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Abstract: The quality of molten iron not only has a significant impact on the strength, toughness,
smelting cost and service life of cast iron but also directly affects the satisfaction of users. The
establishment of timely and accurate blast furnace molten iron quality prediction models is of great
significance for the improvement of the production efficiency of blast furnace. In this paper, Si, S and
P content in molten iron is taken as the important index to measure the quality of molten iron, and
the 989 sets of production data from a No.1 blast furnace from August to October 2020 are selected
as the experimental data source, predicting the quality of molten iron by the I-GWO-CNN-BiLSTM
model. First of all, on the basis of the traditional data processing method, the missing data values are
classified into correlation data, temporal data, periodic data and manual input data, and random
forest, the Lagrangian interpolation method, the KNN algorithm and the SVD algorithm are used
to complete them, so as to obtain a more practical data set. Secondly, CNN and BiLSTM models
are integrated and I-GWO optimized hyperparameters are used to form the I-GWO-CNN-BiLSTM
model, which is used to predict Si, S and P content in molten iron. Then, it is concluded that using the
I-GWO-CNN-BiLSTM model to predict the molten iron quality can obtain high prediction accuracy,
which can provide data support for the regulation of blast furnace parameters. Finally, the MCMC
algorithm is used to analyze the influence of the input variables on the Si, S and P content in molten
iron, which helps the steel staff control the quality of molten iron in a timely manner, which is
conducive to the smooth running of blast furnace production.

Keywords: steel; molten iron quality prediction; data processing; machine learning

1. Introduction

Steel is one of the basic industries of modern society and an important pillar industry
of China’s national economy, and blast furnace ironmaking is a crucial link in the whole
steelmaking process [1]. Blast furnace ironmaking is a complex production process of
converting solid iron ore into liquid molten iron through complex and changeable phys-
ical and chemical reactions in a closed environment of high temperature, high pressure
and multi-phase and multi-field coupling [2]. The quality of the output of molten iron
directly affects the quality and performance of the final steel products, and also affects the
production cost and production efficiency [3]. The process of blast furnace iron making
needs to undergo complex and changeable physical and chemical reactions. The trace
elements of the furnace charge will be integrated into the molten iron with the reaction
in the blast furnace. The proportion of some elements can reflect the quality of current
molten iron. Si content is an important indicator reflecting the chemical heat of molten
iron [4]. Appropriate Si content in molten iron can increase the amount of iron slag, which
is conducive to the removal of phosphorus and sulfur in molten iron. However, a too high
Si content will lead to hot-shortness of pig iron, reducing the metal yield and increasing the
production of splash [5]. Si in molten iron is one of the harmful elements in steel production.
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The Si content in molten iron dissolves in the form of sulfide in molten iron, but in solid
iron the solubility of sulfide will become very low, forming co-crystal particles with a low
melting point. When heated to a certain temperature, these co-crystal particles will melt
first, giving the product hot and brittle characteristics, which will lead to the subsequent
formation of cracks during casting and rolling, affecting the quality of the steel [6]. Iron
phosphorus is also a harmful element in steel production. High P content will reduce the
toughness and ductility of steel, leading to an increased risk of brittle fracture. At the same
time, it will increase the cold brittleness of steel, making steel prone to brittle fracture at
low temperatures and reducing the use-temperature range of steel [7]. Therefore, Si, S and
P content in molten iron is usually used as an indicator of the quality of molten iron.

The quality parameters of molten iron can be used to directly to evaluate the quality of
molten iron and indirectly reflect the internal operating state of the blast furnace. Therefore,
it is crucial to predict the quality of molten iron [8]. At present, with the advent of the era
of big data and the development of artificial-intelligence technology, intelligent algorithms
and machine learning have been applied by more and more experts and scholars in the
prediction research of molten iron quality. Cui et al. used the GRA-FCM model to divide
the comprehensive characterization parameter set of furnace temperature, and they used
the GWO-SVR model to gradually predict the state parameters of each delay point to
realize the dynamic prediction Si content in molten iron [9]. Zhou et al. proposed a data-
driven hybrid method combining typical correlation analysis and correlation analysis, using
recursive subspace identification with a forgetting factor to establish a data-driven iron
temperature prediction model and a predictive controller for online prediction and control
of the multivariate iron temperature index [10]. Jiang et al. proposed a novel data-driven
deep-model online prediction MIQ index, which could effectively explore the potential
relationship between MIQ indicators, improve the interpretability of the model and reduce
the dependence on labeled samples [11]. Chen et al. built a prediction model based on grey
correlation analysis and a limit-learning machine, showing that the prediction hit rate of
the model reached 87% [12]. Li et al. used the wavelet-TCN combination model to predict
the vanadium content in iron and summarized the measures to improve the vanadium
content of iron, which provided production guidance for the steel mill staff [13].

To sum up, it is not difficult to see that prediction research on molten iron quality has
gained great achievements. However, most researchers focus on improving the prediction
model, ignore the importance of data processing and do not provide methods on how to
adjust the quality of molten iron. In fact, data sets with more approximate real value yields
for prediction are used to gain higher prediction accuracy. In order to obtain a better data
set, this paper uses different methods for different types of missing values. At the same
time, a new prediction model is proposed to more accurately trace the Si, S and P content
in molten iron. Finally, considering that the purpose of predicting the quality of molten
iron is to better guide the production, the influence of each input variable on the content of
Si, S and P in molten iron is analyzed, so as to help the steel mill staff control the quality of
molten iron in a timely manner.

2. Algorithm and Model
2.1. Relevant Methods for Data Processing
2.1.1. Box-Plot

The box-plot is a statistical graph used to show the dispersion of a set of data. In
statistics, there are three points to a set of small to large data, in the value of the 25% position,
called the lower quartile (Q1), in the 50% position, called the median (Q2) and in the 75%
position on the value, called the upper quartile (Q3). In addition, the negative difference
between the lower four quartile to the upper four quartile is called the Interquartile Range
(IQR) value in the Q3 + 1.5IQR, called the upper bound, the Q1 − 1.5IQR, called the
lower bound and higher than the upper or below the lower value, called the outliers. In
the process of blast furnace data collection, a large number of outliers will occur due to
equipment failure, sensor failure, operation error, etc. In this study, to filter for outliers
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the data set is drawn into a box-plot, and the data beyond the upper and lower bounds
are deleted.

