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Simple Summary: As an invasive pest, whitefly causes great losses in agricultural production, and
resistance increases in whitefly to chemical insecticides are an important problem in plant protection.
Our study revealed that imidacloprid stress inhibits the expression of AKH, thereby increasing ROS
and the expression levels of the resistance gene CYP6CM1 and upstream regulatory factors in Bemisia
tabaci. AKH silencing by RNA interference affected the resistance of whiteflies to imidacloprid. These
results provide insight into the resistance mechanism in whitefly.

Abstract: Synthetic insecticides used to control Bemisia tabaci include organophosphorus, pyrethroids,
insect growth regulators, nicotinoids, and neonicotinoids. Among these, neonicotinoids have been
used continuously, which has led to the emergence of high-level resistance to this class of chemical
insecticides in the whitefly, making whitefly management difficult. The adipokinetic hormone gene
(AKH) and reactive oxygen species (ROS) play roles in the development of insect resistance. Therefore,
the roles of AKH and ROS in imidacloprid resistance in Bemisia tabaci Mediterranean (MED; formerly
biotype Q) were evaluated in this study. The expression level of AKH in resistant B. tabaci MED
was significantly lower than that in sensitive B. tabaci (MED) (p < 0.05). AKH expression showed a
decreasing trend. After AKH silencing by RNAi, we found that ROS levels as well as the expression
levels of the resistance gene CYP6CM1 and its upstream regulatory factors CREB, ERK, and P38
increased significantly (p < 0.05); additionally, whitefly resistance to imidacloprid increased and
mortality decreased (p < 0.001). These results suggest that AKH regulates the expression of resistance
genes via ROS in Bemisia tabaci.

Keywords: Bemisia tabaci; imidacloprid; AKH; reactive oxygen species; resistance

1. Introduction

Bemisia tabaci is one of the most important vegetable and ornamental crop pests in the
world [1]. It is characterized by a high reproductive capacity and wide host range, with
more than 1000 vegetable crops and ornamental plants identified as hosts [2]. Therefore, it
is found on all continents except Antarctica [3].

Neonicotinoid insecticides have been used to control whiteflies in the past few decades
owing to their low toxicity to mammals [4,5]. This has led to the development of widespread
resistance of whiteflies. Imidacloprid, a first-generation neonicotinoid insecticide, is still
widely used. Extensive research has focused on the mechanism underlying resistance to
imidacloprid [6–8], for example, the trans-regulation of CYP6CM1, a cytochrome P450
that confers resistance to neonicotinoid insecticides in the whitefly Bemisia tabaci, by the
mitogen-activated protein kinase (MAPK)-directed activation of the transcription factor
cAMP-response element binding protein (CREB) [9]. In addition, recent studies have shown
that miR-1517 may be involved in regulating the expression of CYP6CM1 [10].

One of these hormones, the adipokinetic hormone (Akh), is secreted by the corpora car-
diaca (CC) and elicits both carbohydrate and lipid mobilization from the fat body (trehalose
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from glycogen and diacylglycerol from triacylglycerol, respectively), acting as a functional
homolog of glucagon [11,12]. This hormone signals to the G-protein coupled receptor
encoded by the Akh receptor gene AkhR to elevate hemolymph lipid and/or trehalose
titers and thus redirects energy to the sites and processes where it is required [13,14].

Insecticides can induce a strong oxidative stress response in insects, which is accompa-
nied by the production of a large number of ROS. Excessive ROS will damage insect cells
and even lead to insect death [15,16]. The role of Akh in regulating antioxidant systems
involved in insect resistance to insecticides has been reported [17]. Velki et al. found that
the Akh mature peptide levels in the hemolymph of the firebug Pyrrhocoris apterus increased
significantly after insecticide treatment [18]. AKH regulates the expression of imidacloprid
resistance genes by regulating ROS levels [19].

In this study, imidacloprid resistance levels in Bemisia tabaci MED were studied. In
particular, the molecular mechanism underlying imidacloprid resistance in B. tabaci MED
was investigated using resistant and sensitive strains, with a focus on the roles of AKH
and ROS. To evaluate the role of AKH in resistance, its response to imidacloprid as well as
changes in resistance after AKH silencing by RNA interference (RNAi) were evaluated. To
evaluate the role of ROS in resistance and changes in ROS in response to imidacloprid, as
well as changes in imidacloprid resistance after ROS elimination, were evaluated. Further-
more, the effect of AKH on ROS was studied by silencing AKH. The results of this study
provide insight into the molecular mechanism underlying the imidacloprid resistance of
B. tabaci MED from the perspectives of ROS and AKH and provide a new target for the
development of insecticides.

