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Abstract: Identifying spatial clusters of rabies in animals aids policymakers in allocating resources
for rabies prevention and control. This study aimed to investigate spatial patterns and hotspots of
rabies in different animal species at the county level in New Jersey. Data on animal rabies cases
from January 1989 to December 2023 were obtained from the New Jersey Department of Health
and aggregated by county. Global Moran’s index (I) statistics were computed for each species to
detect global spatial clustering (GeoDa version 1.22). Local Moran’s indicators of spatial association
(LISA) were computed to identify local clusters of rabies. The results from the LISA analysis were
mapped using ArcGIS Pro to pinpoint cluster locations. A total of 9637 rabies cases were analyzed
among raccoons (n = 6308), skunks (n = 1225), bats (n = 1072), cats (n = 597), foxes (n = 225), and
groundhogs (n = 210). A global Moran’s test indicated significant global spatial clustering in raccoons
(I = 0.32, p = 0.012), foxes (I = 0.29, p = 0.011), and groundhogs (I = 0.37, p = 0.005). The LISA results
revealed significant spatial clustering of rabies in raccoons and foxes in southeastern New Jersey
and in groundhogs in northern New Jersey. These findings could guide the development of targeted
oral rabies vaccination programs in high-risk New Jersey counties, reducing rabies exposure among
domestic animals and humans.
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1. Introduction

Rabies is a deadly viral disease that can infect all mammals, including domestic and
wild animals. In the United States (U.S.) alone, nearly 100,000 animals are tested for rabies
yearly [1], and over 4000 of these tests come back positive. The primary method of rabies
transmission is through a bite or scratch from an infected animal [2], which can happen
during encounters with wildlife such as raccoons or foxes and unvaccinated domestic
animals. Rabies is rare in humans in the U.S., with an average of only 1 to 3 cases reported
annually [3]. Animal bites are a much more common problem, with an estimated 4 million
Americans bitten by animals each year [1]. Among these, approximately 60,000 individuals
are estimated to have been exposed to rabies and need post-exposure treatment [1].

Rabies is not confined to specific regions; the virus is present throughout the U.S.,
posing a threat to humans and other animals. Wildlife are crucial in the spread of rabies
in the U.S. [4,5]. Notably, New Jersey experiences a higher prevalence (95%) of the rabies
virus in its wildlife [4]. Over 90% of reported rabies cases in New Jersey involve wild
animals [4]. Raccoons are the most common carriers, followed by skunks, bats (which
can significantly contribute to human cases due to their proximity to dwellings), and
foxes, which act as the main reservoir for the virus in the state [4]. In November 1989, an
outbreak of rabies affecting raccoons in the mid-Atlantic states spread to New Jersey [6].
Rabies in raccoons poses a significant threat to human health because, unlike other wildlife
rabies reservoirs, raccoons are well adapted to coexist with people in densely populated
urban and suburban areas as well as in rural areas [6]. Previous studies have used spatial
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epidemiologic methods to guide evidence-based rabies control efforts in the U.S. [7–16].
The New Jersey Department of Health has documented animal rabies surveillance data
since 1989. To the best of our knowledge, spatial cluster analysis of animal rabies has not
been performed in New Jersey. Spatial methods include descriptive disease maps [17],
which visualize the spatial distribution of rabies cases, and spatial statistical tests [17] to
identify spatial clusters of rabies by animal species. Knowing where rabies clusters occur
allows surveillance activities to be prioritized, enabling earlier detection of outbreaks and
quicker containment measures. By pinpointing areas where specific rabies-prone species
congregate, wildlife vaccination programs can be strategically deployed, maximizing their
impacts in high-risk zones.

