SMOW) Sulphur Source
Montney (upper) Triassic 26,668-1 26,668 WCSB 8.92 —2.87 anhydrite
Montney (upper) Triassic 3944-6 3944 WCSB 13.94 7.56 anhydrite
Montney (upper) Triassic PBN-10 30,876 WCSB 14.5 —1.00 anhydrite
Montney (upper) Triassic 29,483-6 29,453 WCSB 14.7 8.73 anhydrite
Montney (upper) Triassic PBN-11 30,876 WCSB 13.5 - anhydrite
Montney (upper) Triassic PBN-12A 30,876 WCSB 15.5 - anhydrite
Montney (middle) Triassic 29,453-7 29,453 WCSB 15.55 4.46 anhydrite
Montney (middle) Triassic 3944-7 3944 WCSB 16.96 2.95 anhydrite
Montney (lower) Triassic PBN-13 30,876 WCSB 13.3 0.2 anhydrite
Montney (lower) Triassic 29,453-8 29,453 WCSB 11.59 18.37 anhydrite
Montney (lower) Triassic 3944-8 3944 WCSB 10.92 —4.04 anhydrite

Belloy Permian 3944-9 3944 WCSB 391 10.19 anhydrite
Muskeg Devonian 8183-2 8183 WCSB 18.6 12.29 anhydrite
Muskeg Devonian 8183-3 8183 WCSB 18.62 14.05 anhydrite
Muskeg Devonian 8183-4 8183 WCSB 18.02 14.72 anhydrite
Muskeg Devonian 8183-2 * 8183 WCSB 18.6 - anhydrite
Muskeg Devonian 8183-3 * 8183 WCSB 18.7 - anhydrite
Muskeg Devonian 8183-4 * 8183 WCSB 17.7 - anhydrite

Montney (upper) Triassic 32,908-2 32,908 WCSB —4.68 5.26 oM
Montney (upper) Triassic 32,908-3 32,908 WCSB 1.8 12.2 oM
Montney (upper) Triassic 26,668-2 26,668 WCSB —6.92 20.28 oM
Montney (upper) Triassic PBN9-1 30,876 WCSB -3.6 7.3 oM
Montney (upper) Triassic PBN9-2 30,876 WCSB 6.39 17.82 oM
Montney (upper) Triassic PBN9-3 30,876 WCSB 49.9 - pyrite
Montney (upper) Triassic 32,908-4 32,908 WCSB 29 - pyrite
Montney (upper) Triassic 26,668-4 26,668 WCSB 21.64 - pyrite
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