2. Materials and Methods
2.1. Insect Rearing

A colony of the Bemisia tabaci Mediterranean (MED; formerly biotype Q) cryptic species
was maintained on cucumber plants, which was not exposed to any insecticide during
the culture period and served as a sensitive population in this experiment. Resistant
whiteflies were collected from the greenhouse of the Plant Protection Institute of Hunan
Academy of Agricultural Sciences (Changsha, Hunan, China, 28◦12′ N, 112◦59′ E). B. tabaci
MED was a multi-generation population reared in the presence of imidacloprid (as the
resistant population). The culture conditions were 16 h light/8 h dark, 26 ± 0.5 ◦C, and
75 ± 0.5% humidity.

2.2. Bioassay of Insecticide Resistance

The LC50 values and drug resistance of whiteflies after treatment with imidacloprid
(pesticide registration no.: PD20131915; product standard no.: GB/T28143-2011; dosage
form: emulsifiable oil; imidacloprid 5%, Bayer Crop Science (China), Hangzhou, China)
were determined using the agar disk diffusion method. The test device was improved by
using a small box with a lid that was ventilated with gauze mesh, leaving a small opening
for insects [20]. An appropriate amount of 1% agar was added to the bottom of the lid. The
plate was immersed in diluted imidacloprid at various concentrations for 10 s and then
placed on the agar after drying naturally. In total, 20 individuals were placed in each small
box and the experiment was repeated 10 times. B. tabaci MED death was quantified after
48 h, and water was used as the control.

2.3. RNA Extraction, cDNA Synthesis, and Real-Time Quantitative Polymerase Chain Reaction

Total RNA was extracted using the TaKaRa RNAiso Plus Kit (Cat# 9109, Lot#
AL42064A, TaKaRa, Beijing, China), according to the manufacturer’s instructions. Then,
cDNA was synthesized using the TaKaRa Reverse Transcription Kit (Cat# RR047A, Lot#
AL21113A, TaKaRa, Beijing, China). To detect the expression of the resistance gene
CYP6CM1, quantitative real-time PCR (qRT-PCR) was performed using TaKaRa TB
GreenR Premix Ex TaqTM II (Cat# RR820A, Lot# AJF2612A, TaKaRa, Beijing, China),
according to the manufacturer’s instructions.
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2.4. RNAi

Cloning and ligation of the adipokinin gene fragment were performed using the
pMDTM18-T Vector Cloning Kit (TaKaRa, Cat#6011, Lot#AK91485A, TaKaRa, Beijing,
China). After sequencing, double-stranded RNA (dsAKH) was cloned. dsGFP was synthe-
sized using the T7 High Yield RNA Synthesis Kit (YESEN, Code No: 10623ES50, YESEN,
Shanghai, China), following the kit instructions. The membrane feeding method (refer to
Li et al. 2015) [21] was used to feed dsAKH and dsGFP to sensitive B. tabaci MED. The
feeding concentration was 500 ng/µL, determined based on a preliminary experiment.
After feeding for 48 h, the silencing efficiency and the change in the expression level of
the resistance gene CYP6CM1 were analyzed by qRT-PCR with sequence-specific primers
(Table 1). dsGFP was used for comparison.

Table 1. Primers of related genes for qRT-PCR and RT-PCR.

Primer Name Length (bp) Sequence (5′→3′)

CYP6CM1-RT-F 24 CACTCTTTTGGATTTACTGCACCC
CYP6CM1-RT-R 22 GTGAAGCTGCCTCTTTAATGGC

CREB-F 22 ACTCAAGGCAGTCTCCAAACCC
CREB-R 22 TTTCTGCTCCGCCTAAATCGTT

P38-F 21 GAACGCCGTCGGAGGATACTT
P38-R 21 TTGGCTCCTTTGAACACTTGC
ERK-F 23 AGATTATTTCCTTCAGCCGATGC
ERK-R 22 GGGCAAGGGCATCTTCAACTAC
Actin-F 20 TCTTCCAGCCATCCTTCTTG
Actin-R 20 CGGTGATTTCCTTCTGCATT

dsAKH-F 47 GATCACTAATACGACTCACTATAGGGCTTGTCGCACAATTCTGGTGT
dsAKH-R 50 GATCACTAATACGACTCACTATAGGGAACTTCTGAACTTCTCACAATCTG
AKH-RT-F 21 CTTGTCGCACAATTCTGGTGT
AKH-RT-R 20 TTGCGCCTCATTCTCGATCA

dsCYP6CM1-F 46 GATCACTAATACGACTCACTATAGGGACTTTTTCAGGGAGGCCATT
dsCYP6CM1-R 46 GATCACTAATACGACTCACTATAGGGGTCGCAGCGTCTCATCAATA