Vaccinating wild animals against rabies is an important strategy for safeguarding
domestic animals and the human population [18–20]. By implementing targeted wildlife
vaccination programs, the incidence of rabies in domestic animals and human exposure to
the virus can be reduced. The approach of vaccinating wildlife helps prevent the spread
of rabies and decreases the economic burden associated with post-exposure prophylaxis
(PEP), pet quarantine, and livestock losses [21]. Additionally, this approach contributes to
broader public health goals by maintaining healthy wildlife populations and preventing
potential outbreaks [21,22]. The Animal and Plant Health Inspection Service’s (APHIS)
Wildlife Service (WS) program has collaborated with local, state, and federal governments;
universities; and other partners in the U.S. to reduce wildlife rabies by distributing oral
rabies vaccine (ORV) bait in targeted areas [23]. The U.S. National Plan for Wildlife
Rabies Management 2023–2027, published in 2023 [23], serves as a 5-year framework for
collaborative management of wildlife rabies in the U.S. to protect human, domestic animal,
and wildlife health. The WS and its partners distribute over 8 million ORVs to wild animals
like raccoons, foxes, and skunks annually through bait in the U.S. [1]. In 2022, 31,320 ORVs
were distributed to raccoons in Cape May County, New Jersey [24]. The total annual cost of
the animal rabies prevention system is more than USD 500 million in the U.S. [1].

The goal of our study was to identify the spatial distribution and hotspots of rabies
in animals across New Jersey to gain insights into the spatial epidemiology of rabies
and inform future targeted and effective animal rabies control strategies. Specifically, the
objective of our study was to investigate the spatial patterns and hotspots of rabies in
animals (raccoons, skunks, bats, cats, foxes, and groundhogs) at the county level in New
Jersey. Identifying hotspots of rabies in animals will help allocate resources for rabies
prevention and control strategies.

2. Materials and Methods

This retrospective ecological study investigated the incidence of rabies in animals at
the county level in New Jersey, a state consisting of 21 counties [25]. The state of New
Jersey is located in the mid-Atlantic and northeastern regions of the United States and is
home to 9 million people [26]. New Jersey is the most densely populated state in the United
States [27]. As of 2023, New Jersey’s population density is around 1300 people per square
mile [28].

We focused on the animal species in New Jersey with the highest reported incidence
of rabies, including raccoons, skunks, bats, cats, foxes, and groundhogs [4]. We obtained
data on the yearly numbers of laboratory-confirmed [29] rabies cases by animal species in
each New Jersey county from January 1989 to December 2023, courtesy of the New Jersey
Department of Health [30]. The rabies cases in the New Jersey counties were aggregated
for each animal species for the period from 1989 to 2023; the number of rabies cases was too
small to temporally disaggregate the data. The unit of analysis was the aggregated number
of laboratory-confirmed rabies cases in the animal species by county in New Jersey. We
obtained a shapefile of New Jersey’s counties from an open-access data source [31].

A descriptive analysis was conducted using STATA 18.0 software (Stata Corporation,
College Station, TX, USA) to examine the medians and ranges of the reported rabies cases
by animal species at the county level. Choropleth maps of rabies incidence by animal
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species were generated for the full study period (1989–2023) using ArcGIS Pro version 3.0.3
(Environmental Systems Research Institute, Inc. (ESRI), Redlands, CA, USA). The critical
intervals in the maps of rabies incidence by animal species were determined using Jenk’s
optimization classification scheme [32] for the full study period (1989–2023).

We utilized spatial analytic techniques to evaluate the spatial clustering patterns of
rabies at both the global and local levels [33]. Global clustering was used to examine the
overall patterns of rabies in a specified area without identifying exact locations, while
local clustering was used to investigate small-scale patterns of rabies across the study
area [33,34].

The global Moran’s index (I), implemented in GeoDa version 1.22 [35], was used
to detect significant spatial autocorrelation of rabies incidence using a queen spatial
weight [33,34]. The null hypothesis was that there was no spatial clustering across the study
area [36], and the analysis produced overall estimates of clustering for the entire state.

