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Abstract: Fish were kept for six weeks at three different initial stocking densities and water O2

concentrations (low-LD, 8.5 kg/m3 and 95–70% O2 saturation; medium-MD, 17 kg/m3 and 55–75%
O2 saturation; high-HD, 25 kg/m3 and 60–45% O2 saturation), with water temperature increasing
from 19 ◦C to 26–27 ◦C. The improvement in growth performance with the decrease in stocking
density was related to changes in skin and intestinal mucosal microbiomes. Changes in microbiome
composition were higher in skin, with an increased abundance of Alteromonas and Massilia in HD fish.
However, these bacteria genera were mutually exclusive, and Alteromonas abundance was related to a
reactive behavior and systemic growth regulation via the liver Gh/Igf system, while Massilia was
correlated to a proactive behavior and a growth regulatory transition towards muscle rather than
liver. At the intestinal level, microbial abundance showed an opposite trend for two bacteria taxa,
rendering in a low abundance of Reyranella and a high abundance of Prauserella in HD fish. This trend
was correlated with up-regulated host gene expression, affecting the immune response, epithelial cell
turnover, and abiotic stress response. Most of the observed responses are adaptive in nature, and
they would serve to infer new welfare indicators for increased stress resilience.

Keywords: gilthead sea bream; microbiota; behavior; gene expression; skin; intestine; stocking
density; Gh/Igf system

1. Introduction

Global aquaculture production has been increasing at a high rate since 1990 [1]. As a
consequence, the intensification of production must deal with inappropriate animal stock-
ing densities and impaired health and growth performance [2–4]. Hence, significant efforts
have been made to support the expansion of more sustainable aquaculture, combining
the criteria of economic profitability with enhanced control and regulation in health and
welfare assurance schemes [5–7]. In that sense, measurements of circulating cortisol levels
are the most widely used stress biomarker approach in farmed fish, though its reliability
in an aquatic scenario is limited by its large individual variability and dramatic increases
by sampling itself [7,8]. Alternatively, behavioral observations [9,10], the external appear-
ance of fish [11,12], and tissue-specific transcriptional features [13–17] arise as successful
integrated biomarker approaches for improving the sustainability of intensive fish farming.
Thus, linking the quantification of the stress response with fitness traits has the potential
to provide new physiological insights through life history, as earlier reported in birds
and reptiles [18,19]. Additionally, accelerated male-female sex reversal is also becoming a
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cumulative index of impaired welfare in protandric hermaphrodite fish such as gilthead
sea bream (Sparus aurata) [20].

The social context in which fish are kept also influences behavioral traits in school-
ing fish such as gilthead sea bream [21,22]. Certainly, escape behavior responses in fish
subjected to different restraint tests did not exhibit consistent responses with the changes
in social environment [23], though high stocking densities reinforced the social cohesion
of the population [24,25], while feeding time acts as a main zeitgeber factor or time-giver,
defined as the external cue that entrains the biological clock [26]. There is also now ev-
idence that swimming behavior and performance are genetically regulated in gilthead
sea bream [27,28], but we are still far from understanding all the regulatory processes
from the cell to the whole organism level. In this regard, it is noteworthy that Holhorea
et al. [26] displayed a growth-regulation transition from systemic to local growth-regulatory
mechanisms in fish stocked at high densities, which might also support a proactive (i.e.,
bold and aggressive responses, instead of a reactive (i.e., shy and subordinate responses)
behavior, according to Koolhaas et al. [29]. This functional feature was accompanied by
the up-regulation of antioxidant enzymes and molecular chaperones in addition to the fine
adjustments of lipolytic and lipogenic enzymes, which is considered adaptive in nature
to efficiently manage hypoxic environments at high fish stocking densities [14]. However,
the link between behavioral and metabolic homeostasis with microbial organisms remains
to be established, though it is well-known that resident gut microbiota modulates host
behavior in humans and terrestrial livestock [30–32]. Much of this earlier work regarding
bidirectional gut-brain communication has concentrated on digestive function and satiety,
but recent research focused on cognitive and psychological effects highlighted the associa-
tion of changes in cognitive function and gut microbiota composition following acute and
chronic stress events. Less is known in fish but given the critical role of microbiota in host
function, there is a recognized interest in shifting in this direction in farmed fish [33].

Gilthead sea bream is one of the main cultured fish in the Mediterranean region, and
it is well-known that its associated microbial communities play a key role in protection
against pathogens, nutrient digestion and absorption, and osmotic regulation [34,35]. In
the gut, genetics strongly modulated the mode of action of a given feed additive upon the
gilthead sea bream gut microbiota and its interconnection with a wide range of physiologi-
cal processes at local and systemic levels [36,37]. A shift towards the characterization of
microbiota is also being undergone to evaluate and improve fish welfare and nutrition,
disclosing clear perturbations of skin [38] and intestinal microbiota composition [39] fol-
lowing episodes of chronic stress. Thus, as stated before, it is clear that the diversity of
microbial communities can change the ecosystem and reflect the state of fish under different
environmental conditions [40]. Calculating different factors, such as microbial richness,
alpha-, and beta-diversity among individuals, emerges as the key to clarifying how aqua-
culture individuals react as a population [41]. Thus, according to the hologenome theory
of evolution, the holobiont (host-microbiome system) might act as a unit of evolutionary
selection, facilitating the fast genomic changes of the microbiota and the adaptation of the
holobiont to constantly changing environmental conditions [42,43]. Such integration may
even account for complex biological phenomena, such as certain behaviors, which have
led to the use of the concept “psychobiotics” for the treatment of various neurological and
behavioral disorders by targeting the gut microbiota [44,45]. The field is now running to
mechanistic studies in humans, but the behavior and microbiota associations are still in
an early state in animal production and fish farming in particular. To address some of
these pressing knowledge gaps, this study aimed to disclose how behavior and microbiota
are related in gilthead sea bream, focusing on skin and intestine microbiota and their
associated shifts with growth and metabolic homeostatic markers in a crowding stress
experiment of limited oxygen (O2) availability and temperature changes that mimicked
the crowding and oxygen conditions of most Mediterranean farms during the summer
on-growing finishing phase. To do this, a six-week trial during the summer was carried
out to characterize the microbiome of two-year-old fish growing at three different stocking
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densities (LD, 6–8.5 kg/m3; MD, 12–17 kg/m3; HD, 22–25 kg/m3) under controlled water
O2 concentrations (LD, 95–70% saturation; MD, 75–65% saturation; HD, 60–45% saturation).
This study is part of an integrative behavioral, microbial, and transcriptional approach
with the double aim of improving welfare monitoring and underscoring a series of stressful
responses that serve to alert and adapt the organism in different ways.