2.1.2. The Lagrangian Interpolation Formula

The Lagrange interpolation formula is a method used for the construction of in-
terpolated polynomials [14]. In numerical analysis, the Lagrange interpolation method
can construct a polynomial through these points through known data points, so as to
approximate the relationship between these data points. The advantage of this method
is that it can accurately fit a polynomial through a small number of data points to fa-
cilitate further calculation and analysis of [15]. Assuming that there are n data points,
(x0, y0), (x1, y1), . . . , (xn−1, yn−1), the Lagrangian interpolation method approximates the
data point by constructing a polynomial, L(x). The representation of L(x) is shown in
Equation (1). If the interval between the data points is large or the data points are evenly
distributed, the Lagrange interpolated polynomial has little fluctuation between the data
points. In the collected related data set, the periodic data has the above characteristics, so
the Lagrange interpolation method was used to fill in the missing values of the periodic
data in this study.

L(x) =
n−1

∑
i=0

yi ·
n−1

∏
j=0

x − xj

xi − xj
i ̸= j (1)

2.1.3. Random Forest

Random Forest (RF) is a machine-learning method proposed by Breiman in 2001 [16].
The random forest algorithm performs model training and prediction by constructing
multiple decision trees [17]. In random forest, each decision tree is trained on a randomly
selected subset of features to efficiently handle high-dimensional features and large-scale
data sets [18]. Multiple unrelated decision trees form a decision tree forest and take the mean
value of terminal nodes as the prediction value in the regression problem [19]. The principle
of the algorithm is shown in Figure 1. When filling the missing values of the associated data
collected during the blast furnace ironmaking process, two or more interrelated data can be
characterized by one another. For each missing value, a random forest model was trained
and the target variable was the missing feature. The non-missing data in the training set
were used to train the model. Missing values were used for prediction using the trained
model, and for each missing value other features of the same row were used as inputs to
fill the values of the missing features by the model.
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2.1.4. K-Nearest Neighbor

K-Nearest Neighbor(KNN) is a machine-learning algorithm for supervised learn-
ing [20]. The basic idea of the algorithm is that, in the feature space of training set
D[(x1, y1), (x2, y2) . . . (xn, yn)], the characteristic distance between each original sample
and the sample xk to be predicted will be calculated separately. The training sample with
the highest feature similarity is selected to sum their label value, yi, weighted to obtain the
corresponding prediction result yk; the principles of its algorithm are shown in Figure 2.
Since the KNN method mainly relies on a limited number of K neighboring samples and
avoids the method of discriminating class domains to determine the belonging category,
the KNN method is more efficient for the set of class domains [21]. Considering that the
periodic data collected in the process of blast furnace ironmaking will not change in the
short term and the missing value is usually due to sensor failure, equipment maintenance
or other reasons, steel operators usually use the value at the previous time point to fill
the missing value. In this study, in order to process the data more objectively, the KNN
algorithm can use the local neighborhood of data points to fill in the missing values of
periodic data.
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2.1.5. Singular Value Decomposition

Singular value decomposition is a commonly used matrix decomposition technique,
which is used to decompose a matrix into the product of three matrices. The specific
steps are as follows: decompose the matrix X into three matrices U, S and VT , where U
is an orthogonal matrix of m × m, whose column is called the left singular vector. S is a
diagonal matrix of m × n, whose elements on its diagonal are singular values. VT is an
orthogonal matrix of n × n, whose columns are known as the right singular vector. The
decomposition principle of singular values is shown in Figure 3, and the form is shown in
Formula (2). From Formula (2), the original matrix X can be reconstructed by the product
of its left singular vector, singular value and right singular vector [22]. In the process of
data processing, there are no specific distribution characteristics of manual input data, so it
is difficult to accurately fill the missing value by conventional data filling means. Therefore,
in this study, the data set extracted from the automation report of blast furnace ironmaking
is used as the complete data matrix to obtain the matrix X. According to the eigenvalue
and eigenvector reconstruction matrix, the estimated value in the reconstruction matrix is
used to fill in the missing value.
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X = USVT

U =
[

u1 u2 · · · um
]

S =


σ1 0 · · · 0
0 σ2 · · · 0

· · · · · · . . . · · ·
0 0 · · · σn


V =

[
v1 v2 · · · vn

]
(2)

where
[
u1 u2 · · · um

]
are the left singular vectors of X; these vectors are the eigen-

vectors of XTX, which constitute the column of the orthogormal matrix U of m × m.[
σ1 σ2 · · · σn

]
and are the singular values of X. They are the square root of the eigen-

values of XTX and are arranged in descending order. S is a diagonal matrix of m × n. The[
v1 v2 · · · vn

]
are the right singular vectors of X, which are the eigenvectors of XXT

that constitute the column of the orthogonal matrix V of n × n.

2.1.6. Maximal Information Coefficient

Maximum Information Coefficient (MIC) is used to measure the degree of association
between two variables, X and Y, the strength of linear or nonlinear, and is often used in
the feature selection of machine learning [23]. The MIC idea is in view of the relationship
between the two variables, which are discrete two variables in two-dimensional space,
and they are representing by a scatter diagram. The current two-dimensional space in the
x,y direction is respectively divided into certain interval numbers, and then the current
scatter is represented on the grid, which is the joint probability calculation, thus solving
the problem that the joint probability in mutual information is difficult to calculate [24].
In this study, the MIC algorithm was used to determine the time lag of the variables. A
sliding window is set for each variable, which will be used to analyze the effect of the
corresponding variable on the target at different time points. The change in the MIC value
is observed with the window sliding; if the MIC lag peaks at a specific time, it indicates that
this time node is the lag time of the variable relative to the target. The following formula is
used to calculate the MIC:

I(x; y) =
∫

p(x, y)log2
p(x, y)

p(x)p(y)
dxdy

MIC(x; y) = maxa·b<B
I(x; y)

log2min(a, b)

(3)
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In Formula (3), p(x, y) is the variable between the joint probability. a, b is the num-
ber of partition grids in the x,y direction, which is essentially the grid distribution. B is
the variable.

