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Simple Summary: Weaning stress poses significant physiological challenges to piglets, often man-
ifesting as intestinal disturbances, such as inflammation and impaired intestinal function, which
ultimately affect growth and health. Probiotics can alleviate these adverse effects of stress and
promote healthy growth in piglets. Parabacteroides distasonis (PBd), as a potential probiotic, has
shown efficacy in preventing various diseases, but its anti-diarrheal effects in weaned piglets remain
unclear. This study aims to investigate the effects of PBd derived from Ningxiang pigs on growth
performance, intestinal apoptosis, oxidative damage, and inflammation in Enterotoxigenic Escherichia
coli (ETEC)-challenged weaned piglets. The results show that oral administration of PBd can improve
intestinal health and attenuate ETEC-induced intestinal damage in piglets.

Abstract: Weaning is a critical stage in the growth and development of piglets, often inducing stress
reactions. This study aims to investigate the effects of Parabacteroides distasonis (PBd) derived from
Ningxiang pigs on growth performance, intestinal apoptosis, oxidative damage, and inflammation in
ETEC-challenged weaned piglets. A total of 22 Duroc × Landrace × Yorkshire (DLY) piglets, 24 days
old with similar body weights, were randomly divided into three groups: Control (n = 7), ETEC (n = 7),
and PBd + ETEC (n = 8). The results show that, compared to the Control group, ETEC challenge led
to decreased growth performance, reduced villus height in the duodenum and jejunum, increased
crypt depth in the duodenum, a decreased villus-height-to-crypt-depth ratio, increased expression of
apoptosis-related genes (Caspase-8 and Caspase-9), increased expression of oxidative damage-related
genes (Nrf2, GSH-PX, mTOR, and Beclin1), increased expression of inflammation-related genes (Myd88,
P65, TNF-α, and IL-6), and reduced the contents of SCFAs in the colonic chyme (acetate, propionate,
butyrate, valerate, and total SCFAs). Compared to the ETEC group, the PBd + ETEC group alleviated
the reduction in growth performance, mitigated intestinal morphological damage, and reduced the
expression of the aforementioned apoptosis, oxidative damage, and inflammation-related genes
with the increase in SCFAs. In conclusion, PBd derived from Ningxiang pigs effectively reduces
ETEC-induced intestinal damage in weaned piglets, improves intestinal health, and increases the
content of SCFAs in the colonic chyme, thereby enhancing growth performance.

Keywords: Parabacteroides distasonis; Ningxiang pig; intestinal apoptosis; oxidative damage; inflammation;
SCFAs; weaned piglets

1. Introduction

Weaning is a critical stage in the growth and development of piglets [1,2]. Early
weaning can induce stress reactions, leading to imbalances in antioxidant function, im-
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munosuppression, reduced disease resistance, increased morbidity and mortality, and
decreased growth performance, which collectively result in significant economic losses
to the farming industry [1]. Enterotoxigenic Escherichia coli (ETEC) is one of the main
pathogens that destroy the intestinal function of animals, and it is a globally recognized
pathogenic bacterium that causes severe diarrhea in piglets [3]. ETEC infection can induce
intestinal oxidative stress [4] and inflammatory response [1] in piglets, resulting in intesti-
nal damage and growth retardation [3].Thus, exploring effective measures to alleviate
weaning stress in piglets is of great significance for healthy breeding and the high-quality
development of pig farming.