2. Materials and Methods
2.1. Ethics Statement

All procedures were approved by the Ethics and Animal Welfare Committee of IATS
and CSIC (2021/VSC/PEA/0192). Fish manipulation and tissue collection were carried
out in a registered installation facility (ES120330001055) under the principles published in
the European Animal Directive (2010/63/EU) and Spanish laws (Royal Decree RD53/2013)
for the protection of animals used in scientific experiments.

2.2. Experimental Setup and Sampling

Fish used in the present study were sourced from the work of Holhorea et al. [26],
carried out in a flow-through system following the natural changes in day length and tem-
perature. Briefly, 462 two-year-old fish with an average body weight across experimental
groups of 479.62 ± 3.43 g were pit-tagged and redistributed in duplicated 3000 L cylindrical
tanks at three different stocking densities (LD, 6 kg/m3; MD, 12 kg/m3; HD, 22 kg/m3).
Fish were then grown up from May to July (6 weeks) until they achieved rearing densities of
8.5 kg/m3 (LD), 17 kg/m3 (MD), and 25 kg/m3 (HD), with individually averaged specific
growth rates of 0.66 ± 0.01, 0.62 ± 0.01, and 0.39 ± 0.01, respectively. Fish were fed daily
(12:00 A.M.) with automatic feeders to near-visual satiety with a commercial diet (Biomar,
Palencia, Spain). Water inlet and aeration were regulated daily to maintain differentially
controlled water O2 concentration (LD: 5–6 ppm, 70–95% saturation; MD: 4–5 ppm, 55–75%
saturation; HD: 3–4 ppm, 45–60% saturation). Salinity (38–40 ppt) and pH (8.1–8.2) were
constant during all the experiments, and the water temperature increased from 19 ◦C to
26–27 ◦C according to seawater natural conditions. Weekly determinations of unionized
ammonia were always below the toxic threshold level (<0.05 mg/L).

At the end of the trial, 12 fish per treatment (non-feeding fish) were individually
monitored during two consecutive days with high-frequency recording data loggers (AE-
FishBIT) [27] attached to the operculum for the precise tracking of endogenous swimming
activity and respiratory frequency rhythms in the rearing tanks with minimal animal
disturbance [10,28]. The same fish were used for the assessment of fish appearance (fin
damage and skin lesions), blood stress markers (glucose and cortisol), and liver and muscle
gene expression signatures by customized PCR arrays of stress-responsive genes already
reported in Holhorea et al. [26]. Additionally, as part of the specific analyses of the present
study, different tissue samples were taken to analyze the mucosal microbiota and gut tran-
scriptome. Briefly, skin mucus was collected by gently scraping the left side of the fish with
a clean microscope slide from the operculum to the tail, avoiding the collection of blood,
urine, and feces along with mucus. The collected skin mucus was stored in sterile tubes
and immediately frozen at −80 ◦C until use. Concerning the anterior intestine (AI), tissue
portions of approximately 0.4 cm were put into RNA later for gene expression analysis by
RNA-seq. For microbial analysis, the remaining part of the AI was cut out, opened, washed
with sterile PBS to remove non-adherent bacteria, and the mucus was scrapped off using
the blunt edge of a sterile scalpel. The collected intestinal mucus was kept on ice in sterile
tubes, and bacterial DNA was immediately extracted after the completion of sampling.

2.3. Nucleic Acid Extraction

DNA from up to 200 µL of skin and intestinal mucus samples was extracted using a
High Pure PCR Template Preparation Kit (Roche, Basel, Switzerland), including a lysozyme
lysis step for optimized DNA extraction [46]. RNA from AI samples was extracted and
processed for gene expression analyses as described elsewhere [46].
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2.4. Nanopore 16S rRNA Gene Sequencing and Bioinformatic Analysis

For the skin mucus samples, the complete 16S rRNA gene (V1–V9) was sequenced
using the ONT MinION (Oxford Nanopore Technologies, Oxford, UK) device and the 16S
Barcoding Kit 1–24 (SQK-16S024), according to the manufacturer’s protocol, including
modifications of input DNA and PCR conditions described elsewhere [47]. The ampli-
fied DNA was quantified using PicoGreen™ (Life Technologies, Carlsbad, CA, USA),
and libraries of 100 fmol were loaded into the ONT MinION device. Libraries were
sequenced using an R9.4/FLO-MIN106 flow cell and demultiplexed using MinKNOW
v21.11.17. The sequencing was stopped when approximately an average of 100,000 reads
per sample was achieved, which constituted a sequencing run time of 21–23 h. Between
runs, the ONT-MinION flow cell was washed according to the ONT Flow Cell Wash Kit
(EXP-WSH004) instructions.

After sequencing, basecalling was performed with Guppy v5.1.12, using the default
parameters. The resulting FASTQ reads were pre-processed using Porechop v0.2.4 (https:
//github.com/rrwick/Porechop; accessed on 25 September 2022) for removing sequencing
adapters from reads, NanoFilt v2.8.0 [48] for filtering reads below 1200 base pairs (bp)
and above 1800 bp, and Yacrd v0.6.2 [49] for chimera detection and removal. Sequences
were assigned as distinct amplicon sequence variants (ASVs) and subsequently mapped
for taxonomy assignment with Minimap2 v2.17-r941 [50], using SILVA v138.1 [51] as the
reference database. Raw sequence data were uploaded to the Sequence Read Archive
(SRA) under Bioproject accession number PRJNA1039578 (BioSample accession numbers:
SAMN38222399-429).