Moran local indicators of spatial association (LISA) were computed in GeoDa version
1.22 to identify the locations of significant hotspots/clusters of rabies incidence in animals
using queen spatial weights [37,38]. The null hypothesis for the LISA measure was that
all spatial patterns across the study area were random [37]. This analysis produced an
analytical output for each county in the dataset [37]. Nine hundred ninety-nine Monte
Carlo replications were used to assess statistical significance. When the simulated p-
value was less than 0.05, the null hypothesis of no cluster was rejected [39]. Evidence
of local hotspots/clusters of high rabies risk was displayed in ArcGIS Pro version 3.0.3
(Environmental Systems Research Institute, Inc (ESRI), Redlands, CA, USA) [40] using local
Moran significance maps that identified local clusters with significantly high risk as well as
those with significantly low risk [37].

3. Results
3.1. Spatial Patterns of Rabies Incidence by Animal Species

A total of 9637 rabies cases were analyzed, including raccoons (n = 6308), skunks
(n = 1225), bats (n = 1072), cats (n = 597), foxes (n = 225), and groundhogs (n = 210). The
median rabies incidence varied by animal species across the New Jersey counties. For
instance, the median rabies incidence in each county was highest in raccoons (median = 254;
range: 24–593), followed by skunks (median = 59; range: 9–124), bats (median = 45; range:
3–17), cats (median = 26, range: 3–56), foxes (median = 10; range: 0–28), and groundhogs
(median = 12; range: 0–26). Rabies incidence also varied geographically. In raccoons,
for example, higher numbers of rabies cases tended to occur in the northern and eastern
regions of New Jersey, while the lowest number of rabies cases was observed in the south
(Figure 1).

3.2. Geographic Clusters of Rabies by Animal Species
3.2.1. Global Evidence of Clustering

The global Moran’s I results indicate there is evidence of significant positive spatial
autocorrelation of rabies cases in raccoons (Moran’s I = 0.32; p = 0.012), foxes (Moran’s
I = 0.29; p = 0.011), and groundhogs (Moran’s I = 0.37; p = 0.005) (Table 1).

Table 1. Global Moran’s I values and their significance test results.

Animal Species Global Moran’s I (p-Value)

Raccoons 0.32 (0.012)

Foxes 0.29 (0.011)

Groundhogs 0.37 (0.005)

Cats 0.17 (0.071)

Bats −0.09 (0.375)

Skunks 0.10 (0.132)
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Figure 1. Spatial distribution of rabies incidence by animal species in New Jersey from 1989 to 2023.

3.2.2. Local Clusters

The results of the Moran local indicators of spatial association (LISA) indicate there
was a significant high-risk cluster of rabies in raccoons (Figure 2a) and foxes (Figure 2b)
in counties in southeastern New Jersey. In addition, we identified a significant high-risk
cluster of rabies in groundhogs (Figure 2c) in counties in northern New Jersey. Low-risk
clusters were identified in southern New Jersey for raccoons and groundhogs.
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by other counties with low incidences of rabies. A significant high-risk cluster is shown in red, while 
a significant low-risk cluster is shown in blue. Areas with non-significant LISA values are blank (no 
color shading); (b) Local Moran’s I cluster map for rabies in foxes; (c) Local Moran’s I cluster map 
for rabies in groundhogs. 
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Figure 2. (a) Local Moran’s I cluster map for rabies in raccoons. Counties labeled as high–high have
high incidences of rabies and are surrounded by other counties with high incidences of rabies in
animals. Likewise, counties marked as low–low have low incidences of rabies and are surrounded by
other counties with low incidences of rabies. A significant high-risk cluster is shown in red, while a
significant low-risk cluster is shown in blue. Areas with non-significant LISA values are blank (no
color shading); (b) Local Moran’s I cluster map for rabies in foxes; (c) Local Moran’s I cluster map for
rabies in groundhogs.

4. Discussion

This study applied spatial methods to identify high-risk spatial clusters of rabies in
animals at the county level in New Jersey. The results indicated significant global clustering
of rabies in raccoons, foxes, and groundhogs across the study area. In addition, there was
local spatial clustering of rabies in raccoons and foxes in southeastern counties and in
groundhogs in northern counties in New Jersey.