Several studies have demonstrated that probiotics can mitigate the adverse effects of
indigestion, diarrhea, and growth stagnation caused by weaning stress in piglets, thereby
promoting their growth and development [5–7]. Parabacteroides distasonis (PBd), a potential
probiotic known for producing secondary bile acids, is commonly found in the gastroin-
testinal tract of humans and animals [8,9]. Previous research has shown that PBd can
offer protective benefits against conditions such as colitis, obesity, and non-alcoholic fatty
liver disease (NAFLD) [10–13]. Wang et al. demonstrated PBd can alleviate obesity and
metabolic dysfunction by producing secondary bile acids and succinic acid [10]. Kuang
et al. reported that PBd significantly alleviated hepatic fat accumulation in mice, and its
metabolite γ-linolenic acid can inhibit the expression of hepatic CYP7A1 by activating
the peroxisome proliferator-activated receptor alpha (PPAR-α) signaling pathway, thereby
improving NAFLD [11], while PBd and its other metabolite pentadecanoic acid also effec-
tively inhibited the progress of Non-alcoholic steatohepatitis [12]. In addition, multiple
researchers have identified that PBd has the anti-inflammatory and anti-tumorigenic pres-
ence of intestinal tumors, especially in colorectal carcinogenesis [13]. Ma et al. reported
that PBd can significantly alleviate DSS (dextran sulfate sodium)-induced ulcerative colitis
and reduce colonic mucosal damage in mice [14]. Gaifem J et al. showed that PBd could
improve the intestinal epithelial barrier function of colitis-susceptible mice and plays a
synergistic protective effect with Akkermansia muciniphila [15]. In addition, Cuffearo B et al.
showed that five strains of PBd (which were isolated from the gut microbiota of adults and
neonates) showed anti-inflammatory effects, and some strains could significantly restore
the expression of occludin and proliferation of Treg cells, regulate the body’s immunity, and
improve intestinal inflammation [16]. PBd has shown anti-inflammatory and immunomod-
ulatory effects in many studies. However, it remains unclear whether PBd can enhance
resistance to ETEC infection in weaned piglets.

In this study, we isolated PBd from the feces of healthy Ningxiang pigs and utilized
the ETEC piglet diarrhea model to investigate the effect of PBd derived from Ningxiang
pigs on growth performance, intestinal apoptosis, oxidative damage, and inflammation in
weaned piglets. The aim is to provide theoretical references for improving pig health and
advancing the development of next-generation microecological preparations.

2. Materials and Methods

The animal experimental protocols were conducted according to the Institutional Ani-
mal Care and Use Committee of Hunan Agriculture University (Changsha, Hunan, China).

2.1. Piglet Experimental Design

The Parabacteroides distasonis HNAU0205 (PBd) strain used in this study was initially
isolated from the feces of healthy suckling Ningxiang male piglets, and the feces were
collected in the delivery room of sows, which were placed in individual crates. The feeding
management, immunization procedures, and epidemic prevention were according to the
regular management of pig farms. PBd was conserved in the China Center for Type Culture
Collection (CCTCC No. M20221529, Wuhan, Hubei, China).

PBd was cultured in 50 mL of Gifu Anaerobic medium (GAM, No. HB8518-1, Qingdao,
China), in addition to 0.05 mL of Hemin (5 mg/mL, HY-19424) and 5 uL of 1% vitamin
K1 (Coolaber, Cat#PM0610-1-5, Beijing, China) solution for 24 h at 37 ◦C. The counts of
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viable probiotic bacteria in the PBd-containing supplements were verified via the cultural
method using Columbia Blood Agar Base (No. HB0124, Qingdao, China). ETEC was kindly
provided by Prof. Wenkai Ren from South China Agricultural University (Guangzhou,
China) and cultured in LB medium (No. HB0128, Qingdao, China) for 12 h at 37 ◦C.

A total of twenty-two 24-day-old crossbred male piglets [Duroc × (Landrace × Yorkshire)]
were selected from the Liuyang Qingquan Cooperative, Hunan, China, and randomly
divided into three groups with similar body weights: the Control group (n = 7), ETEC group
(n = 7), and PBd + ETEC (n = 8). From 1 to 18 d, the Control group and ETEC group received
a standard diet and daily gavage of 10 mL of sterile saline, and the PBd + ETEC group
received a standard diet and gavage of 1010 CFU (10 mL) PBd every day. At d 15, all groups
except the Control group received a gastric infusion of 1010 CFU (10 mL) of ETEC, and the
Control group received a gastric infusion of sterile saline using the same method (Figure 1).
All piglets were housed (2 m × 1.2 m) and fed individually. No antibiotics were given to
the animals throughout the trial for prophylactic or therapeutic reasons. All piglets had free
access to feeding and drinking water. Room temperature was maintained at approximately
27–30 ◦C, and the humidity was controlled between 50 and 60%. The formula of the basic
diet followed the NRC (2012) for swine nutrition. The basic formula and nutritional levels are
presented in Table S1. Oral administration lasted 17 days from the age of 24 to 40 days. Early
in the morning of d 18, piglets were sacrificed by exsanguination after electrical stunning,
and serum and intestine (digesta and tissue samples) were collected and stored at −80 ◦C
for further analysis. Visceral organs (liver and spleen) were also removed after sacrifice.
Then, 2–3 cm segments of intestinal tissue (including duodenum, jejunum, and colon) were
preserved in 10% formalin for subsequent morphology analysis.
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Figure 1. Experimental design diagram. From 1 to 18 d, Control group and ETEC group received
a standard diet and daily gavage of 10 mL of sterile saline; PBd + ETEC group received a standard
diet and gavage of 1010 CFU (10 mL) of Parabacteroides distasonis (PBd) every day. At d 15, all groups
except the Control group received a gastric infusion of 1010 CFU (10 mL) of ETEC, and the Control
group received a gastric infusion of sterile saline using the same method.

