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Abstract: This study analyzed flower bud differentiation and fruiting stages to investigate how
the structure of the plant endophytic microbial community in the roots of tomatoes changes with
plant senescence. Based on high-throughput sequencing technology, the diversity and relative
abundance of endophytic microorganisms (bacteria and fungi) in tomato stems at different growth
stages were analyzed. At the same time, based on LEfSe analysis, the differences in endophytic
microorganisms in tomato stems at different growth stages were studied. Based on PICRUSt2
function prediction and FUNGuild, we predicted the functions of endophytic bacterial and fungal
communities in tomato stems at different growth stages to explore potential microbial functional
traits. The results demonstrated that not only different unique bacterial genera but also unique fungal
genera could be found colonizing tomato roots at different growth stages. In tomato seedlings, flower
bud differentiation, and fruiting stages, the functions of colonizing endophytes in tomato roots could
primarily contribute to the promotion of plant growth, stress resistance, and improvement in nutrient
cycling, respectively. These results also suggest that different functional endophytes colonize tomato
roots at different growth stages.

Keywords: tomato (Solanum lycopersicum); endophytic; bacteria; fungi; growing stages

1. Introduction

Tomatoes are important vegetables, and improving their yield and quality has proved
to be an urgent task in modern China [1]. As it has been established, extending the harvest
period of vegetables is a good way to increase vegetable yields, for example, in asparagus
and broccoli [2,3]. In other words, a higher tomato yield may be achieved with a longer
harvest time and anti-aging effects [4].

The endophytic environment refers to specific locations within plant organs or tis-
sues, where microorganisms exert neutral, detrimental, or beneficial effects on their host
plants [5]. Endophytes have garnered attention because of their capacity to positively
influence plant growth and their indirect role as biocontrol agents [6]. A succession of
microbiomes throughout the growth cycle plays a pivotal role in the life history of plants.
However, the dynamics of the endophytic microbial communities during succession are
poorly understood [7]. Studies on the dynamics of rhizosphere microbial communities
during plant development have revealed that plant transitions may be divided into the
accumulation of random resources in the early stages and high-density functionally com-
plementary communities in later stages, which could provide resistance against bacterial
pathogens [8,9].
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The necessary conditions for the survival, succession, and colonization of different mi-
crobial taxa can change with the development of plants, as observed in the rhizosphere and
phyllosphere microbiomes, which vary with growth stage or age [10,11]. Core microbiomes,
such as the root and leaf tissues of wheat [12], tomato leaves [13], leaves of Arabidopsis [14],
and leaves and roots of Boechera stricta [15], could be altered. Robinson et al. reported that
significant differences in endophytic bacteria could be detected in wheat during various
growth stages [16]. The community structure of endophytic bacteria exhibits different nu-
trient distributions as plants age [6]. Plant tissues are additionally colonized by fungi [16],
with an increase in the relative abundance of fungi such as Chaetosphaeria [17]. Moreover,
the proliferation of fungi inhibits endophytic bacteria such as Streptomycetaceae [18] and
Burkholderiaceae [19].

Age-related immunity is a senescence-associated immune response that is microbiome-
dependent [14]. Previous studies have also confirmed that cytokinin-mediated immunity
related to microbial contents varies with the age and developmental status of plants;
cytokinin levels are significantly lower in mature plant tissues than in seedlings [20].
It has also been suggested that higher cytokinin levels in seedlings might support more
abundant bacterial communities within the seedling stage. However, the elevated cytokinin
levels decrease over time as the plants mature. In Arabidopsis, a potential decline in
senescence-related bacteria can also be detected with decreasing cytokinin levels [21]. As
cytokinin levels fundamentally alter senescence in plant development, it can support plant
meristematic tissues, such as in rice and Arabidopsis [22], in delaying senescence and
preserving ‘youthfulness’, viz., anti-aging, at high cytokinin levels.

Different dominant microbes present in tomato roots at various developmental stages
and have beneficial effects, such as growth-promoting characteristics [8,23]. For instance,
photosynthetic bacterial communities at different growth stages demonstrate significant
differences, with the highest functional diversity of photosynthetic bacteria being observed
at the seedling stage [24]. Fruit maturation is additionally regulated by multiple factors,
including a metabolic network coordinated by environmental factors, physiological factors,
and various signaling molecules and hormones [25]. Moreover, significant changes have
been detected in the accumulation of carbohydrates, free amino acids, organic acids, and
volatiles during maturation [26].