2.5. Illumina 16S rRNA Gene Sequencing of Gut Mucus Samples and Bioinformatics Analysis

For intestinal microbiota analysis, the V3-V4 region of the 16S rRNA gene was se-
quenced using the Illumina (San Diego, CA, USA) MiSeq platform (2 × 300 paired-end
runs) at the Genomics Unit of the Madrid Science Park Foundation (FPCM), as described
elsewhere [46]. Three samples, one per treatment, failed amplification and were removed
from further analysis. FASTQ forward and reverse reads were quality-filtered and pre-
processed using FastQC and Prinseq v0.20.4 [52]. Terminal N bases in both ends were
trimmed, and sequences with >5% N bases, <150 bp long, a Phred quality score < 28 in both
ends, or a Phred average score < 26 were discarded. Clean forward and reverse reads were
merged with fastq-join [53]. For bacterial taxonomic assignment, reads were aligned using
the VSEARCH database v2.15.1 and the BLAST database v2.8.1 [54,55]. Raw sequence data
were uploaded to the Sequence Read Archive (SRA) under Bioproject accession number
PRJNA1039578 (BioSample accession numbers: SAMN38222430-456).

2.6. Host Intestinal RNA Sequencing and Bioinformatic Analysis

Concerning the host gut transcriptomic analysis, 30 (10 fish/group) RNA-seq libraries
were prepared and sequenced on an Illumina Novaseq 6000 platform in a 2× 150 nucleotide
paired-end (PE) read format according to the manufacturer’s protocol at the GENEWIZ
company (Leiden, Germany). Details of the bioinformatic analyses are described else-
where [36]. Briefly, quality analysis was performed with FastQC; libraries were filtered
with Trimmomatic v0.40 [56] and mapped and annotated with Hisat2 v2.0.5 [57], using
the CSIC gilthead sea bream genome as a reference [58]. Unique transcript hit counts
were calculated by using featureCounts v1.5.0-p3 from the Subread package [59]. Raw se-
quence data were uploaded to the Sequence Read Archive (SRA) under Bioproject accession
number PRJNA1039578 (BioSample accession numbers: SAMN38222457-486).

2.7. Statistics and Visualizations

For 16S rRNA gene sequencing data, rarefaction curves were obtained using the R
package phyloseq v1.41.1 [60]. For all analyses, sample depths were normalized by total sum
scaling and made proportional to the total sequencing depth [61]. Differences in richness
(Chao1 and ACE), diversity indexes (Shannon and Simpson), and phylum and microbial
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abundance were determined by the Kruskal-Wallis test followed by Dunn’s post-test, with
a significance threshold of p < 0.05. The beta diversity across groups was tested with
permutation multivariate analysis of variance (PERMANOVA) using the non-parametric
method adonis (10,000 random permutations) in the R package vegan [62]. To study the
separation between experimental groups, partial least-squares discriminant analyses (PLS-
DA) were performed using EZinfo v.3.0 (Umetrics, Umeå, Sweden), and Hoteling’s T2

statistic was calculated using the same software to detect and report outliers in the model.
The contribution of the different taxonomies to the group separation was determined

by the minimum variable importance in the projection (VIP) values, where a VIP score ≥ 1
was considered to be an adequate threshold to determine discriminant taxa in the PLS-DA
model [63]. The quality of the PLS-DA model was evaluated by the parameters R2Y (cum)
and Q2 (cum), which indicate fit and prediction ability, respectively. The Bioconductor R
package ropls [64] were used to assess whether the supervised model was being overfitted
(500 random permutations validation test). To determine the bacteria genera that most
likely explain differences between the three experimental groups, a linear discriminant
analysis (LDA) effect size (LEfSe) [65] was conducted using the Bioconductor R package
microbiomeMarker [66] and bacteria taxa with VIP ≥ 1.

For RNA-seq analyses, 6150 differentially expressed (DE) transcripts (p < 0.05, One-
Way ANOVA) in at least one of the group comparisons were retrieved using DESeq2 [67].
These transcripts were used to construct a PLS-DA model, and the discriminant transcripts
(VIP ≥ 1) were used to perform K-means analysis using iDEP.951 (http://bioinformatics.
sdstate.edu/idep95/; accessed on 3 October 2022) to separate transcripts by expression
patterns. Transcripts in the different clusters were analyzed by Fisher test-based over-
representation analyses of gene ontology-biological process (GO-BP) terms using ShinyGO
v 0.76 [68], and statistical significance was accepted at FDR < 0.05. Enriched GO-BP terms
were clustered in arbitrary supra-categories, their relationships according to their shared
transcripts were retrieved using the runGSA function of the piano R package [69], and the
resulting networks were visualized with Cytoscape v3.8.2 [70].

For correlation analyses of changing bacteria from skin microbiota and gathered
biomarkers, pairwise Spearman correlation coefficients were calculated for samples from
the population of a given experimental group (HD fish). The corresponding p-values were
calculated using the cor.test function of the corrplot R package [71]. Significant correlations
at p < 0.01 and p < 0.05 were visualized with Cytoscape v3.8.2 [70].