2.5. Determination of ROS Contents in B. tabaci MED

The ROS content in B. tabaci MED was measured after treatment and grinding with
250 µL of phosphate buffer (pH 7.4). After full grinding, samples were centrifuged at
13,680× g for 5 min, 190 µL of the supernatant was transferred to a 96-well plate, and 10
µL of DCFH-DA (Solarbio, Cat#CA1410, Solarbio, Beijing, China) (10 µmol/L) was added
and mixed well. Samples were incubated in a dark room for 1 h [22]. Fluorescence was
detected at an excitation wavelength of 488 nm and emission wavelength of 525 nm. The
same volume of phosphate buffer and DCFH-DA-adjusted fluorescence value were used as
the blank control, and dsGFP treatment was used as the control.

2.6. Scavenging Effect of N-acetylcysteine on ROS

The scavenging effect of N-acetylcysteine (NAC) on ROS in insects was evaluated
following a previously reported method [19]. In particular, a NAC solution of 1 mol/L
was used based on preliminary analyses of concentrations up to 10 mol/L. The volume of
liquid feed used was 200 µL, and pure liquid feed was used as the control.

2.7. Statistical Analysis

IBM SPSS Statistics 20.0 software (IBM Corp., Armonk, NY, USA) was used for the
numerical analyses of all experimental data [23], and independent samples t-tests were used
for comparisons between groups [24]. The quantitative fluorescence data were analyzed
using the 2−∆∆Ct method. The LC50 of imidacloprid was calculated using the SPSS Probit
function [25], and then the regression model was fitted and R2 was calculated. Plots were
generated using GraphPad Prism 8.0.2 [26]. The experimental results are expressed as the
mean ± standard error.
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3. Results
3.1. Bioassay of Imidacloprid Sensitivity of B. tabaci

We first estimated imidacloprid LC50 values in B. tabaci MED. The LC50 of the sen-
sitive B. tabaci MED was 51.820 mg/L, and the LC50 of the resistant B. tabaci MED was
535.932 mg/L, with a resistance ratio of 10.34. The resistant B. tabaci MED was moderately
resistant (Table 2).

Table 2. Virulence equation and resistance multiplicity for Bemisia tabaci.

Bemisia tabaci Toxic Regression
Equation

Correlation
Coefficient LC50 (mg/L) Resistance

Ratio

Resistibility Y = −4.093 + 1.5X 0.961 535.932 10.34
Sensibility Y = −2.699 + 1.574X 0.987 51.820 ------

3.2. The Role of AKH in the Response of B. tabaci MED to Imidacloprid

We compared adipokinin gene expression levels in resistant and sensitive whiteflies.
We also evaluated changes in adipokinin in sensitive whiteflies after treatment with imida-
cloprid. The expression level of AKH in resistant B. tabaci MED was significantly lower than
that in sensitive B. tabaci MED (p < 0.05) (Figure 1A). After treatment with 50 mg/L imida-
cloprid, the relative expression level of AKH decreased but did not differ significantly from
that of the control. Under treatment with 100 mg/L, relative AKH expression increased
but did not differ significantly from that of the control. After treatment with 150 mg/L
imidacloprid, the relative expression of AKH decreased but was not significantly different
from that in the control (Figure 1B).
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Figure 1. AKH expression in sensitive and resistant strains and in response to imidacloprid. Note:
(A) Comparison of AKH expression levels between resistant and sensitive Bemisia tabaci, R indicates
resistant B. tabaci, and S indicates sensitive B. tabaci. (B) Effect of imidacloprid treatment on the
expression level of AKH in sensitive B. tabaci; the horizontal axis indicates the concentration of
imidacloprid, CK represents the control (water). Groups were compared using independent samples
t-tests, with a significance level of 0.05. Data are presented as the mean ± standard error (* p < 0.05,
ns indicates insignificant difference).