We hypothesized that the endophytic microorganisms in tomato roots at different
developmental stages could assemble in different community structures. Therefore, this
study aimed to explore how differences in the endophytic microbial compositions in tomato
roots change at different developmental stages.

2. Materials and Methods
2.1. Experimental Site Description and Design

The experiment was conducted from September 2020 to March 2021 in the greenhouse
of the experimental base of the College of Agriculture of Guangxi University (108◦17′ E,
22◦51′ N). The highest temperature in the site was 34 ◦C, the minimum temperature was
16 ◦C, and the average temperature was 22 ◦C. The tomato variety Zhongyan 868(R) was
used in this study. The seeds were purchased from Zhongyan Yinong Seedling Technology
Co., Ltd., Beijing, China. The experimental pots (height: 35 cm, diameter: 50 cm) were filled
with 20 kg of soil. The soil type of the study area was acid red loam. Before planting, there
were no plants on the soil surface.

A total of three groups were established to sow and raise seedlings on 10 September,
10 October, and 10 November 2021, with 15 plants planted in each group. The groups
comprised the seedling stage (GY) (30 d after sowing), the flower bud differentiation stage
(GH) (60 d after sowing and flowering), and the fruiting stage (GJ) (100 d after sowing and
fruiting). The tomato root samples from each group were collected simultaneously on 20
December 2021, at the GY, GH, and GJ stages.
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2.2. Soil Physicochemical Properties

Soil pH value was determined with a pH meter (soil/water ratio: 2/5, w/v); and
the soil organic matter (SOM) content was determined by an external heating method
using potassium dichromate. Soil total nitrogen (TN) content was quantified using the
Kjeldahl acid digestion method; soil total phosphorus (TP) content was quantified using
the molybdate blue method after acid digestion. Soil total potassium (TK) was determined
using alkali fusion flame spectrophotometry; soil available nitrogen (AN), phosphorus
(AP), and potassium (AK) were measured using the alkali diffusion method, double acid
method, and flame photometry, respectively [27].

The pH was 5.7 and the contents of organic matter and total nitrogen, phosphorus, and
potassium were 8.42 g·kg−1, 0.51 g·kg−1, 0.67 g·kg−1, and 7.21 g·kg−1, respectively. Mean-
while, the contents of available phosphorus, potassium, and nitrogen were 0.59 mg·kg−1;
51.01 mg·kg−1, and 13.17 mg·kg−1, respectively.

2.3. Root Sample Collection

A total of three plants were randomly selected with the same growth. The above-
ground part was cut and the roots were removed completely after disassembling the
flowerpot. The substrate that was attached to the roots was removed, and the root samples
were collected from the plants with disinfected scissors. Each sample of 10 g was taken
and placed into a sterile sealed bag, labeled, placed into a foam plastic box filled with
ice, and transferred to the laboratory immediately. The sample was followed by a 1 min
wash in 95% ethanol, a 14 min wash with agitation in sodium hypo-chlorite solution (1.4%
active chlorine), and a 10 s wash in 95% ethanol, followed by 10 rinses in sterile water with
agitation. The samples were then stored in a refrigerator at 4 ◦C for immediate analysis or
at −80 ◦C for later use [28,29].

2.4. Analysis of Endophytic Microbial Composition

Extraction, PCR amplification, and sequencing of total DNA from root samples were
performed by Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China). The total DNA
was extracted using the EZNA Soil DNA Kit (Omega Company, Irving, TX, USA), as per
the manufacturer’s instructions. The DNA concentration and purity were detected using a
NanoDrop2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA), and the
purity and quality of the genomic DNA were checked on a 1% agarose gel.