2.2. Improved Bidirectional Long- and Short-Term Memory Network Model
2.2.1. Bidirectional Long-Term and Short-Term Memory

Long-term and short-term memory (LSTM) is a recursive neural network (RNN)
type, capable of learning the long-term dependencies in the data sequence [25]. Based on
the RNN model, LSTM introduces gating mechanisms, such as input gate, output gate
and forgetting gate, which partly avoids the problem of gradient explosion and gradient
disappearance [26]. The flowchart of the LSTM prediction model is shown in Figure 4.
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Bidirectional long- and short-term memory (BiLSTM) is an extension of the traditional
LSTM neural network. The BiLSTM network enhances the LSTM architecture by processing
data in both forward and reverse directions [27]. This dual processing approach enables
the network to acquire both past and future contextual information, enriching the model’s
understanding of the sequence and interpreting [28]. In BiLSTM, two separate LSTM layers
are used: one processes the sequence from beginning to end, while the other processes the
sequence in the opposite direction. The outputs of these two layers are then merged at each
time step, usually by joining or summing, to produce a single output that reflects the past
and future information [29]. The structure of its model is shown in Figure 5.
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2.2.2. Convolutional Neural Network

The Convolutional Neural Network (CNN) is a widely used neural network model
for image and video processing tasks [30]. The CNN model usually consists of multiple
convolutional layers, an activation function, a pooling layer and fully connected layers,
trained by a back propagation algorithm [31]. During training, the CNN minimizes the
loss function by adjusting the weight parameters to enable the model to better predict the
target [32]. The structure of the CNN model is shown in Figure 6.
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2.2.3. Improved Grey Wolf Optimization Algorithm

The Grey Wolf Optimizer (GWO) algorithm has a simple parameter setting, and the
principle is simple and easy to implement, but similar to other intelligent algorithms
with population iteration, the GWO algorithm also has the disadvantages of low solution
accuracy, and it is easy for it to fall into the local optimum [33]. The data related to blast
furnace ingredients are complex, and the traditional GWO algorithm is often unsatisfactory
due to premature convergence. In order to improve the optimal performance of the
algorithm, an Improved Grey Wolf Optimizer (I-GWO) algorithm is proposed based on
the traditional grey wolf algorithm to solve the single-objective optimization problem in
this model.

(1) Tent-Sine 2-dimensional coupled chaotic map

The initialization of the population algorithm affects its search performance. With no
prior information, individuals are often generated by random initialization. This strategy
is sometimes useful. However, sometimes the distribution of individuals in the search
domain is not uniform, which may keep individuals away from the global optimal solution,
resulting in lower convergence rates. Chaos, characterized by ergodicity, randomness and
regularity, is a common phenomenon in nonlinear systems, and using a chaotic variable
search is obviously better than using a disordered random search. The tent chaotic map



Metals 2024, 14, 856 8 of 27

has a simple structure, with good ergodic uniformity and a fast search speed, but there
are small periods and unstable periodic points [34]. In order to avoid the tent chaotic
sequence falling into small periodic points and unstable periodic points during iteration,
the method of 2D-coupled sinusoidal mapping is used to improve the tent chaotic map,
forcing sequences generated by the tent map to achieve a circular escape through small
perturbations provided by the sinusoidal mapping, as shown in Equation (4).

xk+1 =

{
(λ xk

a + (1 − λ) sin (πyk)) xk ∈ [0, a)
(λ 1−xk

1−a + (1 − λ) sin (πyk)) xk ∈ [a, 1)

yk+1 =

{
(λ yk

a + (1 − λ) sin (πxk+1)) xk ∈ [0, a)
(λ 1−xk

1−a + (1 − λ) sin (πxk+1)) xk ∈ [a, 1)

(4)

(2) Adaptive hunting weight coefficient

The main difference between the GWO algorithm and other heuristic algorithms is its
social leadership hierarchy: the higher the rank the gray wolf has, the deeper understanding
of its prey and the stronger leadership it has. This relationship plays a crucial role in group
hunting during searching. However, in the original GWO hunting, the weight coefficient of
the three leading wolves was the same, which obviously contrasted with the hierarchy of
real wolves. Inspired by the mass update formula in the gravitational search algorithm,
this study introduces Equation (5) to measure the importance of the three leading wolves
as follows [35]:

ωi =
3 fγ − fi

3 fγ − fα
, θi =

ωi

∑
j=α,β,γ

ωj
, i ∈ {α, β, γ}. (5)

In Formula (5), θi is the corresponding weight of each wolf. The closer the head wolf
is to the prey, the higher the weight; the α wolf provides the main movement direction for
the grey wolf community; the β wolf and γ wolf provide auxiliary directions to speed up
the siege and attack of the prey.

(3) Hunting search strategy based on dimensional learning

In GWO, the four parameters α, β, γ and ω can find the optimum solution. However,
it easily falls into local optimum due to lack of population diversity [36]. To avoid this
problem, a novel nature-inspired algorithm, IGWO, is considered in this paper. It has three
stages to operate: initializing, movement and selecting and updating.

In the initializing stage, N wolves are randomly distributed in between the limits
(li, uj) through Equation (6),

Xij = lj + randj[0, 1]× (uj − lj), i ∈ [l, N], j ∈ [l, D] (6)

where the problem number of the dimensions is denoted by D and the total population is
stored in a matrix with N number of rows and D number of columns. The fitness function
is calculated by f (xi(t)).

Movement stage individual hunting’s are added to group hunting to improve the be-
havior of the wolves’ hunting process, which is called Dimension Learning-based Hunting
(DLH). In DLH, the behavior of individual hunting wolves learns from neighbor wolves
for the updated position, Xi(t). During this new learning, the updated position Xi(t) is
indicated by Xi−DLH(t + 1). For this individual hunting radius, Ri(t) is calculated using
Euclidean distance, as shown below. Moreover, it reduces premature convergence and
balances the exploration and exploitation process.

Ri(t)=||Xi(t)− Xi−GWO(t + 1)|| (7)

Xi−DLH,d(t + 1) = Xi,d(t) + rand × (Xn,d(t)− Xr,d(t)) (8)
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Selecting and updating stage: in this stage, the best one is selected by comparing the
fitness of these two, Xi−GWO(t + 1) and Xi−DLH(t + 1), as shown in the equation below.

Xi(t + 1) =
{

Xi−GWO(t + 1), f (Xi−GWO) < f (Xi−DLH)
Xi−DLH(t + 1), otherwise

(9)

Eventually, the iteration value is increased by one for all individual values, and the
search is continued until the predetermined value is reached.

2.2.4. I-GWO-CNN-BiLSTM

Although the CNN model can convolute each time series and extract local features
of the time series, it is not sensitive to time series features [37]. Therefore, the method
of combining CNN and BiLSTM is adopted to make full use of the feature extraction
ability of CNN and the sensitivity of BiLSTM to time series data to further improve
the prediction effect of the model. Meanwhile, in order to improve the accuracy and
robustness of the output of the network, the I-GWO algorithm is introduced to optimize
the hyperparameters. The I-GWO-CNN-BiLSTM prediction model is finally formed, and
its flow is shown in Figure 7.
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In the process of using the IGWO-CNN-BiLSTM model to predict the quality of molten
iron, the CNN first integrates the input data, extracts features, denoises, and then passes
these features as inputs to the BiLSTM network. The BiLSTM network uses its bidirectional
memory ability to further process these features to capture long-term dependencies in
time-series data. In the training stage of the BiLSTM network, the IGWO algorithm is used
to determine the best structure of the network, including the number of LSTM layers, the
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number of neurons in each layer, learning rate, etc. At the same time, the hyperparameters
of the whole model are optimized, such as regularization coefficient, batch size, learning
rate attenuation, etc., so as to improve the generalization ability and prediction accuracy of
the model.