3.3. Effect of AKH on the Expression of CYP6CM1 and Its Upstream Regulatory Factors

After preliminary experimental data processing and a literature review, we predicted
that the lipid-motility hormone is related to imidacloprid resistance in B. tabaci MED. There-
fore, we used RNAi technology to disrupt AKH expression and evaluated the effects on
CYP6CM1 and the three upstream regulatory factors. After feeding double-stranded RNA
at a concentration of 500 ng/µL for 48 h by the membrane feeding technique, the relative
expression of AKH decreased significantly (p < 0.0001) (Figure 2A) and the expression of
the resistance gene CYP6CM1 was significantly higher than that in the control (p < 0.01)
(Figure 2B). The expression levels of CREB (p < 0.05) (Figure 2C), ERK (p < 0.05) (Figure 2D),
and P38 (Figure 2E) were significantly higher (p < 0.05) in the RNAi group than in the
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control group, indicating that AKH could have an impact on resistance genes and their
signaling pathways (Abbreviations).
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Figure 2. Effect of RNAi silencing targeting AKH on the expression of CYP6CM1 and upstream
regulatory factors in sensitive Bemisia tabaci MED. Note: (A) Expression level of AKH after feed-
ing with dsAKH; (B) Expression level of CYP6CM1 after feeding with dsAKH; (C) Expression
level of CREB after feeding with dsAKH; (D) Expression level of ERK after feeding with dsAKH;
(E) Expression level of P38 after feeding with dsAKH. Groups were compared using independent
samples t-tests, with a significance level of 0.05. Data are presented as the mean ± standard error
(* p < 0.05, ** p < 0.01, **** p < 0.0001).

3.4. Effect of AKH Silencing on Imidacloprid Sensitivity

Previous analyses indicated that AKH can affect the expression of an imidacloprid re-
sistance gene, which is crucial for the metabolism of imidacloprid. Therefore, we evaluated
the imidacloprid sensitivity of B. tabaci fed dsAKH. After 2 days of feeding with dsAKH,
the B. tabaci MED was transferred to a bioassay unit and treated with imidacloprid at the
LC50 of sensitive B. tabaci MED for 48 h. B. tabaci MED mortality was significantly lower in
the treatment group than in the control group (p < 0.001) (Figure 3).
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3.5. ROS Response to Imidacloprid

Insects subjected to insecticide stress will produce a large number of ROS, thus
reducing the harmful effects of pesticides [27]. Therefore, sensitive B. tabaci MED was
treated with imidacloprid to evaluate changes in ROS levels. After treatment with
100 mg/L imidacloprid, the ROS content in B. tabaci in the treatment group was signifi-
cantly higher than that in the control group (p < 0.05) (Figure 4A). In addition, to further
study the role of ROS in resistance, the ROS scavenger NAC was used to treat resistant
B. tabaci MED [19]. The results showed that under treatment with 1, 5, and 10 mmol/L
NAC, the ROS contents in resistant whiteflies decreased; however, a significant differ-
ence was only observed between 10 mmol/L and the control (p < 0.05) (Figure 4B). For
subsequent studies of resistance mechanisms, a concentration of 10 mmol/L was optimal.
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represents the control (water), and 100 mg/L imidacloprid was applied in the treatment group;
(B) Changes in ROS contents in resistant B. tabaci MED after N-acetylcysteine treatment; CK
is the control group (pure liquid feed), and 1, 5, and 10 mmol/L are the concentrations of N-
acetylcysteine in the liquid feed. Groups were compared using independent samples t-tests, with a
significance level of 0.05. Data are presented as the mean ± standard error (* p < 0.05, ns indicates
insignificant difference).

3.6. Effects of ROS Scavengers on CYP6CM1 and Its Upstream Regulators

ROS levels changed in response to stimulation with imidacloprid, and ROS scav-
engers significantly reduced ROS levels in resistant B. tabaci MED. Therefore, we further
evaluated whether ROS could affect the expression of resistance genes. After treatment
with 10 mmol/L NAC, the expression level of CYP6CM1 in resistant B. tabaci MED was
significantly lower than that in the control group (p < 0.05) (Figure 5A). The expression
levels of ERK, P38, and CREB were significantly lower than those in the control (all p < 0.05)
(Figure 5B–D). These results indicate that ROS levels influence the expression of resistance
genes and related regulatory factors.

3.7. Effect of an ROS Scavenger on Imidacloprid Sensitivity

The previous analyses showed that ROS can affect the expression of the resistance
gene CYP6CM1, which is crucial for the metabolism of imidacloprid. Therefore, a bioassay
of imidacloprid sensitivity was performed after whiteflies were fed NAC. After 2 days of
NAC feeding, whiteflies were treated with imidacloprid at the LC50 dose for 48 h. B. tabaci
MED mortality was significantly lower in the treatment group than in the control group
(p < 0.001) (Figure 6).



