
Citation: Cruz, T.M.P.; Buchmann,

S.L.; Prudic, K.L. Buzzing towards

Resilience: Investigating the Spatial

Alignment of the Desert Pallid Bee,

Centris pallida, and Its Host Plants in

Response to Climate Change. Insects

2024, 15, 793. https://doi.org/

10.3390/insects15100793

Academic Editor: Paulo A. V. Borges

Received: 18 September 2024

Revised: 6 October 2024

Accepted: 6 October 2024

Published: 11 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

insects

Article

Buzzing towards Resilience: Investigating the Spatial Alignment
of the Desert Pallid Bee, Centris pallida, and Its Host Plants in
Response to Climate Change
Terese Maxine P. Cruz 1,* , Stephen L. Buchmann 2,3 and Kathleen L. Prudic 1,4,5,*

1 School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
2 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA;

buchmann.stephen@gmail.com
3 Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
4 Arizona Institute for Resilience, University of Arizona, Tucson, AZ 85721, USA
5 BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
* Correspondence: tmcruz@arizona.edu (T.M.P.C.); klprudic@arizona.edu (K.L.P.)

Simple Summary: Insect declines have been linked to rising temperatures and aridification due to
global climate change. These declines impact ecosystems, as many flowering plants rely on insect
pollinators like bees for reproduction. However, desert organisms, which are well-adapted to hot and
arid conditions, may respond differently to environmental changes compared to those in non-desert
environments. In this study, we estimate the overlapping suitable habitat for the desert pallid bee
(Centris pallida) and three of its host plants—the desert ironwood (Olneya tesota), blue palo verde
(Parkinsonia florida), and yellow palo verde (Parkinsonia microphylla)—under current and forecasted
climate conditions using maximum entropy modeling (MaxEnt). MaxEnt creates predictions of where
a species is most likely to reside in novel or known areas based on the environmental variables at
locations of observed occurrences. We found that C. pallida and its host plants may exhibit resilience
to warming temperatures from a moderate increase in greenhouse gasses as projected by climate
models, resulting in a slight northern expansion of suitable habitats shifted to higher average altitudes
where all four species may exist. This study might serve as a reference for future modeling studies
and insight into the resilience of desert-dwelling pollinators.

Abstract: Wild bees are vital for the pollination of native plants and crops, providing essential
ecosystem services. Climate change is known to impact biodiversity and species distributions, but
insects adapted to desert ecosystems may exhibit unique physiological, behavioral, and evolutionary
responses. The desert pallid bee (C. pallida), a solitary bee native to the arid southwestern United
States and northern Mexico, primarily forages on yellow palo verde (P. microphylla), blue palo verde
(P. florida), and desert ironwood (O. tesota). This study used MaxEnt to estimate the current and
projected geographical overlap of suitable habitats for C. pallida and its host plants. Here, we used
MaxEnt to estimate the current and forecasted overlapping geographically suitable habitat of C. pallida
with all three host plants. We forecasted potential environmentally suitable areas for each species
to the year 2040 using the current distribution model and climate projections with moderate CO2

levels. We found a continued spatial alignment in the suitable area of the bee and its host plants
with a 70% increase in the range overlap area, though shifted to higher average altitudes and a slight
northern expansion. These findings may provide insight to stakeholders on the conservation needs
of desert-dwelling pollinators.

Keywords: habitat suitability predictions; maximum entropy model; native pollinator; species
distribution models
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1. Introduction

Insect pollinators are crucial for ecosystem health and economic activities, but their
survival is increasingly threatened by climate change, which brings rising temperatures and
increased aridity (e.g., [1–3]). Despite efforts towards climate mitigation and adaptation
plans, organisms continue to face high temperature extremes alongside habitat fragmen-
tation due to urbanization and agriculture [4]. These environmental changes disrupt the
alignment between pollinators and their host plants, altering ecosystem structures and
pollination services (e.g., [4–7]).

Wild bees are often more effective pollinators than domesticated honey bees (Apidae:
Apis mellifera (Linnaeus, 1758)) with respect to native flora [8,9]. Monitoring the presence
and absence of wild bees and their native plant hosts is a major factor in preserving local
biodiversity as temperatures rise [10], but climate change-driven declines in native bee di-
versity have been observed most prominently in temperate and tropical ecosystems [11,12].
Some species with higher tolerances to heat and aridity fared better than those that were
less tolerant [11–13], warranting the question of whether desert-adapted species may re-
spond differently to a warming climate as they possess adaptations to persist through
continued desertification [14,15].