2.2. Growth Performance and Relative Organ Weight

Each piglet was weighed on d 1 and d 18 of the experiment. The daily feed intake of
each piglet was recorded. The values of the average daily feed intake and average daily
gain were calculated. The liver and spleen were weighed, and the relative weight of each
organ was calculated as follows: organ weight/final live body weight.

2.3. Histopathology

For histologic analysis, the duodenum, jejunum, and colon (mid-section) tissues were
fixed in 10% formalin for 24 h at room temperature, embedded in paraffin, and sectioned
at a thickness of 3 mm for staining. Sections were analyzed under a microscope (BX53,
Olympus, Tokyo, Japan) at magnifications of 40× after hematoxylin and eosin staining, as
previously described [17]. The measurement of villi height and crypt depth was performed
using ImageJ-1.52a software. Three different sections per piglet and intestinal sections were
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evaluated. Villus heights/crypt depths were randomly measured at five different locations in
each section. Histopathologic injury scores were determined according to Feng’s publication
(0, normal mucosal villi; 1, subepithelial Gruenha-gen’s space (oedema); 2, extension of
the subepithelial space with moderate lifting of epithelial layer from the lamina propria;
3, massive epithelial lifting down the sides of villi; 4, denuded villi with lamina propria and
dilated capillaries exposed; 5, digestion and disintegration of lamina propria) [18].

2.4. Real-Time Reverse Transcription PCR

The relative mRNA levels of Bax, Caspase3, Caspase8, Caspase9, Nrf2, SOD, GSH-
PX, mTOR, Beclin1, Myd88, P65, TNF-α, IL-1β, IL-6, IL-8, and IL-10 were determined by
real-time quantitative PCR. Total RNA of jejunum tissues was prepared using the RNeasy
Kit (Qiagen, Hilden, Germany). cDNA was synthesized using 1 µg aliquot of total RNA
according to the manufacturer’s instructions (AG11711, Accurate Biotechnology Co., Ltd.,
Changsha, China). A 7500 Fast Real-Time PCR system (Applied Biosystems, Foster City,
CA, USA) was used for quantitative PCR analysis. Real-time PCR was performed at a
total reaction volume of 10 µL, including 5 µL of SYBR Green Premix (AG11701, Accurate
Biotechnology Co., Ltd., Changsha, China), 4 µL of 20-fold diluted cDNA, 0.5 µL of forward
primers (10 µM) and 0.5 µL of reverse primers (10 µM). The primers (Tsingke Biotechnology
Co., Ltd., Bejing, China) used are listed in Supplementary Table S2. The relative mRNA
expression level was calculated using the 2−∆∆CT method, and the results were normalized
to β-actin housekeeping genes.

2.5. Serum Inflammatory Cytokine

Blood samples were centrifuged for 90 s at 15,000× g, and serum aliquots were snap-frozen
until further analysis. The quantification of cytokine levels (including IL-4, IL-6, IL-8, IL-10,
IL-1β, and TNF-α) in serum was assessed using a commercially available porcine cytokine mul-
tiplex immunoassay kit (RayBiotech, Norcross, GA, USA), and the concentration of cytokines
was calculated by QAP-CYT-1-SW software (RsyBiotech, Peachtree Corners, GA, USA).