Significant positive global spatial autocorrelation was found, indicating that rabies
incidence was not randomly distributed within the study boundaries and that high and
low values were more proximal to other high and low values, respectively [37].

Local spatial clustering of rabies was also detected in raccoons, foxes, and ground-
hogs using LISA [38]. The LISA results suggest that the southeastern counties (Ocean,
Monmouth, and Mercer) in New Jersey experienced a significant high-risk spatial cluster
of rabies in raccoons and foxes. The identification of raccoon rabies hotspots in Ocean,
Monmouth, and Mercer Counties in southeastern New Jersey can be explained by a combi-
nation of geographic, environmental, and ecological factors. These counties have a mix of
urban and suburban areas that can create ideal habitats for raccoons and foxes. A study
reported that geographic and human factors such as a higher proportion of lower-intensity
residential areas (those with lower concentrations of housing units), a lack of rivers/lakes,
and major roads could explain the raccoon rabies clusters in Albany, New York [11,41,42].
The presence of rivers and lakes can act as a natural barrier that slows or prevents the
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spread of rabies among raccoon populations. On the other hand, the absence of rivers and
lakes allows rabid raccoons to move more freely, which can lead to more widespread and
rapid dissemination of the rabies virus. Another ecological study reported that raccoon
rabies rates were explained by the higher percentages of farmland and metropolitan areas
in the counties in three southeastern states (North Carolina, Virginia, and West Virginia) [8].
Jones et al. reported three characteristics associated with large raccoon rabies epizootics
in Maryland, Pennsylvania, and Virginia: (1) a high percentage of agricultural land use;
(2) high water coverage in combination with low human population density; and (3) low
water coverage in combination with high human population density [9]. These findings
were derived from a stratified analysis that revealed that the impact of the water coverage
percentage on the likelihood of a county experiencing a large rabies outbreak was modified
by the human population density [9]. The percentage of forest cover was associated with a
raccoon rabies epidemic in Connecticut [43]. Future studies could investigate the factors
related to high-risk clusters of rabies among raccoons in southeastern New Jersey.

Likewise, northern New Jersey counties (Passaic, Morris, and Warren) exhibited a
significant high-risk spatial cluster of rabies in groundhogs during the study period. These
counties, characterized by a mix of urban, suburban, and rural environments, provide
suitable habitats for the groundhog population. Previous research indicated that north-
eastern and mid-Atlantic states have reported the most rabies cases in groundhogs [44],
and rabid groundhogs were clustered in the U.S. counties where raccoon rabies was en-
zootic [45,46]. Our findings revealed a distinct spatial pattern, with rabid groundhogs
clustered in northern New Jersey (Figure 2c) and rabid raccoons clustered in southeastern
New Jersey (Figure 2a).

Low-risk clusters of rabies were identified among raccoons in Cumberland County
(Figure 2a) and among groundhogs in Cape May, Atlantic, Cumberland, Salem, and
Gloucester Counties (Figure 2c) in southern New Jersey. These counties share coastal
features, including shores, beaches, and waterways, which could act as natural barriers,
limiting the movement of rabid animals and reducing the spread of the disease [41]. A pre-
vious study found that crossing rivers slowed the spread of rabies by a factor of seven [47].
Another study in New York State found that each one-meter increase in land elevation and
one percent increase in wetland area were linked to reduced risk of raccoon rabies [41].
However, the relationship between waterbody features and rabies incidence in raccoons
and groundhogs is complex and likely influenced by other ecological and environmental
factors. Another possible explanation for the low-risk rabies cluster is the impact of rabies
vaccination programs on both domestic and wild animals. An oral rabies vaccination
efficacy study was conducted among raccoons in Atlantic, Cumberland, and Cape May
Counties, New Jersey, in April 1993 [48]. Xiaoyue Ma et al. reported a significant decrease
in raccoon rabies cases following the implementation of an oral rabies vaccination program
in West Virginia’s enzootic raccoon rabies areas [49]. Future studies could investigate the
factors related to low-risk clusters of rabies among raccoons and groundhogs in southern
New Jersey.