The interplay between spatial distributions and climate is crucial for understanding
wild bee ecology. Many pollinators depend on their host plants for nectar and pollen,
and the availability of flowering desert plants—often drought-tolerant—can influence
bee abundance and diversity [16]. The presence of certain plant species influences the
abundance and diversity of bees in the area, an outcome often considered in conservation
and may play a role in supporting the persistence of plant-feeding organisms [17,18]. Desert
plants themselves appear to be persistent and even increase in abundance with climatic
warming and aridification [19], and some desert bee populations are found to maintain a
constant population density [20]. For example, a study on an arid-zone bee species (Apidae:
Exoneurella tridentata (Houston, 1976)) and its host plants in Australia suggests that desert
bees might be less vulnerable to climate change than those in subtropical and tropical
regions [21]. However, future changes in climate could still exceed physiological limits and
negatively affect individual survival, population persistence, and habitat suitability [22–25].
Some species might mitigate the effects of climate change on themselves by relocating to
new habitats, changing in latitude, or climbing in elevation [26–29]. Estimating future
species distributions under different climate change scenarios is helpful for identifying
locations for protected areas as spatial distributions change, for informing decision-making
on habitat enhancement and restoration activities, and for suggesting areas where surveys
could be performed to gather more information on population trends (e.g., [30,31]).

Assessing population persistence may require a more holistic approach, consider-
ing not only species adaptations but also the condition of dependent species and related
habitats (e.g., [32,33]). Along with population-level studies evaluating declines, modeling
species distributions under varying climate scenarios can help identify potential locations
for conservation and guide future research [34,35]. One method for estimating species dis-
tributions utilizes the maximum entropy model (MaxEnt). MaxEnt is a species distribution
model (SDM) based on machine learning that is frequently used in ecological and conserva-
tion studies (e.g., [36–38]). All species distribution models are continually evolving to better
manage sampling bias and improve predictive performance, so it is important to use the
results thoughtfully for conservation planning. However, SDMs continue to offer valuable
insight and assist in management decision-making (e.g., [37,39–41]). Applying SDMs to
desert ecosystems—known for their diverse and abundant wild bee populations [42]—can
enhance our understanding of regions potentially most affected by ongoing climate change.

Our study investigates organisms native to the arid deserts of northern Mexico and the
southwest United States of America (U.S.), regions historically for deficits in precipitation
and extreme temperatures [43,44]. These characteristics make it a region with the potential
to become no longer physiologically suitable for either insects or their plant hosts in future
years. We focus on the desert pallid bee (Apidae: Centris pallida (Fox, 1899)), a solitary
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species that adjusts its behavior to avoid extreme temperatures, such as seeking shade
or cooler microhabitats [45–48]. This bee, crucial for pollinating desert plants like palo
verde trees, also aids soil health through its burrowing [45,49]. Here, we aim to predict the
geographically suitable habitat for C. pallida and its major host plants—the desert ironwood
(Fabaceae: Olneya tesota (A. Gray, 1854)), blue palo verde (Fabaceae: Parkinsonia florida
(Benth. ex A. Gray)) and yellow palo verde (Fabaceae: Parkinsonia microphylla (Torr.)) (also
known as the little-leaved or foothills palo verde)—under current and projected climate
conditions. We explore whether this desert pollinator and its host plants are likely to be
threatened in the future with respect to a warming climate.

2. Materials and Methods
2.1. Study System

We focused on observations in the desert regions of the southwestern United States
of America and northwestern Mexico, which includes the Mojave and Sonoran deserts,
located between latitudes 20◦ N and 40◦ N and longitudes 105◦ W and 125◦ W. Both
regions accumulate less than 500 mm of precipitation a year depending on the location,
with mountainous regions receiving the upper limit. The Mojave receives a lower amount
relative to the Sonoran since its precipitation is derived primarily from winter rains, while
the Sonoran Desert receives precipitation from winter and summer rains. The two deserts
are often regarded as the driest (Mojave) and most subtropical (Sonoran) deserts in North
America, offering a range of ecosystems within the study area. Average temperatures range
around a low of 50 ◦F (10 ◦C) during the cooler months to a high of 104 ◦F (40 ◦C), sometimes
reaching 118 ◦F (48 ◦C), from June to August [50,51]. Differences abound between the
two deserts related to geology and soil types in addition to precipitation [50,52].