2.3. Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC), as a stochastic mathematical simulation method,
has the advantages of strong versatility and intuitive simplicity [38]. This method is often
used to simulate complex problems with random variables [39]. MCMC uses random
simulation and statistical trials as means and produces a random numerical sequence that
conforms to the probability distribution characteristics of the random variable, which is
used as a method to conduct specific simulation tests and solve the sequence of human
variables [40]. The specific steps are as follows: First, a probabilistic model is established
that is consistent with the characteristics of the studied problem. Secondly, a sequence
of random numbers is generated as a sampling input to the system for digital simulation
trials in order to obtain a large number of simulated trial values. Finally, the results of the
simulation test are processed statistically with calculated frequency and mean value, and
the accuracy of the solution and settlement of the obtained problem is estimated [41]. The
Markov chain assumes that the probability of a state transition at a given time depends only
on its former state, which greatly simplifies the complexity of the model in the time-series
model. In this study, the parameters related to Si, S and P content in molten iron were
changed by some percentage, respectively, and the sensitivity was obtained by observing
the change amplitude of Si, S and P content in molten iron. Since the relationship expression
between the related parameters and Si, S and P content in molten iron cannot be directly
obtained, it is difficult to obtain the effect of changing the related parameters on Si, S and
P content in molten iron. At this time, the approximation can be simulated by using the
Monte Carlo method.

3. Data Collecting and Processing

The data of this paper were obtained from a Hebei steel mill (hereinafter referred to as
M steel) No.1 blast furnace production automation report from August to October 2020.
The data this study required were selected from this report, including sinter SiO2, pellet S,
oxygen-rich pressure, oxygen-rich rate, cold air flow rate, hot air temperature, pressure,
and 24 related parameters as input variables, and Si, P and S in molten iron as the output
variable to predict the quality of the molten iron. To facilitate subsequent tabulating and
mapping, the variables are renamed in English initials, as shown in Table 1.

Table 1. Abbreviation of each parameter.

Primitive
Name

furnace body
static pressure

thermal
load

sinter
P pellet SiO2

pellet
S

top
temperature

northeast

top
temperature

southeast

Abbreviation FBSP TL S P P SiO2 P S TTNE TTSE

Primitive
Name

top
temperature
northwest

top
temperature
southwest

oxygen
enrichment

stress

cold air
pressure

hot air
temperature

hot air
pressure top pressure

Abbreviation TTNW TTSW OES CAP HAT HAP TP

Primitive
Name

total soft water
flow

oxygen
enrichment

flow

oxygen
enrichment

rate
cold air flow blast kinetic

energy
actual wind

speed
differential

pressure

Abbreviation TSWF OEF OER CAF BKE AWS DP

Primitive
Name

permeability
index

theoretical
combustion
temperature

gas utilization molten iron Si molten
iron S

molten
iron P

Abbreviation PI TCT GU MI Si MI S MI P
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To improve the accuracy of the prediction model, a reliable data set is crucial. However,
the blast furnace data were collected and manually recorded through the sensors of each
detection point, which leads to different types, time frequencies, structures and storage
methods of the data. Therefore, according to the problems existing in the data, using
big data technology for preprocessing, including dealing with missing values, abnormal
values and other data problems, is an important guarantee to improve the data quality. The
programming work of this study was done on a Legion R7000P with the operating system
Windows 11, the development tool used was Matlab R2023a, and all applications were
completely written by the authors.

3.1. Unified Frequency of Data

After the integration and analysis of the data collected by the No.1 blast furnace of
M Steel, it can be seen that the update frequency of the data is related to the parameters.
In consideration that most of the historical data stored in the database of M steel plants is
hourly frequency data, the data frequency involved in the prediction model in the paper is
selected as hourly frequency. The data amount of hour frequency is smaller than that of sec
level and minute level frequency data, which is more in line with the field demand in the
actual field application. Therefore, in order to ensure the unification of time frequency, the
time frequency of data needs to be adjusted. Since the Si, S and P content in molten iron is
recorded by furnace times, the time interval varies from 60 to 120 min. The data frequency
was unified as follows: within 90 min was classified as the first 1 h and over 90 min was
classified as the next 1 h; 989 data sets were obtained in 24 h processing.

3.2. Normalization Processing

Different types of data and the units between data are not uniform, which means that
the order of data is different, so the data need to be normalized. Data normalization involves
scaling the data to fall into a specific region, removing unit constraints and converting
the data to dimensionless pure data. Data normalization facilitates the comparison and
weighting between the parameters, accelerating the convergence rate of the model. The
max–min method is easy to implement, it does not change the original information of the
data, and it is easy to explain and understand. In this paper, the max–min method is used
to normalize the data. The max–min method uses the maximum value and the minimum
value in the data column for standardization. After standardization, the standardized
value is between [0,1], and the calculation method is the difference between the data and
the minimum value of the column, which is then divided by the extreme difference. The
specific formula is:

x′ =
x − min

max − min
(10)

3.3. Outlier Handling

The process of blast furnace ironmaking is complex and the production environment
is harsh. External conditions such as high temperature, high pressure and high humidity
can easily affect the sensitive sensing devices, which leads to interference and errors in
data collection and transmission. Therefore, the outliers need to be removed to ensure the
accuracy of the data. Considering that the data will be abnormal in the process of blowing
out and blowing restore, the relevant data will be covered after understanding the specific
time period of blowing out and blowing restore with experts from the steel mill. Data
are filtered for outliers using the box-plot method, and the results are shown in Figure 8.
Values beyond the upper and lower bounds of the box-plot are removed as outliers.
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3.4. Missing Values Processing

Due to sensor failure, manual input errors, abnormal values being eliminated and
other reasons, many missing values have been generated in the data set. Only after the
missing values have been completing can they be used for the training and testing of the
prediction model. In this study, in order to make the filled data closer to the true value,
the data were divided into correlation data, temporal data, periodic data and manual
input data, and the most appropriate method was used to fill in the missing values in
the data. In order to compare the effects of different methods on filling missing values,
the evaluation indexes Root Mean Square Error (RMSE), coefficient of determination (R2)
and Mean Absolute Percentage Error (MAPE) are selected; the description of evaluation
indicators can be seen in Table 2.

Table 2. Description of evaluation indicators.

