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Dairy cattle have played an important role in economic development since the be-
ginning of agriculture. In essence, dairy cattle herding had already become a dominant
part of the culture and economic development during the Neolithic era [1]. Subsequently,
man–cow interactions have been multifaceted, from a genetic mutation that gave people
the ability to produce lactase and drink milk throughout their lives [2] to the production
of a vaccine against Variola (Smallpox virus) [3]. It is equally important that reproduc-
tive technologies developed for dairy cattle provide a spin-off in mammalian species [4].
Animal breeding and assisted reproduction in women were revolutionized worldwide
during the 20th century by discoveries on spermatozoa preservation, oocyte maturation,
embryo transfer, and embryo freezing in cattle. For example, Dr. G. Pincus and Dr. M.C.
Chang were students at the Cambridge Animal Research Station before developing the
contraceptive pill and pioneering fertilization studies [5]. Currently, we share concerns
over global warning and the impacts of the COVID-19 crisis. In this context, aspects of the
reproduction control of cattle seem to have plateaued. However, changes in both genetic
screening to increase fertility and management practices to promote cow comfort have
recently improved reproductive efficiency [6,7]. In addition, by reducing the incidence of re-
productive disorders such as anestrus, low fertility, pregnancy failure, or perinatal mortality
that are essential to the health and welfare of cows, the use of land resources will be more
efficient [7–9]. In fact, cow health and welfare have been extensively associated with higher
milk production alongside high fertility in the past two decades [6,7,10,11]. Therefore, it is
a good time to emphasize the importance of effective reproductive management, which not
only benefits the economics of herds but also reduces greenhouse gas emissions [7,12,13].
This lowers public concern about dairy production [7,8,14,15]. The thirteen articles (seven
original articles, four reviews, and two commentaries) included in the Special Issue enti-
tled “Advances in Dairy Cattle Reproduction” have thus sought to better understand and
monitor the reproductive physiology of the dairy cow. These have been published in recent
issues of Animals and are compiled on the journal’s webpage: https://www.mdpi.com/
journal/animals/special_issues/frontiers_in_dairy_cattle_reproduction.

The term advance might suggest that there is a difficult borderline in dairy cattle
reproduction. However, knowledge transfer on the reproductive management of dairy cows
is enormous. In effect, every detail within a herd’s routine can be improved so that focus on
cutting-edge technology is addressed by all authors in the Special Issue. The establishment
of pregnancy to term remains the primary goal in most dairy systems [7,15,16]. This
means that clinical and practical approaches from different fields may be a source of
applications to improve reproductive efficiency in herds. Thus, several authors describe
strategies to improve reproductive parameters. Important economic losses are linked to
the repeat breeder cow syndrome worldwide. Carlos Carmelo Pérez-Marín and Luis
Angel Quintela [17] compile information about recent knowledge on the pathogenesis
of this syndrome and discuss potential therapies and management strategies to reduce
its incidence in herds. Ottó Szenci [18] documents how the negative effect of dystocia
on calves and their dams can be reduced using different precision farming devices to
predict the onset of parturition. Silviu-Ionut Bors and Alina Bors [19] show that the
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profitability of dairy farms can be improved by rebreeding the nonpregnant cows after
early negative pregnancy diagnosis (25 days after artificial insemination (AI)). Zoltán
Szelényi et al. [20] propose to reduce the incidence of retained placenta and of a large uterus
at AI to improve the rate of pregnancy maintenance. Scoring the size and position of the
pre-breeding uterus may provide a useful source of information to manage fertility in dairy
cows [21–23]. There is much to be learned about factors and their interactions influencing
pregnancy loss of non-infectious causes after a positive pregnancy diagnosis (during the late
embryonic/early fetal period) [16,24,25]. Even the clinician himself can be a risk factor for
pregnancy loss [25]. Fernando López-Gatius [26] outlines that therapeutic abortion using
an increased prostaglandin F2α (PGF2α) dose offers benefits in cows carrying dead twins
during the early fetal period (49–55 days post-AI). Indeed, the increase in the standard dose
of the PGF2α or their analogs to induce luteolysis is beneficial under certain circumstances
in high-producing dairy cows [27]. The use of sex-sorted semen has increased sharply
over the last decade, but it is significantly less fertile than conventional semen [28–30].
This is the reason why the timing of AI was revisited, proposing the end of estrus rather
than its onset as the best guide for AI timing in dairy cattle undergoing spontaneous
estrus [31]. Using the dairy cow as a model, Olimpia Barbato and colleagues [32] update
the use of pregnancy-associated glycoprotein (PAG) measurements to improve reproductive
management in bovine as well as in small ruminants and buffalo. The authors conclude
that PAG measurements using on-farm pregnancy tests are a feasible method of pregnancy
confirmation at herd level [32].

Reproduction is a physiological function very sensitive to disruption by multiple stres-
sors, particularly when mammals are under heat stress conditions [33,34]. Perturbations in
follicular physiology during a period of thermal stress are delineated by Fabio De Rensis
and partners [35]. Oocytes, which are also very sensitive to any type of stress [36], carry
the intercellular communication in the mammalian ovary, including follicular develop-
ment and formation of the follicular fluid [37,38]. This is of relevance to selecting valuable
oocytes/follicles for assisted reproductive technologies. Since 2017, due to the increasing
availability and lower costs of production, the global use of in vitro-produced (IVP) em-
bryos has surpassed the number of in vivo-derived embryos [39]. However, the technical
aspects of IVP embryos remain to be optimized [40–42]. Olga Witkowska-Piłaszewicz and
colleagues [43] expand knowledge associated with follicle health evaluation as potential
applications for assisted reproduction procedures. Using Brilliant Cresyl Blue staining,
Heinrich Bollwein and colleagues [44] provide a further oocyte quality description to select
the best oocytes when damaged sperm have to be used in in vitro fertilization processes.
Finally, three papers on reproductive genomics provide some basis for both research and
resource optimization in the dairy sector. In this time of advances in reproductive ge-
nomics [45], mechanisms involved in corpus luteum formation, function, and regression
must be better understood, particularly in high milk producers. Indeed, the concept of
luteal deficiency, which was already defined in 1949 [46], has been widely developed in
humans [47,48]. However, clinical manifestations of sub-luteal function in cattle, which
as in the human species result in low fertility [17] and early pregnancy loss [16], have
not received widespread consideration. Findings by Michael W. Pfaffl and colleagues [49]
reveal a clear involvement of adipokines in the local mechanisms of luteal function. Darren
K. Griffin’s group [50], working with the bull (dairy and beef), presents the incidence and
potential costs (financial and environmental) of genetic abnormalities. Fernando A. Di
Croce’s group [51], working with Holstein dairy cows, proves that the inclusion of cow
abortion genomic predictions in a multi-trait selection index would allow dairy producers
to reduce the incidence of abortion and to select high-producing, healthier, and more
profitable cows.

For that matter, we believe there is much to be learned by exploring all the articles
in the Special Issue. We hope that these new insights will lead to a better understanding
of the reproductive function of the cow at the farm level and to the development of new
strategies to improve it. Focus on physiological functions important for reproduction will
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improve the health and welfare of the dairy cow, favoring both increased productivity and
a reduction in the carbon footprint of dairy production systems.

Conflicts of Interest: The author declares no conflicts of interest.
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