PCR products were extracted from 2% agarose gel, purified using an AxyPrep DNA
gel extraction kit (Axygen Biosciences, Union City, CA, USA) according to the manufac-
turer’s instructions, and quantified using a Quantus fluorescence fluorimeter (Promega,
Madison, WI, USA). For Illumina MiSeq sequencing, the PCR products of the same sam-
ple were purified using an AxyPrep DNA gel extraction kit (Axygen Biosciences, Union
City, CA, USA), mixed, and detected using 2% agarose gel recovery. A Quantus fluores-
cence fluorometer (Promega, USA) was used to quantify the recovered products. Library
construction was carried out using the NEXTFLEX® Rapid DNA-Seq Kit [27]. For en-
dophytic bacteria, the primer set 799F (5′-AACMGGATTAGATACCCKG-3′) and 1193R
(5′-ACGTCATCCCCACCTTCC-3′) was used to amplify the V5–V7 hypervariable regions
of the 16S rRNA gene [30]. Sequencing was performed using the Illumina MiSeq PE250
platform (Illumina, Inc., San Diego, CA, USA) For endophytic fungi, the primer set ITS1F
(5′-CTTGGTCATTTAGAGAAGTAA-3′) and ITS2R (5′-GCTGCGTTCTTCATCGATGC-3′)
was used [31]. Sequencing was performed using an Illumina MiSeq PE300 platform (Illu-
mina, Inc., USA). Sequencing information of bacteria and fungi in root of tomatoes under
different growth stages are shown in Tables S1–S3.

UPARSE software [32] (http://drive5.com/uparse/, accessed on 13 January 2022),
version 7.1, was used to cluster the operational taxon (OTU) with 97% similarity cut-off,
and the chimeric sequence was identified and removed. The specific process and the OTU
clustering steps were as follows: (1) extract non-redundant sequences from the optimized
sequences to reduce redundant calculations in the intermediate analysis process (http://

http://drive5.com/uparse/
http://drive5.com/usearch/manual/dereplication.html
http://drive5.com/usearch/manual/dereplication.html
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drive5.com/usearch/manual/dereplication.html, accessed on 13 January 2022); (2) remove
singletons, which are sequences that do not have duplicates (http://drive5.com/usearch/
manual/singletons.html, accessed on 13 January 2022); (3) perform OTU clustering on the
non-redundant sequences (excluding singletons) at 97% similarity, and remove chimeras
during the clustering process to obtain the representative sequences of OTUs; (4) map all
optimized sequences to the OTU representative sequences, select sequences with more than
97% similarity to the representative sequences, and generate the OTU table. The software
platform used was Uparse (version 7.0.1090 http://drive5.com/uparse/, accessed on 13
January 2022). We removed chloroplast and mitochondrial sequences and annotated them
in all samples, and leveled all sample sequence numbers to that minimum sample number.
After leveling, the average sequence of each sample reached 99.09%. Using a confidence
threshold of 0.7, the classification of each OTU representative sequence was analyzed
against a 16s rRNA gene database, Silva v138 (http://www.arb-silva.de, accessed on 13
January 2022) using RDP Classifier version 2.11 (http://RDP.CME.MSU.edu/, accessed on
13 January 2022). And the community composition of each sample was counted at different
species classification levels.

The raw data were uploaded to the NCBI database for comparison. The data of
the comparison database were taken from the following: bacterial from Silva 138 (http:
//www.arb-silva.de, accessed on 13 January 2022) and fungal from Unite 8.0 (http://unite.
ut.ee/index.php, accessed on 13 January 2022).

2.5. Statistical Analysis

The experimental data were recorded in Excel 2019 for the ease of mathematical calcu-
lations. Statistical analyses were performed using SPSS statistics 22.0 (IBM Corp., Armonk,
NY, USA), and Duncan’s multiple range test was used to compare means. Significance
was based on a total of 999 Monte Carlo permutations. LEfSe (http://huttenhower.sph.
harvard.edu/galaxy/root?tool_id=lefse_upload, accessed on 13 January 2022) was used to
identify significantly different bacterial and fungal communities in different environmen-
tal samples. LEfSe carried out linear discriminant analysis (LDA) on samples according
to taxonomic composition and different grouping conditions, and discovered the com-
munities or species that demonstrated significant differences in sample division. Online
data analysis was performed using the free online platform Majorbio Cloud Platform
(http://www.majorbio.com, accessed on 13 January 2022) from Majorbio Bio-Pharm Tech-
nology Co., Ltd. (Shanghai, China). BugBase (https://bugbase.cs.umn.edu/index.html)
is a microbiome analysis tool that normalizes OTUs by predicted 16S copy number and
then predicts the microbial table using the provided pre-computed files, which we used
for phenotyping, identifying high-level phenotypes present in microbiome samples, and
performing phenotype predictions. The PICRUSt2 function prediction used the COG in-
formation stored in PICRUSt2 and corresponding to greengeneid to standardize the OTU
abundance table; that is, to eliminate the influence of 16Smarkergene copies in the species
genome. Then, the COG family information of the corresponding OTU was obtained
through the greengeneid corresponding to each OTU, and the abundance was calculated.
According to the information in the COG database, we analyzed the descriptive informa-
tion and functional information of each COG in the egg wine database, so as to obtain the
functional abundance spectrum (http://huttenhower.sph.harvard.edu/galaxy, accessed
on 13 January 2022). FUNGuild (http://www.funguild.org/, accessed on 13 January 2022)
classified fungal communities through a microecological guide, which was linked with
functional guide classification to classify fungi functionally.