3. Results
3.1. Skin Mucus Composition and Diversity Analysis

Results of the assessment of fish appearance, blood stress markers, and liver and
muscle gene expression signatures can be found in Holhorea et al. [27]. The ONT-MinION
sequencing yielded 3.2 million high-quality reads (107,600 mean reads per sample) that
were taxonomically assigned at a mean rate of 92.2% (Table S1A). Rarefaction curves ap-
proximated saturation and showed good coverage of the bacteria community (Figure S1),
allocated in five phyla and 25 families with ≥0.5% average abundance in at least one exper-
imental group. Richness (Chao 1 and ACE) and alpha diversity (Shannon and Simpson) in-
dexes were significantly lower in HD fish in comparison to MD and LD fish (Figure 1A–D).
In all fish groups, the dominant phylum was Proteobacteria, with abundances varying
from 90% (HD and MD fish) to 70% (LD fish). The second most abundant phylum was
Firmicutes, which gradually increased from 2% to 15% with the decrease in stocking density.
The same trend was followed by Cyanobacteria, Actinobacteria, and Bacteroidetes, though
no significant changes were found in the case of Bacteroidetes (Figure 1E). At a family
level (Figure 1F), the phylum Proteobacteria was mostly represented by Alteromonadaceae,
with abundances varying from 40–37% in HD and LD fish to 12% in LD fish. Oxalobac-
teraceae was the second family most represented in HD fish (~40%), but its abundance
decreased drastically in MD and LD fish, with abundances lower than 0.5%. Conversely,
Pseudomonadaceae and Halomonadaceae (13% of the total abundance) were consistently
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more abundant in the MD group, whereas the highest abundance of Xanthobacteraceae,
Staphylococcaceae, Salinisphaeraceae, Rhizobiaceae, and Aerococcaceae (26% of the total
abundance) was achieved in LD fish.
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Figure 1. Skin microbiota, diversity, and composition. Species richness estimates (Chao 1 (A) and
ACE (B)) and diversity indexes (Shannon (C) and Simpson (D)) of the bacterial communities from
the skin of the gilthead sea bream reared at high (HD, n = 10), medium (MD, n = 10), and low (LD,
n = 10) density; (E) bar chart representing the relative abundance in percentage of bacterial phyla in
the different groups. Only phyla with an abundance higher than 0.5% in at least one group are shown;
(F) bar chart represents the relative abundance in percentage of bacterial families in the different
groups. Only families with an abundance higher than 0.5% in at least one group that show significant
differences among groups are shown. Different letters represent statistical differences among groups
within the same parameter or taxa (Kruskal–Wallis + Dunn’s, p < 0.05).

The number of skin mucus bacteria that are unique to each experimental group was
regulated by stocking density, as shown in the PERMANOVA beta-diversity test (F = 7.405,
R2 = 0.35, p < 0.001). Such microbiota differentiation was also evidenced by discriminant
analysis that separated the three experimental groups with a correct classification of all
individuals in each group (Figure 2A). The fitted PLS-DA model was statistically validated
(R2Y (cum) = 99%; p < 0.05; Q2 (cum) = 82%; p < 0.05), explaining the two first components,
43.76% and 44.13% of the total variance. The fit of the PLS-DA model was validated by a
permutation test (Figure S2). The resulting bacteria with significant VIP values (≥1) were
284 (Table S2A), which comprised almost the totality of the skin mucus bacteria taxa. After
LEfSe analysis, the bacterial taxa with discriminant value were reduced to six genera, five
of them belonging to Proteobacteria (Alteromonas, Massilia, Pseudomonas, Bradyrhizobium,
and Photobacterium) and one to the Firmicutes (Staphylococcus) phyla (Figure 2B). At a closer
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look, a higher abundance of Alteromonas and Massilia was observed to be present in HD
fish, while Pseudomonas was highly represented in MD fish. Conversely, Staphylococcus,
Bradyrhizobium, and Photobacterium were overrepresented in LD fish.
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least squares discriminant analysis (p < 0.05) scores plot (PLS-DA) constructed using the taxonomic
composition of the skin microbiota of gilthead sea bream reared at high (HD, n = 10, red dots),
medium (MD, n = 10, blue dots), and low (LD, n = 10, green dots) density. Each square represents the
distribution of the individual samples between the first two components in the model. (B) Linear
discriminant analysis effect size analysis performed at the level of genus represents the significant
biomarkers for each group and their abundance in normalized counts.

3.2. Skin Mucus Correlation Network

The results of the assessment of fish appearance, blood stress markers, and liver
and muscle gene expression are described in Holhorea et al. [27]. Despite the over-
representation of Alteromonas and Massilia in the skin mucus of HD fish, correlation network
analysis evidenced an opposite trend for these two bacteria with the increase in stocking
density (Figure 3A). An increased abundance of Alteromonas in HD fish was concurrent
with an enhanced hepatic expression of growth (igf1, igf2), lipid metabolism (cyp7a1), and
oxidative metabolism-related stress markers (cs, cox1). Conversely, a higher abundance of
Massilia in the skin mucus of HD fish was concurrent with the up-regulated expression of
seven genes related to growth (ghr1, ghr2, igf2), antioxidant defense (grp170, grp75), and
energy metabolism (sirt1, hif1α), all of which (except ghr1) were up-regulated in HD fish in
comparison to MD/LD fish. This integrative approach also rendered a different behavioral
pattern, in which Alteromonas abundance and low plasma cortisol levels appeared related
to depressed activity and respiratory rates (reactive behavior) that might contribute to
preserving growth at high stocking densities through transcriptionally mediated changes
at the hepatic (systemic) level. In addition, a higher abundance of Massilia was directly
or ultimately correlated (p < 0.05) with the regulation of different biological processes at
the local level (white skeletal muscle), which was concurrent with a proactive behavior
(increased activity and respiratory rates) with increased signs of skin erosion due to the
competition for available space and the distributed feed. Its changes in abundance were
also related to other bacterial changes, which rendered an increased abundance of Bradyrhi-
zobium, Pseudomonas, and Photobacterium in combination with a lower representation of
Staphylococcus (Figure 3B). Data on bacterial taxa for correlation analysis can be found in
Table S3B.
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Figure 3. Skin microbiota and gathered biomarker analyses: (A) Correlation network performed
on data from high-density reared fish (HD) showing significant positive (red lines) and negative
(green lines) correlations (Spearman, p < 0.05) of discriminant skin microbiota (light orange, reduced
abundance in HD; dark orange, increased abundance in HD) with biomarkers of external damage
(red), growth (pink), behavior (green), blood stress indicators (purple), and liver (yellow) and muscle
(blue) differentially regulated genes; (B) Correlation of Massilia with the regulation of biological
processes at the local level indirectly correlated to proactive behavior. Its changes in abundance
were related to other bacterial changes. Conversely, Alteromonas was related to depressed activity
and respiratory rates, indirectly correlated to reactive behavior. grp170: Glucose-regulated protein
170 kDa; sirt1: Sirtuin 1; grp75: Glucose-regulated protein 75 kDa; ghr1: Growth hormone receptor
1; hif1α: Hypoxia inducible factor 1α; ghr2: Growth hormone receptor 2; cs: Citrate synthase; cox1:
Cytochrome c oxidase subunit 1; cyp7a1: Cholesterol 7-Alpha-monooxygenase; igf2: Insulin growth
factor 2; igf1: Insulin growth factor 1; SGR: Specific Growth Rate; CF: Condition Factor.