Insects 2024, 15, 436 7 of 11

Insects 2024, 15, x FOR PEER REVIEW 7 of 11 
 

 

significantly lower than that in the control group (p < 0.05) (Figure 5A). The expression 
levels of ERK, P38, and CREB were significantly lower than those in the control (all p < 0.05) 
(Figure 5B–D). These results indicate that ROS levels influence the expression of resistance 
genes and related regulatory factors. 

 
Figure 5. Effect of ROS scavengers on the expression of CYP6CM1 and upstream regulatory factors 
in resistant Bemisia tabaci MED. Note: (A) Expression level of CYP6CM1 after treatment with 10 
mmol/L N-acetylcysteine; (B) Expression level of CREB after treatment with 10 mmol/L N-acetyl-
cysteine; (C) Expression level of ERK after treatment with 10 mmol/L N-acetylcysteine; (D) Expres-
sion level of P38 after treatment with 10 mmol/L N-acetylcysteine. Groups were compared using 
independent samples t-tests, with a significance level of 0.05. Data are presented as the mean ± 
standard error (* p < 0.05). 

3.7. Effect of an ROS Scavenger on Imidacloprid Sensitivity 
The previous analyses showed that ROS can affect the expression of the resistance 

gene CYP6CM1, which is crucial for the metabolism of imidacloprid. Therefore, a bioassay 
of imidacloprid sensitivity was performed after whiteflies were fed NAC. After 2 days of 
NAC feeding, whiteflies were treated with imidacloprid at the LC50 dose for 48 h. B. tabaci 
MED mortality was significantly lower in the treatment group than in the control group 
(p < 0.001) (Figure 6). 

Figure 5. Effect of ROS scavengers on the expression of CYP6CM1 and upstream regulatory factors in
resistant Bemisia tabaci MED. Note: (A) Expression level of CYP6CM1 after treatment with 10 mmol/L
N-acetylcysteine; (B) Expression level of CREB after treatment with 10 mmol/L N-acetylcysteine;
(C) Expression level of ERK after treatment with 10 mmol/L N-acetylcysteine; (D) Expression level of
P38 after treatment with 10 mmol/L N-acetylcysteine. Groups were compared using independent
samples t-tests, with a significance level of 0.05. Data are presented as the mean ± standard error
(* p < 0.05).

Insects 2024, 15, x FOR PEER REVIEW 8 of 11 
 

 

 
Figure 6. Effect of ROS scavengers on the sensitivity of Bemisia tabaci MED to imidacloprid. Note: 
The horizontal axis represents different treatments, and the vertical axis represents the mortality 
rate of B. tabaci MED. Groups were compared using the independent samples t-test, with a signifi-
cance level of 0.05. Data are presented as the mean ± standard error (*** p < 0.001). 

3.8. Effect of AKH on ROS Levels in B. tabaci MED 
It has been reported that AKH exerts an antioxidant effect in insects [17]. We found 

that AKH and ROS can affect the expression of resistance genes. Therefore, we speculated 
that AKH may regulate the expression of resistance genes by influencing ROS. To evaluate 
this prediction, levels of ROS in whiteflies were measured after AKH was silenced by 
RNAi. The results showed that the ROS content in the treatment group was significantly 
higher than that in the control group (p < 0.05) (Figure 7), indicating that AKH could affect 
ROS in B. tabaci MED. 

 
Figure 7. Effect of RNAi silencing AKH on the ROS content in Bemisia tabaci MED. Note: The hori-
zontal axis represents different treatments, and the vertical axis represents the ROS content in B. 
tabaci. Groups were compared using the independent samples t-test, with a significance level of 0.05. 
Data are presented as the mean ± standard error (* p < 0.05). 

4. Discussion 
As a major pest worldwide, B. tabaci seriously endangers food security [28,29]. To 

control B. tabaci MED, a large number of chemical pesticides (organophosphorus, pyre-
throids, insect growth regulators, nicotinoids, and neonicotinoids.) are used, causing en-
vironmental pollution and posing a threat to human health. Pesticide residues are becom-
ing more and more serious; at the same time, whitefly resistance is increasing. 