3. Results
3.1. Diversity of Endophytic Microorganisms in Tomato Roots at Different Growth Stages

As presented in Figure 1a–d, significant differences were found in endophytic bacterial
and fungal diversity (Shannon) and richness (Ace) in tomato roots during the GY, GH, and
GJ stages.

http://drive5.com/usearch/manual/dereplication.html
http://drive5.com/usearch/manual/dereplication.html
http://drive5.com/usearch/manual/dereplication.html
http://drive5.com/usearch/manual/singletons.html
http://drive5.com/usearch/manual/singletons.html
http://drive5.com/uparse/
http://www.arb-silva.de
http://RDP.CME.MSU.edu/
http://www.arb-silva.de
http://www.arb-silva.de
http://unite.ut.ee/index.php
http://unite.ut.ee/index.php
http://huttenhower.sph.harvard.edu/galaxy/root?tool_id=lefse_upload
http://huttenhower.sph.harvard.edu/galaxy/root?tool_id=lefse_upload
http://www.majorbio.com
https://bugbase.cs.umn.edu/index.html
http://huttenhower.sph.harvard.edu/galaxy
http://www.funguild.org/
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Figure 1. Comparison of endophytic microbiota structures in tomato roots at a similarity level of 97%
between GY, GH, and GJ treatments ((operational taxonomic unit) OTU level). (a) The Shannon index
indicates endophytic bacterial diversity. (b) The Ace index indicates endophytic bacterial richness.
(c) The Shannon index indicates endophytic fungal diversity. (d) The Ace index indicates endophytic
fungal richness. (e) PCoA score plot of endophytic bacteria communities. (f) PLS-DA score plot of
endophytic fungi communities. (g) PCoA score plot of endophytic bacteria communities. (h) PLS-DA
score plot of endophytic fungi communities. (i) Venn diagram analyses of endophytic bacteria at the
genus level. (j) Venn diagram analyses of endophytic bacteria at the OTU level. (k) Venn diagram
analyses of endophytic fungi at the genus level. (l) Venn diagram analyses of endophytic fungi at
the OTU level. GY: seedling stage; GH: flower bud differentiation stage; GJ: fruiting period. The
same letters on the bars within a figure indicate no significant differences in the mean ranks among
treatments at p < 0.05.
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Partial least squares discriminant analysis (PLS-DA) was conducted to evaluate the
similarity of the endophytic microbial communities at the OTU level. The results demon-
strated that the endophytic microbial communities at GY, GH, and GJ stages were clustered
separately, suggesting that the endophytic microbial composition in the roots of tomatoes
could change during the different growth stages (Figure 1e–h).

Additionally, at the OTU and genus levels, the number of specific endophytic bacteria
in tomato roots during the GJ stage, at 51, was higher than that in GY and GH. The number
of unique endophytic fungi in tomato roots during the GJ stage was also higher than that
of the GY and GH systems, with values of 291, 122, and 65, respectively (Figure 1i,j).

3.2. Composition of Endophytic Microorganisms in Tomato Roots at Different Growth Stages

As presented in Figure 2a, the number of dominant endophytic bacterial phyla (i.e.,
relative abundances greater than 1%) in the GY, GH, and GJ stages were three, four, and
four, respectively.
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Figure 2. (a) Compositions of endophytic bacterial communities at the phylum level; (b) compositions
of endophytic fungal communities at the phylum level; (c) compositions of endophytic bacterial
communities at the genus level; (d) compositions of endophytic fungal communities at the genus
level under the GY, GH, and GJ treatments. GY: seedling stage; GH: flower bud differentiation stage;
GJ: fruiting stage.
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First, the dominant endophytic bacterial phyla in the roots of tomatoes during the GY
stage, from high to low, were Proteobacteria (77.14%), Actinobacteriota (18.75%), Bacteroidota
(1.27%), and others (2.96%).