3.3. Intestinal Microbiota Composition and Diversity Analysis

The Illumina MiSeq rendered 5.6 million raw reads (202,428 mean reads per sample)
that were taxonomically assigned at a mean rate of 54% (Table S1B). Rarefaction curves
approximated saturation and showed good coverage of the bacteria community (Figure S3),
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allocated in seven phyla and 23 families with more than 0.5% abundance in at least one
experimental group. Richness estimates (Chao 1 and ACE) and alpha diversity (Shannon
and Simpson) indexes were not significantly altered by the different stocking densities
(Figure 4A–D). In all experimental groups, the dominant phyla were Proteobacteria (25–65%),
Actinobacteria (21–48%), Firmicutes (9–18%), and Bacteroidetes (1.5–2%). Proteobacteria was
the most abundant phylum in the MD and LD groups, while the Actinobacteria phylum
was overrepresented in the HD group (Figure 4E). At the family level, the abundance of
the Pseudonocardiaceae family (Actinobacteria phylum) increased to 20% with the highest
stocking density, decreasing below 5% in the MD and LD groups. Likewise, the Bacillaceae_1
family belonging to the phylum Firmicutes significantly increased its abundance (7.8%) in
comparison to MD/HD fish (3.9–3.0%). Conversely, the Proteobacteria family’s Reyranellaceae
and Pseudomonadaceae (4.5% and 1.14% in total) were less abundant in HD fish than in
MD/LD fish (24–12% and 7.4–3.6% in total) (Figure 4F).
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Variations in intestinal microbiota composition with fish stocking were also evi-
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p < 0.001). Such microbiota differentiation was reinforced by discriminant analysis, and 

Figure 4. Gut adherent microbiota, diversity, and composition. Species richness estimates (Chao 1 (A)
and ACE (B)) and diversity indexes (Shannon (C) and Simpson (D)) of the bacterial communities
from the anterior intestine of gilthead sea bream reared at high (HD, n = 9), medium (MD, n = 9), and
low (LD, n = 9) density; (E) bar chart representing the relative abundance in percentage of bacterial
phyla in the different groups. Only phyla with an abundance higher than 0.5% in at least one group
are shown; (F) bar chart represents the relative abundance in percentage of bacterial families in the
different groups. Only families with an abundance higher than 0.5% in at least one group that show
significant differences among groups are shown. Different letters represent statistical differences
among groups within the same parameter or taxa (Kruskal–Wallis + Dunn’s, p < 0.05).

Variations in intestinal microbiota composition with fish stocking were also evidenced
by changes in beta-diversity (PERMANOVA beta-diversity test, F = 3.472, R2 = 0.22,
p < 0.001). Such microbiota differentiation was reinforced by discriminant analysis, and the
two first components of the fitted PLS-DA, putting together MD/LD fish, explained 91% of
the observed variance (R2Y(cum), p < 0.05) and 65% of the predicted variance (Q2 (cum),
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p < 0.05) (Figure 5A). The fit of the PLS-DA model was validated by a permutation test
(Figure S4). The number of bacteria taxa with significant VIP values (≥1) was 29 (Table S2B),
representing more than 71% of the total bacteria population. LEfSe analysis identified
the increased abundance of the Prauserrella genus (Actinobacteria) in concurrence with the
decrease of Reyranella (Proteobacteria) as the most characteristic intestinal microbiota feature
of our high density stocked fish (Figure 5B).
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Figure 5. Gut adherent microbiota, discriminant analyses, and biomarkers: (A) Two-dimensional
partial least squares discriminant analysis (p < 0.05) scores plot (PLS-DA) constructed using the
taxonomic composition of the anterior intestine microbiota of gilthead sea bream reared at high (HD,
n = 9, red dots), medium (MD, n = 9, blue dots), and low (LD, n = 9, green dots) density. Each square
represents the distribution of the individual samples between the first two components in the model;
(B) Linear discriminant analysis effect size analysis performed at the level of genus, representing the
significant biomarkers for each group and their abundance in normalized counts.

3.4. Intestinal Wide-Transcriptomic Analysis

A total of ~1823 million PE reads were obtained by RNA-seq, with an average of
~61 million reads per sample. After bioinformatic analysis (trimming, filtering, and map-
ping), ~90% of the total reads were mapped against the reference genome (Table S1C).
A total of 6150 differentially expressed (DE) transcripts (5368 unique descriptions, UD)
were retrieved by DESeq2 analysis, and the subsequent discriminant analysis separated
the three experimental groups with a correct classification of all individuals in each group
(Figure 6A). The resulting PLS-DA model was statistically validated (R2Y(cum) = 99%,
p < 0.05; Q2 (cum) = 90%, p < 0.05), explaining the two first components more than 47.38%
and 46.38% of the total variance. The fit of the PLS-DA model was validated by a per-
mutation test (Figure S5). This separation was driven by 2813 transcripts (2212 UD) with
significant VIP values (≥1) (Table S2C), which disclosed four different expression patterns
after K-means clustering: Cluster A, 800 transcripts (699 UD) with the highest expression
in LD; cluster B, 1103 transcripts (997 UD) with the highest expression in MD; cluster C,
222 transcripts (210 UD) with a gradual increase in expression with the rise of the stocking
density (LD < MD < HD); cluster D, 688 transcripts (594 UD) with the highest expression in
HD (Figure 6B).
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Figure 6. Gut transcriptome, discriminant, and K-means analyses: (A) Two-dimensional partial least
squares discriminant analysis (p < 0.05) scores plot (PLS-DA) constructed using the expression values
of all differentially expressed genes (DESeq2, p < 0.05) of the anterior intestine microbiota of gilthead
sea bream reared at high (HD, n = 10, red dots), medium (MD, n = 10, blue dots), and low (LD,
n = 10, green dots) density. Each square represents the distribution of the individual samples between
the first two components in the model. (B) K-means analysis separating the 2813 discriminant genes
(VIP > 1 in (A)) into four clusters based on the expression levels in the different groups (Z-score).
Different colors indicate different clusters, with blue indicating cluster A (n = 800, higher expression
in LD), yellow indicating cluster B (n = 1103, higher expression in MD), violet indicating cluster C
(n = 222, higher expression in HD and intermediate in MD), and green indicating cluster D (n = 688,
higher expression in HD).