2.6. SCFAs

The concentrations of short-chain fatty acids (SCFAs; acetate, propionate, butyrate,
and valerate) in colonic chyme were analyzed using the gas chromatographic method.
Briefly, as previously reported [19], 1.0 g of colonic chyme was first fully homogenized
with 1.5 mL of deionized water. The above fecal homogenate was centrifuged at 15,000× g
for 10 min at 4 ◦C. The samples were acidified with 25% metaphosphoric acid at a ratio
of 1:5 for 30 min on ice. Samples were injected into a gas chromatographic 8890 series gas
chromatograph (Agilent, Santa Clara, CA, USA) for detection.

2.7. Statistical Analysis

The data were analyzed using SPSS 26.0 statistical software (ver. 26.0 for Windows,
SPSS Inc., Chicago, IL, USA). Firstly, the Shapiro–Wilk method was used to determine
whether the data conformed to the normal distribution, and one-way ANOVA and Dun-
can’s method were used to compare the differences between the groups. All data were
expressed as means with their standard errors. A p-value < 0.05 was considered statistically
significant, and a 0.05 ≤ p-value < 0.1 was considered a statistical trend.

3. Results
3.1. Growth Performance and Relative Organ Weight

As presented in Table 1, compared to the Control group, the ETEC challenge signifi-
cantly decreased final body weight (FBW, p = 0.010), average daily gain (ADG, p = 0.010),
and average daily feed intake (ADFI, p = 0.038) (p < 0.05). When compared to the
ETEC group, oral administration of PBd significantly increased FBW and ADG in ETEC-
challenged piglets (p = 0.019, Table 1). However, the PBd + ETEC group did not show a
significant difference in ADFI compared to the ETEC group (p = 0.058, Table 1). Addition-
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ally, no differences were identified in the feed/gain (F/G) ratio among the three groups
(p > 0.05, Table 1).

Table 1. Effects of P. distasonis on the growth performance and relative organ weight of ETEC-
challenged piglets.

Items Control ETEC PBd + ETEC

IBW, kg 6.22 ± 0.11 6.40 ± 0.09 6.30 ± 0.12
FBW, kg 11.70 ± 0.52 a 9.87 ± 0.51 b 11.43 ± 0.23 a

ADG, kg/d 0.68 ± 0.031 a 0.58 ± 0.03 b 0.67 ± 0.013 a

ADFI, kg/d 0.43 ± 0.027 a 0.34 ± 0.02 b 0.42 ± 0.02 ab

F/G, kg/kg 0.64 ± 0.05 0.60 ± 0.05 0.63 ± 0.04
Anus temperature, ◦C 39.36 ± 0.54 b 40.56 ± 0.22 a 39.80 ± 0.10 ab

Liver, g/kg 2.58 ± 0.08 2.81 ± 0.14 2.66 ± 0.10
Spleen, g/kg 0.19 ± 0.01 b 0.27 ± 0.02 a 0.23 ± 0.02 ab

Note: a,b In the same row, different superscript letters indicate significant differences (p < 0.05), and the same
superscript letters indicate no significant difference (p > 0.05). Data are presented as the means ± SEM (n = 7–8).
IBW, initial body weight. FBW, final body weight. ADG, average daily gain. ADFI, average daily feed intake.
F/G, average daily feed intake to average daily gain.

Furthermore, the ETEC challenge significantly increased anus temperature (p = 0.023),
whereas oral administration of PBd showed a tendency to decrease it (p < 0.1, Table 1).
Compared with the Control group, the ETEC challenge significantly increased the spleen
index (p = 0.028, Table 1), but there was no significant difference in the spleen index between
the PBd + ETEC and ETEC groups (p > 0.05, Table 1). No differences were identified in the
liver index among the three groups (p > 0.05, Table 1).