The dominant endophytic bacterial phyla in the roots of tomatoes during the GH
stage were Proteobacteria (51.37%), Actinobacteria (26.40%), Bacteroidetes (15.45%), Firmicutes
(15.45%), and others (2.96%).

The dominant endophytic bacterial phyla in the roots of tomatoes during the GJ stage
were Proteobacteria (33.03%), Actinobacteria (51.03%), Bacteroidetes (9.44%), Firmicutes (3.25%),
and others (3.25%).

The number of dominant endophytic fungal phyla (i.e., relative abundances greater
than 1%) in the GY, GH, and GJ stages was five, two, and five, respectively (Figure 2b).

Firstly, Olpidiomycota (38.68%), Chytridiomycota (34.20%), Ascomycota (13.38%), Mortierel-
lomycota (3.57%), and others (11.46%) were found to be the dominant endophytic fungal
phyla in roots of tomatoes during the GY stage. Secondly, Olpidiomycota (96.52%) and As-
comycota (2.18%) were the only dominant endophytic fungal phyla in the roots of tomatoes
during the GH stage. Olpidiomycota (52.84%), Ascomycota (40.15%), Basidiomycota (2.13%),
Glomeromycota (2.79%), and others (4.69%) were the dominant endophytic fungal phyla
in the tomato roots during the GJ stage. These results demonstrated that Chytridiomycota
and Mortierellomycota were the unique dominant endophytic fungal phyla in the roots
of tomatoes during GY. In contrast, Basidiomycota and Glomeromycota were the dominant
endophytic fungal phyla in tomato roots during the GJ stage. However, Chytridiomycota,
Mortierellomycota, Basidiomycota, and Glomeromycota were lost in tomato roots during GH.

As presented in Figure 2c, 25, 23, and 18 dominant endophytic bacterial genera (relative
abundances are greater than 1%) were detected in the roots of tomatoes during the GY, GH,
and GJ stages, respectively.

Firstly, Massilia (13.04%), Asticcacaulis (8.79%), Rhodanobacter (6.04%), Allorhizobium-
Neorhizobium-Pararhizobium-Rhizobium (4.46%), Leifsonia (4.04%), Sphingobium (3.66%), En-
sifer (3.46%), Streptomyces (3.22%), Ralstonia (3.17%), Burkholderia-Caballeronia-Paraburkholderia
(2.72%), Devosia (2.30%), Nocardioides (2.11%), Phycicoccus (1.98%), Acidovorax (1.73%), Sph-
ingomonas (1.66%), Dyella (1.64%), Pseudomonas (1.30%), Actinospica (1.23%), Flavobacterium
(1.19%), Bradyrhizobium (1.07%), and others (40.39%) were found to be the dominant endo-
phytic bacterial genera in the roots of tomatoes during the GY stage.

Flavobacterium (13.46%), Devosia (7.20%), Acidovorax (6.74%), Streptomyces (3.90%),
Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium (3.86%), Sphingobium (2.78%), Nocar-
dioides (2.45%), Ensifer (2.43%), Thermomonas (1.93%), Leifsonia (1.86%), Massilia (1.65%),
Pseudomonas (1.64%), Asticcacaulis (1.56%), Dyella (1.52%), Phycicoccus (1.38%), Rhodanobacter
(1.14%), Bradyrhizobium (1.07%), Actinomadura (1.02%), Bacillus (1.02%), and others (35.24%)
were determined to be the dominant endophytic bacterial genera in roots of tomatoes
during the GH stage.

Furthermore, Flavobacterium (7.52%), Nocardioides (4.63%), Lechevalieria (4.14%), Strep-
tomyces (3.72%), Devosia (2.95%), Acidovorax (2.85%), Actinoplanes (2.52%), Thermomonas
(2.42%), Dyella (1.94%), Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium (1.75%), Mas-
silia (1.66%), Pseudomonas (1.36%), Sphingobium (1.25%), Sphingomonas (1.07%), and others
(53.74%) were found to be the dominant endophytic bacterial genera in the roots of tomatoes
during the GJ stage.