3.5. Intestinal Mucus Correlation Network

To understand the biological processes in which the DE transcripts within each clus-
ter might be involved, an enrichment analysis was performed (Table S4). The enriched
GO-BP terms were displayed and clustered in eight supra-categories: response to stimulus
(189 transcripts), RNA metabolic process (8 transcripts), circadian rhythm (31 transcripts),
immune system and disease (125 transcripts), lipid metabolic process (9 transcripts),
regulation of molecular function (16 transcripts), cell development and differentiation
(21 transcripts), and regulation of protein localization (9 transcripts) (Figure 7A). Focusing
on the most abundant GO-BP supra-category, “Response to stimulus”, DE transcripts
within 16 GO-BP terms were significantly correlated with at least one bacteria taxa of
discriminant value (VIP ≥ 1) (Figure 7B). Filtering by Reyranella and Prauserella, Spearman
correlations (p < 0.01) disclosed a complex correlation network where up to eight genes
implicated in the response to hormones (urbr5, sstr2, seh1l, erfe, ppp1rgb, f7, ahcy, and mlst8)
interacted in the network and were negatively correlated with Reyranella, whereas up
to three genes (rictor, fzd9, acsl1) related to TOR signaling, Wnt signaling, and fatty acid
metabolism were positively correlated. In contrast, seven genes (hmgb, ufsp2, ubb, bckdhb,
lgmm, bnip3l, and kdm4a) mainly related to response to hormones, abiotic stimulus, and
hypoxia were negatively correlated with Prauserella, while 29 genes mainly related among
other processes to response to steroid hormone and organic cyclic compounds were posi-
tively correlated. Besides, Reyranella and Prauserella nodes were interconnected by five DE
transcripts (ncoa6, glb1, kdr, acsl1, nlrp3), which served to interrelate an overall stimulatory
rather than suppressive gut transcriptomic response with the increase in high stocking
densities (Figure 8). Such a feature, triggered, in turn, an over-representation of DE genes
belonging to K-means Cluster A (highly expressed genes in LD, 1506 UD) and Cluster
C/D (highly expressed genes in HD, 2503 UD) in the gut microbiome-host transcriptome
network. Of note, neither Prauserella nor Reyranella displayed significant correlations with
liver or muscle DE expressed genes with the changing stocking density. Data on bacterial
taxa for correlation analysis can be found in Table S3B.
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Figure 7. Gut transcriptome, gene ontology enrichment, and correlation with bacteria taxa:
(A) Network layout representing the associations between the supra-categories of overrepresented
GO-BP terms of gilthead sea bream according to their shared allocated terms. Node colors correspond
to the representative name of the supra-category; (B) Bar chart showing the percentage of genes
within the total identified in the “response to stimulus” supra-category that have been significantly
correlated with the abundance of at least one bacterial taxa.
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is extensive to farmed fish, which makes the reduction of feed intake with high stocking 
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Figure 8. Host-bacteria Cross-talk. Correlation network showing significant positive (straight lines)
and negative (dotted lines) correlations (Spearman, p < 0.01) between host differentially expressed
genes (circles) contained in the response to stimulus-enriched supra-categories from Figure 4 and
bacterial biomarkers (circles) from Figure 5B (VIP > 1, abundance >0.5% in at least one of the groups).
urbr5: UBR5 ubiquitin protein ligase E3 component n-recognin 5; sstr2: Somatostatin receptor 2; seh1l:
SEH1 Like Nucleoporin; erfe: Erythroferrone; ppp1rgb: Protein phosphatase 1 regulatory inhibitor
subunit ubiquitin-protein1B; f7: Coagulation Factor VII; ahcy: Adenosylhomocysteinase; mlst8: Target
of rapamycin complex subunit LST8; rictor: RPTOR Independent Companion Of MTOR Complex 2;
fzd9: Frizzled Class Receptor 9; acsl1: Acyl-CoA synthetase long chain family member 1; hmgb: High
Mobility Group Box 1; ufsp2: UFM1 Specific Peptidase 2; ubb: Ubiquitin B; bckdhb: branched chain
keto acid dehydrogenase E1 subunit beta; lgmm: legumain; bnip3l: BCL2 Interacting Protein 3 Like;
kdm4: Lysine Demethylase 4A; ncoa6: Nuclear Receptor Coactivator 6; glb1: Galactosidase Beta 1; kdr:
Kinase Insert Domain Receptor; nlrp3: NLR Family Pyrin Domain Containing 3.