Evaluation Indicators Formula Introduction

RMSE RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2
The range of RMSE is [0, +), and the
smaller the value is, the smaller the
prediction error of the model is.

R2
R2 = 1 −

n
∑
i
(ŷi−yi)

2

n
∑
i
(y−i −yi)

2

The range of R2 is [0,1], and the
closer the value is to 1, the better the
model fit is.

MAPE MAPE =
100%

n

n
∑

i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣
The range of MAPE is [0, +), and
smaller values indicate that the
prediction model has a
better accuracy.

In Table 2, ŷi indicates the true value,yi indicates the predicted value, y−i represents
the mean value of the true values and n represents the total number of data points.
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3.4.1. Associative Data

The correlation data refers to the data points in the blast furnace process data. Because
the fluctuation of some monitoring data points is closely related to the adjustment of blast
furnace equipment or auxiliary equipment of the blast furnace, the monitoring point is
extremely sensitive to the change of adjustment parameters. Therefore, the characteristics
of this kind of data are a strong correlation. In order to intuitively reflect the characteristics
of the correlation data, taking the air permeability index and the actual wind speed as an
example, the line diagram of the data fluctuation is shown in Figure 9.
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Figure 9. Comparison of the fluctuation situation of the air permeability index and the actual wind
speed data.

As can be seen from Figure 9, the air permeability index has a strong synchronization
with the actual wind speed data; this conclusion was confirmed by using the Pearson
correlation analysis and seeing that their correlation coefficient was 0.86. The random
forest algorithm learns through multiple decision trees to effectively deal with complex
correlations between multiple features. When filling in the data, it often happens where
some features have missing values. Random forest can effectively handle data with missing
values. During the training process of each decision tree, some features are randomly
selected for training, thus reducing the sensitivity to missing values. Therefore, this paper
chooses to fill the missing value of association data using random forest, taking its filling
of air permeability index as an example and comparing the random forest filling with the
results of the AdaBoost method, as shown in Figure 10.

It can be seen from Figure 10 that the original data and the coincidence degree with
the random forest algorithm is significantly higher than with the AdaBoost algorithm. In
Table 3, the three evaluation indexes used to evaluate the coincidence degree of the filled
data and the original data show that the random forest algorithm is better. Therefore, in this
paper, the random forest algorithm is used to fill in the missing values of the correlation
data, such as air permeability index and actual wind speed, cold wind flow rate and cold
wind pressure and oxygen-rich flow rate.

Table 3. Comparison of results between random forest filling and AdaBoost filling.

Filling Method RMSE R2 MAPE

Random Forest 0.631 0.941 18.4%
AdaBoost 1.39 0.713 33.9%
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Figure 10. Comparison of results between Random forest filling and AdaBoost filling. (a) The effect
of Random forest filling (b) The effect of AdaBoost filling.

3.4.2. Time Sequence Class Data

Timing sequence class data refers to the data in the blast furnace from the coupling
factors of the blast furnace and the blast furnace production process of physical and
chemical reactions, making the fluctuation of the data point range widen, leading to a lack
of a strong correlation of related points and data fluctuations with continuity, meaning
that the data before the state and the next moment state has strong connection. The
main characteristics of this kind of data is that they have less instantaneous and violent
fluctuations, and the continuity of the data is obvious. Taking the northeast of the top
temperature as an example, the data fluctuation status is shown in Figure 11.
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Figure 11. Top temperature northeast data volatility.

Figure 11 clearly shows that the timing data represented by the roof pressure is charac-
terized by a small fluctuation range and strong continuity. Lagrangian interpolation can
construct a polynomial function through known data points, which interpolates between
data points and improves the accuracy of interpolation by increasing the number of data
points. Therefore, this paper chooses to use the Lagrange interpolation method to fill in
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the missing value of the temporal data, taking the missing value of the roof pressure as an
example and comparing the results of the Lagrange interpolation method with the KNN
filling, as shown in Figure 12.
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Figure 12. Comparison of results between Lagrange interpolation filling and K-nearest neighbor
filling. (a) The effect of Lagrange interpolation filling (b) The effect of K-nearest neighbor filling.

It can be seen from Figure 12 that the original data and the coincidence degree with
the Lagrangian interpolation is significantly higher than with the K-nearest neighbor inter-
polation. In Table 4, the three evaluation indexes used to evaluate the coincidence degree
of the filled data and the original data show that the Lagrangian interpolation is better.
Therefore, missing values of the temporal data, such as roof pressure, top temperature,
total flow rate of soft water and so on, were filled using Lagrange interpolation.

Table 4. Comparison of results between Lagrange interpolation filling and K-nearest neighbor filling.

Filling Method RMSE R2 MAPE

Lagrangian interpolation 3.92 0.982 1.84%
K-nearest neighbor interpolation 6.48 0.954 2.91%

3.4.3. Periodic Data

Periodic data refers to the data points of some non-temporal data in the blast furnace,
which are counted for a certain cycle. For example, the data points of blast furnace material
composition analysis, blast furnace iron output and slag output of the blast furnace are
distributed in a certain range due to factors such as blast furnace volume and production
capacity. Therefore, the classification of such data can be observed from the global analysis.
Figure 13 is the data fluctuation of the SiO2 content of pellet ore.

It can be seen from Figure 13 that the periodic statistical data does not have the
continuity characteristics of temporal data and has more obvious periodic aggregation
distribution characteristics, so it is more appropriate to choose the adjacent point mean
filling method to fill the periodic statistical data. When filling in the cycle statistical data,
the principle of proximity should be adopted, and the adjacent similar cycle data should
be selected for backfilling. Therefore, the K-nearest neighbor algorithm can well meet the
need of filling in the missing values for periodic data. In this paper, the K-nearest neighbor
algorithm is selected to fill in the missing value of the periodic data, taking the missing
value of SiO2 content of pellet ore as an example and comparing the KNN algorithm with
the results of the linear interpolation method, as shown in Figure 14.
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Figure 13. Fluctuation of the SiO2 content data of the pellet.
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Figure 14. Comparison of the results of K-nearest neighbor filling and Linear interpolation filling.
(a) The effect of K-nearest neighbor filling (b) The effect of Linear interpolation filling.

It can be seen from Figure 14 that the original data and the coincidence degree with the
K-nearest neighbor interpolation is significantly higher than with the linear interpolation.
In Table 5, the three evaluation indexes used to evaluate the coincidence degree of the
filled data and the original data show that the K-nearest neighbor interpolation is better.
Therefore, K-nearest neighbor is used to fill in periodic data, such as the P content of sinter,
the SiO2 content of pellets and the S content of pellets.