3.2. Intestinal Histomorphology

In the duodenum, the ETEC group significantly increased crypt depth (p = 0.017) and
reduced villus height (p = 0.001) and the villus height/crypt depth (V/C, p = 0.001) ratio
compared to the Control group. Oral administration of PBd significantly reversed these
changes in ETEC-challenged piglets (Figure 2A and Table 2). In the jejunum, the ETEC
group significantly reduced villus height (p = 0.001) and the V/C (p = 0.001) ratio compared
to the Control group, whereas oral administration of PBd significantly increased these
parameters in ETEC-challenged piglets (p < 0.001, Figure 2A and Table 2). The histological
score shows that the ETEC challenge caused jejunum injury in piglets, and PBd could
reduce jejunum injury caused by ETEC infection compared with the Control group (p < 0.05,
Figure 2B and Table 2). Additionally, there were no significant differences in crypt depth
among the three groups in both the jejunum and colon (p > 0.05, Figure 2 and Table 2).

Table 2. Effects of P. distasonis on the intestinal histomorphology of ETEC-challenged piglets.

Items Control ETEC PBd + ETEC

Duodenum
Villus height, µm 371.49 ± 90.54 a 240.26 ± 51.49 b 394.63 ± 30.25 a

Crypt depth, µm 307.79 ± 61.00 b 389.90 ± 66.28 a 289.11 ± 49.10 b

V/C 1.26 ± 0.43 a 0.63 ± 0.19 b 1.40 ± 0.29 a

Jejunum
Villus height, µm 531.15 ± 64.84 a 204.25 ± 56.75 b 477.49 ± 73.06 a

Crypt depth, µm 195.53 ± 36.67 241.98 ± 64.55 224.41 ± 21.99
V/C 2.77 ± 0.42 a 0.86 ± 0.21 c 2.13 ± 0.27 b

Histological score 0.86 ± 0.26 c 3.57 ± 0.43 a 1.87 ± 0.30 b

Colon
Crypt depth, µm 464.06 ± 27.62 579.28 ± 133.37 515.48 ± 150.61

Note: a,b,c In the same row, different superscript letters indicate significant differences (p < 0.05), and the same
superscript letters indicate no significant difference (p > 0.05). Data are presented as the means ± SEM (n = 7–8).
V/C, villus height to crypt depth.
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Figure 2. Effects of P. distasonis on intestinal morphology in ETEC-challenged piglets. (A) Histology
image depicting morphometric measurements for the villus height and the crypt depth from intestinal
tissue section (hematoxylin and eosin stained) of piglet (scale bar, 500 µm). (B) The histological score
of each piglet (n = 7/8). Arrows indicate intestinal villi.

3.3. Expression of Apoptosis-Related Genes

As shown in Figure 3, the ETEC challenge significantly increased the mRNA expression
of Caspase 8 (p = 0.02) and Caspase 9 (p = 0.011) compared to the Control group. Oral
administration of PBd significantly decreased the mRNA expression of Bax (p = 0.018),
Caspase 8 (p = 0.017), and Caspase 9 (p = 0.004) in ETEC-challenged piglets (Figure 3A,C,D).
However, there were no significant differences in the mRNA expression of Caspase 3 among
the three groups (p > 0.05, Figure 3B).
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Figure 3. Effects of P. distasonis on intestinal apoptosis-related genes in ETEC-challenged piglets. The
mRNA expression of Bax (A), Caspase3 (B), Caspase8 (C), and Caspase9 (D) in jejunum of piglets.
Data are presented as the means ± SEM (n = 6).“*” 0.01 ≤ p ≤ 0.05; “**” 0.001 < p ≤ 0.01.

3.4. Expression of Antioxidant-Related Genes

As presented in Figure 4, the ETEC challenge significantly increased the mRNA
expression of Nrf2 (p = 0.002), GSH-PX (p = 0.003), mTOR (p = 0.042), and Beclin1 (p = 0.041)
compared to the Control group. Oral administration of PBd significantly decreased the
mRNA expression of these genes in ETEC-challenged piglets (p < 0.05, Figure 4A,C,E.
However, there were no significant differences in the mRNA expression of SOD among the
three groups (p > 0.05, Figure 4B).
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3.5. Inflammatory Biomarkers