Our focal species included the desert pallid bee (C. pallida), desert ironwood (O. tesota),
blue palo verde (P. florida) and yellow palo verde (P. microphylla) (Figure 1). C. pallida is
a solitary bee that nests underground, constructing brood cells 4 to 11 cm deep in sandy
to gravelly soil [Sabino and Buchmann, unpublished]. It feeds on nectar and pollen from
O. tesota, P. florida, and P. microphylla, which supports both adult and larval survival [45,49].
Notably, this bee shows a strong preference for pollen from palo verde trees [49]. All
study species can withstand high temperatures and tend to reside at elevations below
4000 feet (1219 m), though some observations for all organisms have been observed at
greater elevations (Table S1). The host plants are desert-adapted, requiring little to no water
after establishment, and are hardy to average winter minimums of 15–30 ◦F (−9.4 to −1.1 ◦C)
according to the United States Department of Agriculture (USDA) Hardiness Zones [53].

We downloaded species occurrence data through the R package rgbif [54] for C. pallida,
O. tesota, P. florida, and P. microphylla aggregated from the Global Biodiversity Information
Facility (GBIF) [https://www.gbif.org/ (accessed on 21 March 2024)], an online collection
of the data from various sources including museums, DNA barcodes, and community
science platforms such as iNaturalist. Duplicated observations were removed based on
geographical coordinates, date, dataset origin, and species identification number.

2.2. Climate and Elevation Data

Historical monthly climate data from 2000–2021 were obtained from WorldClim ver-
sion 2.1 at a 2.5 min resolution (approximately 21 km2 at the equator) [https://worldclim.
org/data/monthlywth.html (accessed on 14 December 2023)] [55,56]. The data contain
the average minimum temperature (◦C), average maximum temperature (◦C) and average
total precipitation (mm) for each month. The 19 bioclimatic variables (Table S3) that are
generally used in species distribution models were averaged from the monthly data over
the 21-year period. Two variables (bio3 and bio7) that were combinations of the other
predictors were excluded from the models to reduce complexity and collinearity in the
predictor dataset, which may result in a more accurate model [57–59].

https://www.gbif.org/
https://worldclim.org/data/monthlywth.html
https://worldclim.org/data/monthlywth.html
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Figure 1. Occurrence maps showing observations of our focal species. Panels show (a) C. pallida, (b) 
O. tesota, (c) P. florida, and (d) P. microphylla. An inset photograph of each species is presented in the 
bottom left corner of each panel. 
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Figure 1. Occurrence maps showing observations of our focal species. Panels show (a) C. pallida,
(b) O. tesota, (c) P. florida, and (d) P. microphylla. An inset photograph of each species is presented in
the bottom left corner of each panel.

Estimates of future (projected) climate data were obtained from AdaptWest for the
20-year period of 2021–2040 at a 30 s resolution [https://adaptwest.databasin.org/pages/
adaptwest-climatena/ (accessed on 25 April 2024)], [60]. The data were resampled to attain
a 2.5 min resolution to align with the 19 bioclimatic variables obtained from WorldClim. The
projected monthly climate data is an ensemble of eight atmosphere-ocean coupled general
circulation models (AOGCMs) from the Coupled Model Intercomparison Project Phase 6
(CMIP6) that have been noted by the Intergovernmental Panel on Climate Change (IPCC)
as consistent with the most likely range of Earth’s equilibrium climate sensitivity [60–62].

For our study, we considered the intermediate Shared Socioeconomic Pathway (SSP)
scenario of 2–4.5. This represents a future with increased global warming of 3 ◦C and
additional radiative forcing of 4.5 W/m2 by the year 2100, given the current economic
and developmental trends [4,63,64]. We also examined model projections for subsequent
periods 2041–2060, 2061–2070, and 2081–2100 under SSP 2–4.5 and SSP 3–7.0 for each
species. However, a comparison of all models showed no clear differences or additional
insight than provided by SSP 2–4.5 in the near future (2021–2040) (Figures S1 and S2).

The 2023 Digital Elevation Model (DEM) data from the Commission for Environmental
Cooperation (CEC) were downloaded directly from the site [http://www.cec.org/north-
american-environmental-atlas/elevation-2023/ (accessed on 13 December 2023)]. The data
depict North American terrain relative to mean sea level with a 250 m resolution, using
data from the Global Multi-resolution Terrain Elevation Data (GMTED2010).