4. Discussion

High stocking densities and limited O2 availability are prevalent aquaculture stressors
with negative impacts on animal survival and productivity that become aggravated by
higher temperatures [72]. Certainly, thermal stress increases the production of reactive
oxygen species (ROS), and their negative effects in broilers and pigs are greater in fast-
growing animals than in slow-growing animals with lowered mitochondrial and metabolic
rates [73,74]. This improved thermo-tolerance with the decrease of basal metabolism is
extensive to farmed fish, which makes the reduction of feed intake with high stocking
densities, mild hypoxia, or thermal stress an adaptive response in nature [14,16]. Besides,
the mitigating effects of a given drawback stressor serve to alleviate the negative impact
of the other concurrent stressors. Hence, the impaired growth of gilthead sea bream in
the range of 10–20 kg/m3 was avoided by maintaining the water O2 concentration above
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55–70% saturation level [24,26,75]. In this way, the stocking density can be increased
up to 36–44 kg/m3 without any evident drawback effect on gilthead sea bream growth
performance when the water O2 concentration is maintained above 100% saturation [39],
which is indicative of the complexity of the responses arising from crowding and hypoxia
stress in fish [76]. This notion is supported at the transcriptional level by a tissue-specific
orchestration of the stress response that reflects the different metabolic capabilities of each
tissue as well as the nature and intensity of the hypoxic and crowding stress stimuli [14].
This is reinforced by the improvement of swimming performance by mild-hypoxia pre-
conditioning through a muscle transcriptome reprogramming that persisted, at least in
part, during a subsequent 3-week normoxia recovery period [77]. The association of high
stocking density with changes in behavioral traits has also been established in gilthead sea
bream, and it was noticeable that the perception of a higher competence for the available
feed increased social cohesion among individuals [25,26]. Besides, the study of Holhorea
et al. [26] displayed a growth-regulatory transition from systemic to local growth regulatory
mechanisms, which might support proactive instead of reactive behavior. How these
changes in behavioral traits can be driven or not by changes in the skin or gut microbiome
is discussed below based on a host-16S rRNA-transcriptomics correlation network analysis.

Experimental evidence in humans and animals shows that abnormal behavior is partly
driven by changes in gut microbiota composition within the phylum Firmicutes, resulting
in increased pro-inflammatory and lactic acid-producing bacteria and decreased butyrate-
producing bacteria [78,79]. This gut dysbiosis is now recognized as a robust welfare marker,
leading to efforts to establish a healthy core microbiota across organisms, particularly
in farmed fish [80–82]. However, these efforts are challenged by the high variability of
microbial composition within and among different populations. New approaches become
necessary to overcome this variability and properly assess microbial dynamics [83]. The
advent of next-generation sequencing (NGS) has revolutionized the study of complex mi-
crobial communities, with third-generation sequencing further advancing this field [84,85].
Third-generation sequencing enables cost-effective, real-time long-read sequencing, allow-
ing for the use of the full 16S rRNA gene as a reliable phylogenetic marker [86,87]. Despite
lower per-read quality accuracy (92–93%), long-read sequencing often results in lower
taxonomic ambiguity compared to Illumina MiSeq V3-V4 amplified short-reads [88–90].
Optimized primer sets with the ONT MinION long-read sequencer have shown better
resolution in discriminating human gut bacteria [91]. However, using the ONT commercial
16S Barcoding Kit can mask low-abundant but important taxa (e.g., Actinobacteriota and
Bacteroidota) in gilthead sea bream gut microbiota compared to Illumina MiSeq results [47].
Therefore, our study used both Illumina MiSeq for intestinal microbiota and an in-house
ONT sequencing system for mucosal skin microbiota.

Earlier studies in fish have demonstrated that skin mucus has evolved as a metaboli-
cally active tissue with important roles in respiration, ionic and osmotic regulation, excre-
tion, locomotion, communication, sensory perception, thermal regulation, and immunolog-
ical defense, among others [92,93]. Thus, in many species, including gilthead sea bream, it
has been proven that several biochemical markers (e.g., cortisol, glucose, lactate, alkaline
phosphatase, transaminases) of skin mucus changed significantly under acute and chronic
stress [94,95]. Besides, different proteomic and multi-omics approaches integrating the skin
tissue and mucus layer have identified several responsive markers reflecting the activation
or inhibition of cell protein turnover and exudation machinery following overcrowding,
hypoxia, and/or repeated exposure to a fast series of automated stressors [95–98]. Likewise,
focusing on a microbial approach, Tapia-Paniagua et al. [99] highlighted that the presence
of skin ulcers provides microenvironments that perturb both the mucus composition and
microbial biodiversity, making farmed fish more vulnerable to diseases. There is also
now evidence that repeated air exposure over 4 weeks alters the composition of the skin
microbiota in gilthead sea bream [38], with an increased abundance of Pseudoalteromonas,
Rubritalea, and other bacteria taxa from the Actinobacteria phylum. Conversely, in our
crowding/hypoxia stress model, bacteria taxa from the Actinobacteria phylum were largely
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underrepresented in HD and MD fish, while Proteobacteria, followed by Firmicutes and
Bacteroidetes, were largely the most abundant phyla in all the studied fish groups. More-
over, after LEfSe filtering, five out of the six most discriminant bacteria taxa belonged to
the Proteobacteria phylum, making the increased abundance of Alteromonas and Massilia
a characteristic feature of HD fish in our experimental model, whereas the other three
Proteobacteria (Staphylococcus, Bradyrhizobium, and Photobacterium) were overrepresented in
LD fish as a main distinctive feature. Despite this, comparisons with this and other skin mi-
crobiota studies are difficult, if not impossible, due to differences in sequencing platforms,
fish strains, developmental stage, rearing system, nutritional condition, and nature and
intensity of stress stimuli, among other biotic and abiotic sources of variation. In any case,
from this and previous studies across farmed fish and wild fish populations inhabiting
different geographical locations, it appears that the over-representation of Proteobacteria and
Bacteroidota phyla is a main characteristic feature of the fish skin microbiota [35,82,100–102],
though the relative proportion of each bacteria phylum can remain highly variable.