In the serum, the ETEC challenge significantly increased IL-6 (p = 0.021) and IL-10
(p = 0.029) levels compared to the Control group, while PBd + ETEC significantly reduced
IL-6 levels (p < 0.05, Table 3). Compared to the PBd + ETEC group, no differences in the
levels of IL-10 were detected between the CON group and the ETEC group (p = 0.089,
Table 3). There were no significant differences in TNF-α, IL-1β, IL-4, and IL-8 among the
three groups (p > 0.05, Table 3). In the jejunum, the ETEC challenge significantly increased
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the mRNA expression of Myd88 (p = 0.005), P65 (p = 0.005), TNF-α (p = 0.006), and IL-6
(p = 0.024) levels compared to the Control group, while PBd + ETEC significantly reduced
the mRNA expression of Myd88 (p = 0.001), P65 (p = 0.001), TNF-α (p = 0.015), and IL-6
(p < 0.05, Figure 5A,C,F). However, there were no significant differences in the mRNA
expression of IL-1β, IL-8, and IL-10 among the three groups (p > 0.05, Figure 5B,D,E).

Table 3. Effects of P. distasonis on the inflammatory cytokine levels in the serum of ETEC-
challenged piglets.

Items Control ETEC PBd + ETEC

TNF-α, pg/mL 208.05 ± 89.34 476.97 ± 135.02 225.46 ± 41.37
IL-1β, pg/mL 479.44 ± 91.27 730.56 ± 149.28 434.22 ± 84.70
IL-4, pg/mL 293.38 ± 96.70 1191.60 ± 514.37 454.41 ± 94.09
IL-6, pg/mL 157.50 ± 44.16 b 653.31 ± 215.21 a 201.53 ± 60.29 b

IL-8, pg/mL 35.15 ± 3.84 49.72 ± 9.78 55.85 ± 15.05
IL-10, pg/mL 837.04 ± 243.38 b 1864.81 ± 447.15 a 1180.25 ± 212.88 ab

Note: a,b In the same row, different superscript letters indicate significant differences (p < 0.05), and the same
superscript letters indicate no significant difference (p > 0.05). Data are presented as the means ± SEM (n = 6).
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Figure 5. Effects of P. distasonis on inflammatory expression in ETEC-challenged piglets. The mRNA
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piglets. Data are presented as the means ± SEM (n = 6). “*” 0.01 ≤ p ≤ 0.05; “**” 0.001 < p ≤ 0.01;
“***” p ≤ 0.001.

3.6. SCFAs

Furthermore, we measured the levels of SCFAs in the colonic chyme (Figure 6). The
results show that the ETEC challenge significantly reduced the content of acetate (p = 0.002),
propionate (p = 0.003), butyrate (p = 0.007), valerate (p = 0.050), and total SCFAs (p = 0.002)
compared to the Control group (Figure 6A–E). Oral administration of PBd significantly
increased the content of acetate (p = 0.050), butyrate (p = 0.043), valerate (p = 0.049), and
total SCFAs (p = 0.029) in ETEC-challenged piglets (Figure 6A,C–E). The ratio of acetate,
propionate, butyrate, and valerate in total SCFAs was calculated and is shown in Figure 6F,
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suggesting that oral administration of PBd had a higher proportion of butyrate and valerate
in the colonic chyme compared to the ETEC group (p < 0.05).
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and the relative content of each SCFA in different groups, obtained by dividing a single SCFA per
sample by the total SCFA (F). Data are presented as the means ± SEM (n = 6). “*” 0.01 ≤ p ≤ 0.05;
“**” 0.001 < p ≤ 0.01.

4. Discussion

Post-weaning piglets often experience reduced appetite and feed intake due to wean-
ing stress, significantly impacting their growth and development [20–22]. Studies have
demonstrated that probiotics can maintain gut microbiota balance, enhance nutrient di-
gestibility, and consequently promote growth [23,24]. In this study, we found that oral
administration of PBd significantly increased the ADG of piglets and reduced the weight
loss caused by the ETEC challenge.