Table 5. Comparison of the results of K-nearest neighbor filling and linear interpolation filling.

Filling Method RMSE R2 MAPE

K-nearest neighbor interpolation 0.131 0.592 5.02%
Linear interpolation 0.167 0.756 13.8%

3.4.4. Manual Entry of Data

Considering that the Si, S and P content parameters in molten iron are input into the
system after manual testing, this situation will lead to the large spacing of missing values
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of Si, S and P content in the automated report. Figure 15 is the data fluctuation of Si content
in molten iron.
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Figure 15. Fluctuation of Si content in molten iron.

It is not difficult to see from Figure 15 that it is easy to cause great errors if using the
conventional data filling method. The SVD algorithm is essentially a matrix factorization
technique, so it is particularly suitable to fill in the missing values stored in the matrix form.
By preserving the largest singular values and the corresponding singular vectors, SVD is
able to reconstruct the main structure of the data set and thus effectively fill in the missing
values. In this paper, the SVD algorithm is selected to fill in the missing values of manually
input data, taking the missing values of Si content in molten iron as an example, and
comparing the SVD algorithm with the linear interpolation method, as shown in Figure 16.
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Figure 16. Comparison of the results of Singular value decomposition filling and Linear inter-
polation filling. (a) The effect of Singular value decomposition filling (b) The effect of Linear
interpolation filling.

It can be seen from Figure 16 that the original data and the coincidence degree with
the singular value decomposition interpolation is significantly higher than with the linear
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interpolation. In Table 6, the three evaluation indexes used to evaluate the coincidence
degree of the filled data and the original data show that the singular value decomposition
interpolation is better. Therefore, this paper uses the SVD method to fill in the manual
input data, such as Si, S and P content in molten iron.

Table 6. Comparison of the results of singular value decomposition filling and linear interpolation
filling.

Filling Method RMSE R2 MAPE

Singular Value Decomposition interpolation 0.00381 0.983 1.38%
Linear interpolation 0.0155 0.744 4.90%

3.5. Data Dimension Reduction

Considering that excessive input variables easily lead to over-fitting of the prediction
model, the correlation coefficient is reduced by Pearson, and the nonlinear correlation is
verified by the gray correlation method; the heat map is shown in Figure 17.
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Figure 17 shows that there is no set of variables with a correlation exceeding 0.9,
indicating that another dimension reduction is not required. The input variables for the
final prediction model were FBSP, TL, SP, P SiO2, PS, TTNE, OES, HAT, TSWF, CAF, DP,
PI, TCT.

3.6. Determine the Time Lag

As a typical process production enterprise, the stable production of blast furnace
smelting is a continuous process, relying on the cooperation of various departments. From
the transportation of raw fuel in the field, to the charging of the furnace, to the transmission
of sensor information of various departments, and then to the occurrence of various physical
and chemical reactions in the furnace, production is carried out according to established
technological processes. There is continuity in the changes in the process, but due to the
complexity of the blast furnace production itself the operation state of the blast furnace
is stable at the previous moment and the operation state of the blast furnace begins to
fluctuate at the next moment. The state at this time will have an impact on the subsequent
state, and there is obvious data timing. In order to better predict Si, S and P content in
molten iron, the corresponding lag time of each input variable needs to be determined
in advance. The MIC algorithm can better analyze the specific lag time of each variable,
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taking the process of determining the Si content in molten iron as an example. The lag time
of each variable is finally confirmed, as shown in Table 7.

Table 7. Time lag analysis.

Variable 1t 2t 3t 4t 5t 6t 7t 8t Lag Time

FBSP 0.166 0.148 0.151 0.146 0.150 0.155 0.154 0.152 1
TL 0.146 0.136 0.134 0.145 0.142 0.145 0.140 0.145 1
S P 0.198 0.198 0.199 0.197 0.198 0.198 0.196 0.196 3

P SiO2 0.212 0.217 0.218 0.219 0.222 0.225 0.234 0.240 8
P S 0.112 0.107 0.108 0.115 0.112 0.117 0.126 0.132 8

TTNE 0.156 0.145 0.144 0.145 0.147 0.160 0.152 0.151 6
OES 0.182 0.188 0.201 0.195 0.205 0.201 0.202 0.185 5
HAT 0.151 0.140 0.131 0.130 0.136 0.125 0.139 0.122 1

TSWF 0.224 0.228 0.213 0.217 0.216 0.217 0.216 0.219 2
CAF 0.162 0.169 0.170 0.184 0.193 0.181 0.185 0.170 5
DP 0.159 0.151 0.145 0.135 0.137 0.150 0.152 0.142 1
BI 0.178 0.183 0.191 0.174 0.167 0.176 0.175 0.157 3

TCT 0.149 0.127 0.151 0.124 0.121 0.139 0.148 0.123 3
MI Si 0.315 0.166 0.138 0.151 0.126 0.123 0.129 0.116 8

From Table 7, the specific lag time of each variable can be determined according to
the influence of different time delays on Si content in molten iron, the time node with the
greatest influence of each variable on the Si content in molten iron has been bolded in the
table (In addition to the effect of Si content on itself). The above process is repeated to
obtain the different lag times of each variable for Si, S and P content in molten iron, as
shown in Table 8.

Table 8. The time lag for each parameter.

Content in Molten Iron FBSP TL S P P SiO2 P S TTNE OES HAT

Si 1 1 3 8 8 6 5 1
S 5 7 5 7 7 8 4 1
P 4 7 3 2 8 1 7 4

Content in Molten Iron TSWF CAF DP BI TCT MI Si MI S MI P

Si 2 5 1 3 3 8 / /
S 1 5 8 8 5 / 8 /
P 1 4 6 8 8 / / 8

4. Results and Discussion
4.1. Quality Prediction of Molten Iron

The application of intelligent algorithms and machine-learning-related technology to
predict the quality of molten iron can enable the field staff to obtain the changes of molten Si,
S and P content in the blast furnace in advance, so as to provide the basis for the subsequent
adjustment. In this paper, 989 production data of an M Steel 1 blast furnace from August to
October 2020, using the I-GWO-CNN-BiLSTM model for prediction, were selected as the
source of experimental data, as follows: FBSP, TL, SP, P SiO2, PS, TTNE, OES, HAT, TSWF,
CAF, DP, BI and TCT as input variables. Mi Si, MI S and MI P as output variables. In order
to verify the superiority of the I-GWO-CNN-BiLSTM model, the evaluation indexes RMSE,
R2 and MAPE were selected.