2.3. Species Distribution Model

Species distribution models (SDMs) for each species were constructed using MaxEnt
(version 3.4.4) [57]. A model area specific to each species was determined by taking a
minimum convex polygon of the respective occurrence points and extending that boundary
by 150 km to account for species dispersal over time. The model uses the historical climate
data from WorldClim and the elevation data from DEM for this study’s geographic region.

https://adaptwest.databasin.org/pages/adaptwest-climatena/
https://adaptwest.databasin.org/pages/adaptwest-climatena/
http://www.cec.org/north-american-environmental-atlas/elevation-2023/
http://www.cec.org/north-american-environmental-atlas/elevation-2023/
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Occurrence data were thinned using the gridSample function (dismo package) to one ob-
servation per 2.5 min raster cell following the climate raster to reduce spatial autocorrelation
and the effects of sampling bias [58,65]. This was performed for each species and applies to
the remainder of the methods unless noted otherwise. The MaxEnt model was trained on
10,000 randomly selected pseudo-absence (a.k.a. background) points that were generated
within the cropped model area using the spatSample function (terra package) [65–67].

Model tuning and evaluation were performed using the ENMevaluate function
(ENMeval package) via the maxnet algorithm [68,69]. The k-fold method was used for par-
titioning the area into four spatial folds [70,71]. Three feature class combinations (L = linear,
LQ = linear quadratic, and LQH = linear quadratic hinge) were selected alongside three reg-
ularization multipliers (1, 2, and 3), yielding 12 possible models for evaluation. We filtered
model evaluation results by selecting one with an average Continuous Boyce Index (CBI)
closest to a + 1, lowest average 10% omission rate, and highest average area under the
curve (AUC) of the receiver operating characteristic (ROC) plot across all four folds [72–75].

2.4. Predicting Current and Future Distributions

Identifying potential suitable habitats for each species was performed by using pa-
rameter estimates from the aforementioned optimal model, in addition to environmental
data raster stacks from the years 2000–2021 and 2021–2040. Raster stacks include the
DEM and the respective time period being considered. Predictions were made using the
enm.maxnet@predict function (ENMevaluate package), and the probability of presence was
transformed by a complementary log-log [69,76]. Results with a 50% habitat suitability or
greater are presented to highlight areas that are more likely to be suitable than unsuitable
for each species.

3. Results
3.1. Most Occurrences Observed in Arizona and California (USA)

Collectively, a total of 13,214 observations of our focal species were gathered by
community scientists across the southwest United States and northern Mexico and were
used in this study (Table S1). Of the total number, 310 belonged to C. pallida, 4615 to
O. tesota, 3769 to P. florida, and 4520 to P. microphylla (Table S1, Table S2). A majority of these
observations were recorded in the United States, particularly in Arizona and California,
and visually appeared to be grouped around more populated areas such as Phoenix, AZ
and Tucson, AZ (Figure 1). The general distribution of C. pallida observations exhibited a
roughly similar spread and area covered to that of all three of its host plants despite having
only 7.5% as many observations as there were for each of the plants (Figure 1, Table S1).

3.2. Expansion in Predicted Suitable Habitat with a Shift to Higher Average Altitudes

Here, we define suitable habitat as the areas identified to have a 50% or higher chance
of being environmentally suitable for the species. The current predicted area suitable for
C. pallida is estimated to be 163,307 km2, which lies within the range of the current predicted
areas of its host plants (163,908–167,695 km2) (Figure 2, Table 1). Somewhat surprisingly, all
species showed an expansion of habitat (with a greater than 50% suitability) between the
two climate periods (2000–2021 and 2021–2040), ranging from an increase of 32% (P. florida)
to 137% (P. microphylla) (Figure 3, Table 1). The forecasted distribution area of C. pallida
continues to lie between the distribution areas of its host plants (229,231–396,604 km2) in
the 2021–2040 period as well (Table 1). The current area of overlap between all four species
is 150,851 km2, and this expanded to 215,759 km2 (a 70% increase) by the year 2040 under a
model of moderate CO2 input (Figure 4). This increase in geographic area is accompanied
by a shift to higher average elevations, with C. pallida’s average elevation increasing by
269 m and its host plants 93–272 m (Table 2), depending on species.
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Figure 2. Species distribution models based on climate data from 2000–2021. Panels show the pre-
dicted distribution that has a greater than 50% environmental suitability for (a) C. pallida, (b) O. tesota,
(c) P. florida, and (d) P. microphylla.

Table 1. Areas of current and forecasted suitable habitat (with a greater than 50% environmental
suitability) in kilometers squared. The rightmost column shows the percent change between the
two time periods.

Species Current Distribution Area (km2) Future Distribution Area (km2) Percent Change (%)

C. pallida 163,307 258,869 59
O. tesota 163,908 229,231 40
P. florida 197,349 260,433 32

P. microphylla 167,695 396,604 137

Table 2. Average elevation across predicted suitable areas (with a greater than 50% environmental
suitability) for current and future time periods. The rightmost column shows the change in elevation
between the two time periods.