The results discussed above demonstrated that Massilia, Ralstonia, Burkholderia-Caballeronia-
Paraburkholderia, and Actinospica were the special endophytic bacterial genera in the roots
of tomatoes during the GY stage. Meanwhile, Actinomadura and Bacillus were found to be
the unique endophytic bacterial genera in the roots of tomatoes during the GH stage.

Actinoplanes and Lechevalieria were determined to be the special endophytic bacterial
genera in the roots of tomatoes during the GJ stage. Additionally, the number of dominant
endophytic fungal genera (i.e., those with relative abundances greater than 1%) in the GY,
GH, and GJ stages were determined to be nine, two, and twelve, respectively (Figure 2d).
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Firstly, Olpidium (38.68%), Phoma (6.48%), Mortierella (3.55%), Poaceascoma (1.23%),
Powellomyces (1.08%), and others (46.95%) were found to be the dominant endophytic
fungal genera in the roots of tomatoes during the GY stage.

Olpidium (96.52%) and others (1.23%) were determined to be the dominant endophytic
fungal genera in the tomato roots during the GH stage.

Thirdly, Olpidium (52.84%), Plectosphaerella (13.21%), Fusarium (3.99%), Zopfiella (2.37%),
Poaceascoma (1.18%), Gibberella (1.12%), and others (24.02%) were found to be the dominant
endophytic fungal genera in the roots of tomatoes at the GJ stage. These results also
revealed that Wallemia (35.35%), Myrmecridium (1.07%), and Sodiomyces (1.21%) were the
unique endophytic fungal genera in the roots of tomatoes during the GY stage. Meanwhile,
Plectosphaerella (13.21%), Fusarium (3.99%), Zopfiella (2.37%), and Gibberella (1.12%) were
found to be the special endophytic fungal genera in the roots of tomatoes during the
GJ stage.

Additionally, the LEfSe analysis of endophytic microorganisms in the roots of tomatoes
during the GY, GH, and GJ stages demonstrated significant differences (LDA > 3.0) in their
cladogram structures.

As presented in Figure 3a, at the phylum and genus levels, one phylum of bac-
teria and seven genera of bacteria were significantly enriched in the GY treatment—
Proteobacteria, Asticcacaulis, Leifsonia, Actinospica, Terracidiphilus, Dokdonella, and Candidatus
Solibacter, respectively.
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In comparison to the GY stage, Promicromonospora was enriched as an endophytic
bacterial genus in the GH stage.

At the phylum and genus levels, one phylum of bacteria and six genera of bacteria were
significantly enriched in the GJ treatment—Actinobacteriota, Lechevalieria, Amycolatopsis,
Ferrovibrionaccae, Lysobacter, and Methylophilus.

Moreover, the number of dominant soil fungal groups in the GY system was similar to
that in the GJ system. For example, Cyberlindnera was enriched in the GH stage, whereas
Ascomycota, Zopfiella, Funneliformis, Oliveonia, and Monosporascus were enriched in the GH
stage (Figure 3b).

3.3. Function Prediction of Endophytic Microorganisms in Tomato Root System at Different
Growth Stages

The results of the BugBase analysis demonstrated that the abundance of endophytic
bacteria, particularly Gram-positive, Gram-negative, aerobic, and potentially pathogenic
bacteria, were all significantly different in the roots of tomatoes in the GY, GH, and GJ
stages (Figure 4a).
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PICRUSt2, FUNGuild, Wilcoxon rank-sum, and Student’s t-tests were all carried out
to evaluate the functions of the endophytic bacterial and fungal communities in the roots of
tomatoes during the GY, GH, and GJ stages (p < 0.05). The results presented no significant
differences in endophytic bacteria (Figure 4b) and fungi (Figure 4c) in the tomato roots at
the GY, GH, and GJ stages.