Previous studies have shown that ETEC can colonize and secrete exotoxins in the host
small intestine, damaging intestinal health [25]. Xu et al. reported that the jejunum is the
main part of injured intestines in the ETEC challenge [26]. Similarly, Ren et al. analyzed the
jejunal protein spectrum and found that ETEC infection could promote the activation of
NF-κB and MAPK pathways, and the metabolic process and binding function of jejunal
tissue were most seriously affected in ETEC-induced diarrhea [27]. The small intestine
is the main place to absorb nutrients [1]; indicators, such as villus height (VH), crypt
depth (CD), and the villus height/crypt depth ratio (V/C) in the small intestine are vital
measures of digestive and absorptive capacity [1]. Numerous studies have shown that
probiotics can increase the length of small intestinal villi and reduce crypt depth [28–30].
Moreover, weaning piglets undergo physiological changes in the intestine, such as villus
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shortening and damage, making them susceptible to pathogenic infections. A previous
study reported that the lipopolysaccharide stimulation of weaned piglets could lead to
necrosis and reduced villus height in the jejunum [31]. As expected, our results show that
the ETEC challenge resulted in the destruction of the intestinal integrity of piglets and led
to intestinal injury, while oral administration of PBd significantly reversed these changes.
This finding is similar to the study by Wu T et al., who found that Lactobacillus rhamnosus
Lb1 alleviates the intestinal injury caused by ETEC and has beneficial effects on intestinal
integrity [32]. In conclusion, PBd can improve the intestinal morphology of weaning piglets,
thereby enhancing their growth performance.

The structural integrity of intestinal mucosal cells is the morphological basis for
maintaining mucosal function [33]. Under normal circumstances, intestinal mucosal cells
constantly renew themselves, and apoptosis plays a role in cell renewal and repair. The
balance between proliferation and apoptosis of intestinal mucosal cells is fundamental
to maintaining mucosal integrity and function. Bax and Caspase families are key pro-
apoptotic genes that play crucial roles in the process of apoptosis [34,35]. Bax, a member of
the Bcl-2 family, promotes mitochondrial membrane permeability by forming heterodimers
with Bcl-2, leading to the release of cytochrome c and initiating apoptosis [34]. The Caspase
family includes a series of proteases, such as Caspase-3, Caspase-8, and Caspase-9, which
execute apoptosis through a cascade reaction, ultimately disrupting cell structure and
function [35]. The coordinated action of Bax and Caspases ensures that cells can effectively
initiate apoptosis when damaged or no longer needed, maintaining organism stability
and health [36]. In this study, the ETEC challenge significantly increased the expression
of apoptosis-related genes, such as Caspase-8 and Caspase-9, which is similar to Xia’s
results [37]. Previous studies have shown that Escherichia coli shiga can activate Caspase-9
in HRT-18 and IEC-18 cell lines [38]. These data indicate that the ETEC challenge caused
apoptosis in the piglet jejunum, whereas oral administration of PBd significantly suppressed
the expression of apoptosis-related genes, such as Bax, Caspase-8, and Caspase-9, in the
jejunal tissue of ETEC-challenged piglets. These results suggest that oral administration
of PBd reduces ETEC-induced intestinal injury by improving the imbalance between cell
apoptosis and cell regeneration in ETEC-challenged piglets.

Oxidative stress is a major factor affecting the growth performance of weaning piglets,
as oxygen-free radicals generated by metabolism can cause cell damage and induce various
diseases [39,40]. The body’s antioxidant capacity is closely related to animal health, and
many studies have shown that probiotic preparations can enhance the antioxidant capacity
of animals and improve health status [41,42]. Nrf2 is a key nuclear transcription factor that
regulates oxidative stress by binding to antioxidant response elements and inducing the
expression of antioxidant enzyme-related genes [43]. Previous studies have shown that
the concentration of Nrf2 in cancer tissues and organs increases steadily [44]. Additionally,
mTOR regulates cellular antioxidant mechanisms to maintain redox balance, thus reducing
oxidative stress-induced cellular damage [45]. Beclin1 is an important regulatory factor
in the autophagy process, which maintains cellular homeostasis by clearing damaged
organelles and proteins [46]. Under oxidative stress, Beclin1-mediated autophagy is crucial
for removing oxidative damage and maintaining cell function. Our results show that
the ETEC challenge upregulated the mRNA expression of Nrf2 and GSH-Px, which is
consistent with Wen’s research results, and PBd intervention reversed this change [47]. In
addition, PBd also significantly downregulated the expression of mTOR and Beclin1. This
indicates that PBd from Ningxiang pigs enhances antioxidant capacity and reduces the
damage of ETEC treatment to tissues.