At a closer look, Alteromonas species are large bacteria that can degrade and utilize
a broad spectrum of organic substrates. They can also produce and secrete a variety of
extracellular enzymes contributing to the hydrolysis of biopolymers, including polysaccha-
rides, proteins, nucleic acids, and lipids, which makes these bacteria members of the marine
master recycler [103]. Likewise, Massilia is widely present in wild and farming aquatic
environments [104–106], with species of this bacteria taxon showing an increased capacity
for degrading high aromatic compounds, including polycyclic aromatic hydrocarbons
(PAHs) [107]. Moreover, correlation analysis indicates that these two bacterial taxa were
mutually exclusive in our HD fish despite their averaged over-representation at the high
stocking density, which would be indicative that the changing Alteromononas/Massilia ratio
represents different dynamic stages of skin microbiota competition and assembly. In that
sense, integration of 16S rRNA sequencing with other multi-omics data on behavior, growth
performance, and tissue-specific gene expression helped us in assessing the flow of informa-
tion from one omics level to another, being indirectly correlated herein with the increased
abundance of Massilia with proactive behavior and a transition towards muscle/locally
regulated growth, while systemic growth regulation via the liver Gh/Igf system was related
to a persistent reactive behavior that was coincident with a skin mucus predominance of
Alteromonas over Massilia [26]. The varying contribution of systemic (via liver Gh/Igf axis)
and local growth-promoting actions on global growth are indicative of a different welfare
condition and metabolic readjustment of the endocrine-growth cascade through season,
development, and in response to a broad range of stressor stimuli [77,108]. As stated before
by Holhorea et al. [26], the way in which the growth-regulatory mechanisms are driven by
a different threshold level of O2 sensors requires further warrant, though it is noteworthy
that the expression of hif1α, a master regulator of hypoxia-mediated responses, was more
sensitive to the changing crowding and hypoxic condition in muscle than in liver. Taken
together, these findings also reveal potential bidirectional interactions between microbiota
and behavioral responses, which would serve to provide a means of regulating an animal’s
physiological state through adjusting interactions with the environment. However, caution
should be taken when inferring a causal relationship in the absence of controlled trials that
test the effects of probiotics and/or microbial transplants on behavioral and physiological
responses [109]. In any case, animal welfare science must expand its scope and method-
ological approaches to encompass the investigation of positive welfare states alongside
possible sources of suffering [110]. Only then will we be able to judge when and how we
might intervene in wild and farmed animals’ lives in a reliable manner.

From our results, it is also conclusive that the intestinal microbiota of gilthead sea
bream was more resilient than the skin microbiota to crowding and hypoxia stimuli, which
was consistent with the notion of a tissue-specific susceptibility of mucosal microbiota
to a given environmental stressor. Thus, overall available data show that fish external
mucosa frequently signal changes to temperature and diseases, whereas the gut micro-
biota is severely affected by antibiotic treatments and salinity [111]. This would also be
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the case in the present study, in which the magnitude of changes at the intestine level
was less evident than those found on the skin. By contrast, previous studies have evi-
denced that the gut microbiota of gilthead sea bream is highly regulated by diet and host
genetics [46,112,113]. Despite this, in the present study, it was noteworthy that the abun-
dance ratio of Reyranella/Prauserella dramatically decreased with the increase in stocking
density and limited O2 availability. Such a feature was the result of the opposite trend
of Reyranella and Prauserella, which rendered a low and high abundance of these bacteria
genera in HD fish, respectively. Importantly, the bacteria taxa of the genus Reyranella have
been previously described as abundant and stable taxa in gilthead sea bream, regardless
of genetic background [113]. Besides, Reyranella has been related to the production of
phenazines, which are known to possess broad-spectrum antibiotic activity against diverse
fungal, bacterial, and oomycete plant pathogens [114]. Less explored is the genus Prauserella,
though its presence has been reported in a marine environment [115], and members of its
taxonomic family (Pseudonocardiaceae) were related to the production of many nutritional
factors and a broad range of secondary metabolites, including antibiotics, enzymes, and
bioactive compounds [116]. In that sense, both Reyranella and Prauserella can be considered
beneficial for the preservation of intestinal function and health in challenged gilthead sea
bream, though it appears that their relative contribution to metabolic homeostasis is largely
altered by the environment.

The key role of intestinal health and function becomes reinforced by a transcriptional
integrative approach, which highlights the relevance of the connection of Reyranella and
Prauserella with a number of DE genes fitting to the response to stimulus-enriched supra-
categories. Importantly, this host-gut microbiota system interaction drives a stimulatory
rather than a suppressive transcriptional response that would involve four (nlrp3, kdr, glb1,
ncoa6) out of five genes acting as interconnectors of the Reyranella and Prauserella nodes. The
exception was the acsl1 gene, a key lipid metabolism enzyme that catalyzes the conversion
of long-chain fatty acids to their active form, acyl-CoAs; thus, it is suppressed expression
in HD fish would serve to maintain monocytes and macrophages responsiveness following
exposure to pro-inflammatory molecules produced after infection with gram-negative
pathogens at a low threshold level [117]. The nlrp3 inflammasome system is also involved
in maintaining the stability of the gut’s immune system, and its enhanced expression in
our HD fish would be viewed as an activated sensor that ultimately protects the body from
damage and pathogen insults [118]. Conversely, both kdr and ncoa6 act as main regulators
of epithelial cell proliferation and differentiation [119,120], and their interconnection with
the Reyranella/Prauserella system highlighted the contribution of gut microbiota in the regu-
lation of mucosal cell turnover in environmentally challenged fish. This is also extended to
other adaptive stress responses involving the up-regulated expression of glb1, which has
been related to improved resistance to abiotic stressors [121,122].

5. Conclusions

The interconnection between fish microbiome and stress responsiveness is a growing
area of research that is now considered vital to ensuring the development of sustainable and
welfare-oriented aquaculture practices. In that sense, the results of the present study aimed
to infer new laboratory and operational welfare indicators for increased stress resilience in
the context of rising temperatures and intensive rearing conditions to cover the increasing
demand for seafood-sustainable aquaculture products. It is noteworthy that high stocking
densities, in conjunction with limited O2 availability, were associated with changes in both
skin and intestinal mucosal microbial populations, though the skin appears especially
responsive to environmental changes. In that sense, correlation networks allowed us to
link skin microbial changes to a certain type of behavior and growth regulatory system,
while the changes observed at the intestinal level would contribute to preserving intestinal
function and integrity, maintaining highly regulated immune responses, and epithelial cell
turnover, among other important physiological processes.
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