4.1.1. Model Training

In this paper, 70% of the 989 data sets were selected to train the IGWO-CNN-BiLSTM model,
which was compared with the traditional LSTM prediction model. In order to facilitate
the reader to compare the data with those in the actual production, the prediction results
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were inversely normalized. The prediction result pairs are shown in Figure 18 and the
performance pairs are shown in Table 9.
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Figure 18. Comparison of the prediction results at model training. (a) the model prediction result of
MI Si (b) the model prediction result of MI S (c) the model prediction result of MI P.

Table 9. Comparison of model performance.

Content in
Molten Iron

I-GWO-CNN-BiLSTM LSTM

RMSE R2 MAPE RMSE R2 MAPE

MI Si 0.00231 0.995 1.35% 0.00977 0.916 5.81%
MI S 0.00248 0.962 4.58% 0.00714 0.691 9.33%
MI P 0.000887 0.987 0.534% 0.00299 0.859 2.06%

From Figure 18, it can be seen that the prediction results of the I-GWO-CNN-BiLSTM
model can basically cover the true value, while the prediction results of the LSTM model
can only cover part of the true value or beyond the range of the true value. It can be seen
from Table 4 that, when predicting the Si, S and P content in molten iron, The RMSE values
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of the I-GWO-CN-BiLSTM model decrease by 0.00746, 0.00466 and 0.00211 compared with
the LSTM model. The R2 value of the I-GWO-CNN-BiLSTM model increases by 0.0797,
0.272 and 0.128, respectively, compared with the LSTM model. The MAPE values of the
I-GWO-CNN-BiLSTM model decrease by 4.46%, 4.75%, and 1.53%, respectively, compared
with the LSTM model. In conclusion, the I-GWO-CNN-BiLSTM model has a superior
performance and enables a better prediction of molten iron mass.

4.1.2. Model Testing

In this paper, the remaining 30% of 989 data sets is selected as the test set of the
I-GWO-CNN-BiLSTM model for testing the model and comparing it with the traditional
LSTM prediction model. In order to facilitate the reader to compare the data in the actual
production with the prediction results, the prediction results were inversely normalized.
The prediction results are shown in Figure 19, the prediction errors are shown in Figure 20
and the performance pairs are shown in Table 10.
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Figure 19. Comparison of the prediction results at model testing. (a) the model prediction result of
MI Si (b) the model prediction result of MI S (c) the model prediction result of MI P.

According to Figure 19, we can judge the prediction effect of the two models by
observing the coverage of the predicted value of IGWO-CNN-BiLSTM (blue dotted line)
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and the predicted value of LSTM (green dotted line) on the true value (red solid line).
In Figure 19a, the predicted values of IGWO-CNN-BiLSTM and LSTM evenly matched
the true coverage at the [0.05,0.18] interval, but only the predicted value of IGWO-CNN-
BiLSTM effectively covers the true values at the [0.18,0.25] interval. In Figure 19b, the
predicted value of IGWO-CNN-BiLSTM was able to effectively cover the true value at the
interval of [0.02,0.11], while the predicted value of LSTM was mostly beyond the true range
at the interval of [0.02,0.05], and it failed to cover the true value at [0.05,0.11]. In particular,
there is no prediction value of LSTM at the [0.08,0.11] interval. In Figure 19c, most of the
predicted values of LSTM cannot effectively cover the true value at the [0.09,0.11] interval
and are beyond the range of the true value at the [0.11,0.14] interval. Although the predicted
value of IGWO-CNN-BiLSTM cannot effectively cover the true value at the [0.15,0.2] and
[0.09,0.095] intervals, the coverage still exceeds LSTM for the true value. In conclusion,
I-GWO-CNN-BiLSTM is significantly better for the tracking of Si, S and P content in molten
iron than the LSTM model.

Table 10. Model performance comparison.

Content in
Molten Iron

I-GWO-CNN-BiLSTM LSTM

RMSE R2 MAPE RMSE R2 MAPE

MI Si 0.00271 0.989 1.41% 0.0106 0.905 5.89%
MI S 0.00229 0.952 4.61% 0.00539 0.734 8.85%
MI P 0.00271 0.921 0.652% 0.00459 0.775 2.63%

As can be seen in Table 10, when predicting the Si, S and P content of molten iron,
The RMSE index of the I-GWO-CNN-BiLSTM model is better than the RMSE index of the
LSTM model, and is close to 0, which indicates that the I-GWO-CNN-BiLSTM model has a
high prediction accuracy. The R2 index of the I-GWO-CNN-BiLSTM model is better than
the R2 index of the LSTM model, and is close to 1, which indicates that the I-GWO-CNN-
BiLSTM model has a high degree of fit. The MAPE index of the I-GWO-CNN-BiLSTM
model is better than the MAPE index of the LSTM model, and is close to 0, which indicates
that the I-GWO-CNN-BiLSTM model has low error. In conclusion, the use of the I-GWO-
CNN-BiLSTM model can accurately predict the quality of molten iron, so as to provide
important data support for steel mill staff and provide important guarantees for blast
furnace production.

In the above, we found that the IGWO-CNN-BiLSTM model has better prediction
accuracy, but it still has prediction errors. In fact, it is inevitable that the prediction models
will produce errors. The specific reasons for this are as follows: Firstly, some of the data in
the data set used to train the prediction model were obtained from filling in and were not
all real data from the steel mill. Secondly, too much selection of features can easily lead to
overfitting of the model, while too little selection of features can easily lead to underfitting
of the model, and it is difficult to achieve perfect feature selection. Thirdly, the model
used cannot well capture the intrinsic correlation between the independent variables and
the dependent variables. Finally, training the model with too little data can also lead to
large prediction errors. However, the prediction errors can not only be reduced by using
the superior prediction model but can also be reduced by using the data set that more
closely fits the actual value. In this paper, the accurately processed data and the roughly
processed data in Section 3.4 were used to train the same model (IGWO-CNN-BiLSTM)
and the evaluation index was used to evaluate the performance of the model, and the
comparison results are shown in the table below.

It can be seen from Table 11 that the model trained by the accurately processed data
has a higher level of accuracy in predicting Si, S and P content in molten iron. In order to
more intuitively reflect the gap between the predicted value and the true value, the error of
training the IGWO-CNN-BiLST model by accurately processed data for predicting Si, S
and P content in molten iron is plotted in Figure 20.
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Table 11. Comparison of model performance after training using accurate and rough processed data.

Content in
Molten Iron

Accurate Processing Rough Processing

RMSE R2 MAPE RMSE R2 MAPE

MI Si 0.00271 0.989 1.41% 0.00467 0.965 1.89%
MI S 0.00229 0.952 4.61% 0.00369 0.937 5.85%
MI P 0.00271 0.921 0.652% 0.00349 0.913 0.932%
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Figure 20. Error of the prediction. (a) The error of the MI Si prediction (b) The error of the MI S
prediction (c) The error of the MI P prediction.