In this study, we found that the AKH gene of B. tabaci MED contributes to the regu-
lation of resistance to imidacloprid. In particular, AKH expression levels were lower in 
resistant than in sensitive whiteflies After treatment with 50, 100, and 150 mg/L imidaclo-
prid in sensitive B. tabaci MED, AKH expression exhibited variable levels. This trend was 

Figure 6. Effect of ROS scavengers on the sensitivity of Bemisia tabaci MED to imidacloprid. Note:
The horizontal axis represents different treatments, and the vertical axis represents the mortality rate
of B. tabaci MED. Groups were compared using the independent samples t-test, with a significance
level of 0.05. Data are presented as the mean ± standard error (*** p < 0.001).

3.8. Effect of AKH on ROS Levels in B. tabaci MED

It has been reported that AKH exerts an antioxidant effect in insects [17]. We found
that AKH and ROS can affect the expression of resistance genes. Therefore, we speculated
that AKH may regulate the expression of resistance genes by influencing ROS. To evaluate
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this prediction, levels of ROS in whiteflies were measured after AKH was silenced by RNAi.
The results showed that the ROS content in the treatment group was significantly higher
than that in the control group (p < 0.05) (Figure 7), indicating that AKH could affect ROS in
B. tabaci MED.
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4. Discussion

As a major pest worldwide, B. tabaci seriously endangers food security [28,29]. To con-
trol B. tabaci MED, a large number of chemical pesticides (organophosphorus, pyrethroids,
insect growth regulators, nicotinoids, and neonicotinoids.) are used, causing environmental
pollution and posing a threat to human health. Pesticide residues are becoming more and
more serious; at the same time, whitefly resistance is increasing.

In this study, we found that the AKH gene of B. tabaci MED contributes to the regulation
of resistance to imidacloprid. In particular, AKH expression levels were lower in resistant
than in sensitive whiteflies After treatment with 50, 100, and 150 mg/L imidacloprid
in sensitive B. tabaci MED, AKH expression exhibited variable levels. This trend was
consistent with the results of Tang et al., showing that the AKH expression level in the
brown planthopper (Nilaparvata lugens) is low in resistant strains and decreases after
treatment with imidacloprid. However, in this study, the AKH expression level increased
after treatment with 100 mg/L imidacloprid. It is possible that excess ROS activated the
antioxidant system of whiteflies, which has been reported previously [19].

Imidacloprid resistance in B. tabaci is mainly caused by the P450 family gene
CYP6CM1 [30]. Consistent with our expectations, we found that CYP6CM1 expres-
sion in B. tabaci was significantly increased. Furthermore, CYP6CM1 is regulated by the
MAPK pathway, and the expression levels of the three regulatory factors ERK, P38, and
CREB also increased significantly [31]. This suggests that AKH may act as a negative
regulator of resistance genes. However, the increased levels of resistance genes do not
necessarily mean that B. tabaci MED tolerance to imidacloprid increased. Therefore, we
tested the sensitivity of B. tabaci MED to insecticides after silencing AKH, revealing that
the sensitivity of B. tabaci MED to insecticides decreased. This suggests that AKH can
indeed influence the expression of CYP6CM1 and thus the resistance of B. tabaci MED
to imidacloprid.

We found that AKH exerts a negative regulatory effect on CYP6CM1 in B. tabaci
MED. However, the pathways through which AKH exerts these effects are still unclear.
We speculate that AKH exerts its effects through its antioxidant stress function [32,33].
Therefore, we treated the resistant B. tabaci MED with the antioxidant NAC and found that
the expression levels of the resistance gene CYP6CM1 and the upstream regulatory factors
ERK, P38, and CREB decreased. Moreover, the sensitivity of B. tabaci MED to imidacloprid
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increased (Scheme 1). These results are consistent with those of Tang et al. (2020), who
showed that the resistance of the brown planthopper to imidacloprid is mediated by ROS. In
another study on the brown planthopper, the expression levels of Akh and AkhR increased
significantly under stimulation with chlorpyrifos. Interference with the expression of
Akh or AkhR significantly reduced the activity of carboxylesterase and the resistance
of the brown planthopper to chlorpyrifos [34]. This suggests that the role of AKH in
insecticide resistance depends on the type of insecticide and the degree of insecticide
stimulation [17,35].
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In conclusion, this study demonstrated that exposure to imidacloprid stimulation
decreased AKH expression, inhibited antioxidant activity mediated by this gene, and
increased ROS in B. tabaci MED, thereby activating the MAPK signaling pathway and
increasing the expression of the resistance gene CYP6CM1 [31].
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