To our knowledge, this is the first study to investigate the spatial patterns and clusters
of rabies in animals at the county level in New Jersey using spatial epidemiologic methods.
The identified spatial clusters will be helpful for guiding health intervention planning
and policy. Approximately 55,000 people are also administered PEP annually, resulting in
over USD 200 million in healthcare costs in the U.S. [21]. Economic analyses by the WS
indicate that preventing the spread of raccoon rabies in the western U.S. alone could reduce
PEP costs by as much as USD 50 million annually [21]. The CDC noted that maintaining
animal rabies prevention systems in the U.S. costs over USD 500 million annually [1].
Although the annual number of human rabies cases in the U.S. is relatively low (only
1–3 cases occur each year), the primary objective of targeted rabies vaccination in wild
animals is to protect domestic animals and humans and minimize the economic burden
associated with PEP, pet quarantine, and livestock losses [21]. Our study identified spatial
clusters of rabies cases in wild animals that can aid in devising a targeted strategy for
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rabies vaccination in wild animals that optimizes resource allocation and minimizes costs.
Targeted oral rabies vaccination programs for wildlife in areas with high-risk spatial clusters
can be cost-efficient, with cost–benefit ratios greater than 1.0 [50]. However, this study is
not without limitations. We were unable to analyze potential predictors associated with
the areas with the highest risk (statistically significant clusters) of rabies in New Jersey
due to a lack of data. Identification of localized rabies clusters could help guide future
studies targeting significant rabies clusters (hotspots) and may help refine the results to
improve our understanding of the contextual and geographical factors (land use type,
land elevation, major roads, rivers/lakes, low-intensity residential areas, and oral rabies
vaccination exposure) [11] that are associated with rabies clusters. Additionally, spatial
clustering patterns can reveal areas where multiple rabies-carrying species coexist. These
areas pose a higher risk of spillover to domestic animals and humans. Identifying these
zones allows for targeted public education and mitigation strategies. By understanding the
spatial distribution of rabies risk, public health agencies can allocate resources (vaccines and
personnel) more efficiently. This includes enhanced public awareness campaigns to educate
residents in hotspot areas about rabies prevention. Additionally, control strategies like
wildlife population reduction might be considered in high-risk areas, but only if necessary
and in accordance with responsible wildlife management practices. We were also limited in
our ability to look at smaller geographic areas and shorter periods of time due to the small
number of rabies cases. Therefore, our results may be limited by the modifiable area unit
problem [51]. In addition, we acknowledge that analyzing the genetic evolution of wildlife
rabies virus strains would be valuable and would provide additional insights into the
epidemiology of rabies in New Jersey. While we were not able to include genetic analysis
in this study, we believe it will be a key area for investigation in future research. A genetic
analysis of wildlife rabies virus strains could help identify the sources and variations of
rabies virus strains and their transmission patterns in this region, contributing to more
effective control measures across different spatial scales [52,53].

These limitations notwithstanding, this study provides valuable information about
the spatial variation of rabies incidence by animal species across New Jersey during the
study period. This study’s findings could direct targeted oral rabies vaccination pro-
grams [19,48,54,55] in New Jersey counties with high-risk clusters of rabies among raccoons,
foxes, and groundhogs to reduce the risk of rabies exposure among domestic animals and
humans. Other rabies prevention activities could benefit from using the identified cluster-
ing areas. For instance, public education about exposure to raccoon, fox, and groundhog
rabies and the need to increase pet vaccination activities may be prioritized in areas where
clusters were identified. These programs could help control rabies epizootics in raccoons
and foxes in southeastern New Jersey and groundhogs in northern New Jersey. This, in
turn, would reduce the risk of rabies exposure among domestic animals and humans [6,56].
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