4. Discussion

Hormones play an important role in plant growth and development, such as abscisic
acid and ethylene [33]. For example, abscisic acid is instrumental in controlling essential
genes in tomatoes and contributes significantly to ethylene production, particularly during
the blooming phase [34]. Ethylene synthesis, perception, and signaling are also vital for
fruit ripening [35], with ethylene production markedly increasing during specific phases
of plant growth, such as fertilization, maturity, aging, and shedding, and under biotic
or abiotic stress [36]. Ethylene also plays a key role in the accumulation of carotenoids
during fruit ripening, and gibberellin is negatively correlated with the maturation of tomato
fruits [37].

Moreover, studies have demonstrated a close relationship between the generation of
endogenous plant hormones and microorganisms. For example, the sources of several
plant hormones, including abscisic acid [38], ethylene [39], gibberellin [40], and auxin were
derived from bacteria and fungi, such as Ralstonia producing auxin and ethylene [41], while
also simulating the production of jasmonic acid [42]. Moreover, the rapid increase in the
levels of abscisic acid during fruit development was positively correlated with Actinomycetes
and negatively correlated with Actinobacteria [43], with Actinobacteria predominating in
the tomato seedling stage [8].

Additionally, Massilia has been proven to be a successful colonizer in the early stages of
plant growth [9]. Meanwhile, Sphingomonas can inhibit disease development and pathogen
growth [44], possess bacteriostatic activity [45], and encode anti-host reactive oxygen
species, such as iron peroxidase and arginase [46]. In this study, Massilia, Sphingomonas,
and Leifsonia were found to be the dominant endophytic bacterial genera in tomato roots
during the GY stage.

Moreover, Bacillus was detected as the dominant endophytic bacterial genus, and
Streptomyces, Flavobacterium, Pseudomonas, Acidovorax, and Actinomadura were found to be
the dominant endophytic bacterial genera in tomato roots during GH. Previous research
has demonstrated that Bacillus induces the accumulation of abscisic acid [47] and gib-
berellin [48]. Streptomyces can improve nutrient supply, carbohydrate accumulation, and
the dry weight of tomato plants. They also improved stress resistance [49]. Streptomyces
promoted tomato growth [50]. Furthermore, Bacillus and Streptomyces promoted plant
growth through phosphorus solubilization and mobilization [51]. Flavobacterium is known
for its ability to degrade complex organic compounds, such as building resistance to plant
pathogens, producing plant hormones [52], and significantly increasing plant growth, yield,
and protein content under different environmental conditions; Acidovorax promotes plant
growth and improves nutrient utilization [53]; and Actinomadura is positively correlated
with available phosphorus [54].

Nocardioides promotes plant growth related to nitrogen fixation [55] and Fusarium
produces ethylene [56] and abscisic acid [57]. Actinobacteria was found to be the dominant
endophytic bacterial phylum in tomato roots at the GJ stage in this study, while Nocardioides
and Fusarium were determined to be the dominant bacterial and fungal genera, respectively.

The results of this study indicate that auxin-producing microorganisms were primarily
enriched as the dominant endophytes in tomato roots during the GY stage. In contrast,
stress-resistant microorganisms primarily survived as the dominant endophytes in tomato
roots during the flower bud differentiation stage. That nutrient cycling promoted mi-
croorganisms, chiefly colonized as the dominant endophytes in tomato roots during the
GJ stage.
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5. Conclusions

The endophytic microbial composition was significantly altered in tomato roots during
different growth stages. Auxin-producing microorganisms, such as Massilia, Sphingomonas,
and Leifsonia, were primarily enriched as the dominant endophytes in tomato roots during
the seedling (GY) stage; stress-resistant microorganisms and plant growth-promoting endo-
phytes, such as Streptomyces, Flavobacterium, Pseudomonas, Acidovorax, and Actinomadura,
were found to be the dominant endophytic bacterial genera in tomato roots at the flower
bud differentiation (GH) stage; Nocardioides and Fusarium were considered to be the domi-
nant endophytes of nutrient cycling in tomato roots during the fruiting (GJ) stage. These
results indicated that the enrichment of exact endophytes in tomato roots during different
growth stages could assemble diverse community structures, with functions relating to
plant growth promotion, stress resistance, and nutrient cycling improvement, respectively.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms12061251/s1. Table S1: Sequencing information
of bacteria in root of tomatoes under different growth stages; Table S2: Sequencing information of
fungi in root of tomatoes under different growth stages; Table S3: Amplified sequence information of
tomato root bacteria and fungi under different growth stages.
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