Post-weaning, the atrophy of intestinal villi in piglets can trigger inflammatory re-
sponses. Myd88 and p65 play crucial roles in inflammatory responses, particularly in
regulating the expression of inflammatory cytokines, such as IL-1β, IL-6, IL-10, and TNF-
α [48]. Myd88 is a key adaptor protein in the Toll-like receptor (TLR) signaling pathway,
mediating the activation of the TLR signaling pathway to activate NF-κB and induce inflam-
matory responses [49]. NF-κB p65 is an important component of the NF-κB pathway. Upon



Animals 2024, 14, 2156 11 of 14

TLR activation via Myd88, NF-κB p65 translocates to the nucleus and promotes the expres-
sion of inflammatory genes. Studies have shown that the activation of these pathways in
weaning piglets leads to a significant increase in inflammatory cytokines, such as IL-1β,
IL-6, IL-10, and TNF-α [50,51]. Liu et al. found that PBd may improve the inflammatory
response of T2D rats by regulating the TLR4/NF-κB pathway [52]. In addition, a previous
study showed that PBd is anti-inflammatory by reducing the signal pathways of TLR4,
Myd88, and Akt and stimulates apoptosis [53], which is partly consistent with our results.
Our study finds that oral administration of PBd can reduce the levels of inflammatory
cytokines in weaning piglets by modulating the TLR-Myd88-NF-κB signaling pathway,
thereby enhancing their anti-inflammatory capacity. Significantly, our results show the dif-
ferent expression of TNF-α, IL-6, and IL-8 in serum and jejunum tissue. This may be related
to tissue specificity. The serum shows a high degree of variability and captures immediate
responses, while gut tissue is more stable and responds to chronic or sustained changes,
which may be the reason for the differences in our results. This study indicates that PBd
from Ningxiang pigs can inhibit the production of pro-inflammatory cytokines, thereby
helping to maintain intestinal health and reduce weaning-induced intestinal inflammation.

One of the mechanisms by which probiotics inhibit the proliferation of intestinal
pathogens is through the fermentation of carbohydrates in the animal’s gut, producing
substantial amounts of SCFAs (acetate, propionate, and butyrate) [54]. SCFAs have been
identified as regulators of intestinal metabolism, proliferation, and differentiation and
can promote intestinal homeostasis by exerting anti-inflammatory effects [55]. Butyrate,
in particular, is a crucial energy source for intestinal epithelial cells, improving host gut
microbiota dysbiosis and significantly increasing the relative abundance of beneficial
bacteria [56]. Additionally, valerate can enhance intestinal barrier function at physiological
concentrations [57]. In this study, oral administration of PBd significantly increased the
levels of acetate, butyrate, and valerate in the colon of ETEC-challenged piglets. Our
result shows that PBd derived from Ningxiang pigs can help maintain gut health and
reduce weaning-induced intestinal inflammation by promoting the production of SCFAs in
the host.

5. Conclusions

Overall, PBd derived from Ningxiang pigs can reduce intestinal cell apoptosis lev-
els in ETEC-challenged piglets, enhance their intestinal antioxidant capacity and anti-
inflammatory levels, improve intestinal morphology, and increase the contents of SCFAs in
the colonic chyme, thereby promoting the growth of weaned piglets (Figure 7). It is neces-
sary to study further the potential mechanisms by which PBd improves intestinal health in
ETEC-challenged piglets and clarify the interaction between PBd derived from Ningxiang
pigs and ETEC. Although this study has some limitations, these results still provide an
effective method for preventing and treating intestinal injury caused by ETEC infection.
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specific molecular and cellular pathways involved; 2. Investigate the dynamic interactions
between PBd and ETEC within the intestinal microecological environment, analyzing their
impact on gut microbiota structure and function and 3. Explore the synergistic effects of
PBd with other gut health interventions to develop more effective integrated prevention
and treatment strategies.
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