As can be seen from Figure 20, when using the I-GWO-CNN-BiLSTM model, the
error is concentrated in the range of [−0.05,0.05] and [−0.05,0]. For P content in molten
iron, the error is concentrated in the range of [−0.03,0.01]. It is not difficult to see that
this study ensures that the prediction error is controlled within a small range through
reasonable feature selection, more refined data processing, a superior prediction model,
and an appropriate amount of data for the training and testing of the model, which makes
the guiding significance of this study for the actual production more significant.

4.2. Parameter Regulation

After the accurate prediction of the quality of molten iron, if the expected target of
the steel mill is not reached, it is necessary to regulate the Si, S and P content in molten
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iron in a timely manner to ensure that the final qualified products can be obtained. In
the molten iron mass prediction model, the effects of different input variables on the Si, S
and P content in molten iron vary. Because the MCMC algorithm can conduct sensitivity
analysis through random sampling, there is no need to repeat the model, with obvious
advantages in computational efficiency. By using the sensitivity of the parameters, the
parameter increases by 5% for the influence of the Si, S and P content of molten iron, as
shown in Figure 21, and the specific values, as shown in Table 12.

Metals 2024, 14, x FOR PEER REVIEW 26 of 29 
 

 

After the accurate prediction of the quality of molten iron, if the expected target of 

the steel mill is not reached, it is necessary to regulate the Si, S and P content in molten 

iron in a timely manner to ensure that the final qualified products can be obtained. In the 

molten iron mass prediction model, the effects of different input variables on the Si, S and 

P content in molten iron vary. Because the MCMC algorithm can conduct sensitivity anal-

ysis through random sampling, there is no need to repeat the model, with obvious ad-

vantages in computational efficiency. By using the sensitivity of the parameters, the pa-

rameter increases by 5% for the influence of the Si, S and P content of molten iron, as 

shown in Figure 21, and the specific values, as shown in Table 12. 

 

Figure 21. The percentage effect of a 5% increase of each input variable on the Si, S and P content in 

molten iron. (a) The percentage effect of the variable on MI Si (b) The percentage effect of the varia-

ble on MI S (c) The percentage effect of the variable on MI P 

Table 12. The percentage value of a 5% increase of each input variable on Si, S and P content in 

molten iron. 

Content in 

Molten Iron 
FBSP TL S P P SiO2 P S TTNE OES 

MI Si 1.97 1.98 2.291 2.94 2.36 2.30 4.69 

MI S 1.41 1.47 1.40 1.37 1.56 1.56 1.26 

MI P 0.830 0.762 0.773 0.787 0.811 0.776 0.571 

Content in 

Molten Iron 
HAT TSWF CAF DP PI TCT 

MI Si 2.77 2.93 2.43 2.67 3.63 3.19 

MI S 1.62 1.70 2.49 0.626 0.668 2.77 

MI P 0.984 0.844 0.861 0.687 0.530 0.841 

(c) 

(a) 

(b) 

Figure 21. The percentage effect of a 5% increase of each input variable on the Si, S and P content in
molten iron. (a) The percentage effect of the variable on MI Si (b) The percentage effect of the variable
on MI S (c) The percentage effect of the variable on MI P.

It can be seen from the chart that oxygen-rich pressure has the greatest impact on
Si content in molten iron. By increasing the oxygen-rich pressure by 5%, the Si content
in molten iron can be increased by 4.69%. The permeability index is due to Si content
in molten iron, second only to oxygen-rich pressure, but the permeability index does
not belong to the operation parameter and cannot be directly adjusted. The theoretical
combustion temperature has the greatest influence on the S content in molten iron. By
increasing the theoretical combustion temperature by 5%, the S content in molten iron can
be increased by 2.77%. The influence of cold air flow on the S content in molten iron is
second only to the theoretical combustion temperature. By increasing the cold air flow by
5%, the S content in molten iron can be increased by 2.49%. The hot air temperature has
the greatest influence on the P content in molten iron. Increasing the hot air temperature
by 5% can increase the P content in molten iron by 0.984%. The influence of cold air flow
on the P content in hot water is second only to the hot air temperature. By increasing the
cold air flow by 5%, the P content in hot water can be increased by 0.861%. According to
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the prediction results, the operators of the steel plant can adjust the operating parameters
according to the influence of the variables on the Si, S and P content in molten iron, so as to
improve the quality of molten iron and achieve stable and efficient production.

Table 12. The percentage value of a 5% increase of each input variable on Si, S and P content in
molten iron.

Content in Molten Iron FBSP TL S P P SiO2 P S TTNE OES

MI Si 1.97 1.98 2.291 2.94 2.36 2.30 4.69

MI S 1.41 1.47 1.40 1.37 1.56 1.56 1.26

MI P 0.830 0.762 0.773 0.787 0.811 0.776 0.571

Content in Molten Iron HAT TSWF CAF DP PI TCT

MI Si 2.77 2.93 2.43 2.67 3.63 3.19

MI S 1.62 1.70 2.49 0.626 0.668 2.77

MI P 0.984 0.844 0.861 0.687 0.530 0.841

5. Conclusions and Outlook

(1) Different from the existing research results, in this study the blast furnace data were
divided into correlation data, temporal data, periodic data and manual input data
according to different characteristics, and different methods were used to fill in
different types of missing data in the data processing process, which makes the final
data set more practical, so that the prediction model trained with the data set can
better track the actual value.

(2) In this paper, we combine CNN with the BiLSTM model and use the I-GWO algorithm
to optimize the hyperparameters to finally form the I-GWO-CNN-BiLSTM model.
The I-GWO-CNN-BiLSTM model is used to predict the Si, S and P content in molten
iron and compare it with the traditional LSTM model. The results show that the
I-GWO-CNN-BiLSTM model is better than the LSTM model in the evaluation indexes
R2, RMSE and MAPE and has higher prediction accuracy and can effectively predict
the quality of molten iron.

(3) In this paper, the MCMC algorithm is used to conduct the sensitivity analysis of
each input variable and obtains the effect of each variable increasing by 5% on Si, S
and P content in molten iron. The results indicate that, in each variable, oxygen-rich
pressure, theoretical combustion temperature and hot air temperature, respectively,
have the greatest influence on Si, S and P content in molten iron. When the quality of
molten iron is not up to the standard, the steel mill staff can make timely adjustments
on this basis. In subsequent research, automatic control-related technologies can
be added in this link to realize the closed loop of “prediction-analysis-regulation”
completed by machines instead of manually.
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