Species Current Distribution
Average Elevation (m)

Future Distribution
Average Elevation (m) Change in Elevation (m)

C. pallida 496 765 +269
O. tesota 329 422 +93
P. florida 390 662 +272

P. microphylla 448 663 +215
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predicted environmental suitability (that is greater than 50%) intersects with each other, with (a) being
the overlap in the current suitable area and (b) being that of the forecast (to the year 2040).
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3.3. Focal Species’ Habitat Suitability May Be Linearly Related to Mean Temperature

With 17 bioclimatic variables in the best-fit models, we found that the mean temper-
ature for the warmest quarter (bio10) was one of the top three contributors in predicting
distributions for all four species (Table S3). Different combinations of variables contributed
at varying capacities to each species’ model, but precipitation of the driest quarter (bio17)
and precipitation of the coldest quarter (bio19) were utilized across all of the models
(Table S3). The minimum temperature of the coldest month (bio6) was a top contributor in
the models for the host plants (Table S3). Our focal desert species appear to benefit, at least
to a small extent, from the projected warming temperatures (Figure 3).

The optimal model for C. pallida and P. microphylla was composed of a linear (L) feature
and a regularization multiplier of 3 (Table S4). The other two species, O. tesota and P. florida,
differed slightly with a linear quadratic (LQ) feature. The average values in our results
suggest that the most fitting, but not overfit, models performed with a reasonable amount
of accuracy. The best-fitting models for each species had an average AUC value between
0.71–0.81 (Table S4). The AUC value represents the proportion of correctly predicted
observed absences, where 0 suggests poor predictive power, and 1 is the best [77]. The
accompanying metrics, such as the average CBI values, ranging from 0.61–0.84, and the
average 10% omission rates, indicated that the model predictions were also reasonably
aligned with the distribution of the actual observations [73,75].

4. Discussion

Our results indicate a modest positive response of C. pallida to a slight increase in
mean temperature (+1–2 ◦C) during the period of 2021–2040. We found the current suitable
habitat for C. pallida to be 163,306 km2 (Figure 2), which is projected to expand by 59% to
258,869 km2 by the year 2040 (Figure 3, Table 1). Suitable habitat, defined here as areas
with over a 50% chance of environmental suitability, for C. pallida that holds both abiotic
conditions and all three host plants is currently predicted to be 150,851 km2 (Figure 4).
High temperatures and aridity are most strongly associated with this expansion under the
moderate climate scenario (SSP 2–4.5) (Figure 3, Table S3). Though even under a more
severe emissions scenario (SSP 3–7.0) extending to 2100, all four of our desert species
exhibited similar positive responses to the focal scenario (Figures S1 and S2). The overlap
in suitable areas of C. pallida and its host plants is expected to increase by 64,908 km2,
a 70% rise, primarily in northern regions (Figure 4). These findings resonate with existing
studies, though limited, on arid-zone bees that also show minimal change in response to
warming temperatures (e.g., [21,78]). These studies, conducted in the tropical dry forests of
South America and the xeric regions of Australia, benefited from conducting an extensive
sampling effort in addition to online databases for their species, likely enhancing their model
output and accuracy. We were able to achieve similar and consistent results by solely utilizing
GBIF data with a combination of museum collections and community science observations.

We found an average elevation increase for C. pallida by 269 m between the two time
periods, with its host plants varying from 93 m to 272 m (Table 2). This predicted shift
towards higher elevations aligns with meta-analyses indicating that species tend to move
upslope in response to warming temperatures [79]. While some studies on animals or
vegetation have documented elevational shifts upward towards cooler, moister climates
or a downward shift in response to water availability from precipitation (e.g., [80–83]),
the desert pallid bee may do so for physiological reasons. Previous research on C. pallida
has shown that, like many animals, they tend to relocate to more favorable microhabitats
to avoid reaching their critical thermal maxima, which ranges from ~111.2 ◦F (44.7 ◦C)
(small males) to ~113 ◦F (46 ◦C) (females) [46–48]. Migrating to higher elevations would
serve as an additional form for the bee to mitigate the effects of extreme climate (e.g., [78]).
Regardless of direction, elevational and distributional shifts of desert vegetation and their
pollinators are likely to induce shifts in associated species such as herbivores, parasitoids,
and predators (e.g., [84,85]). Mainly, maintaining the overlap in distribution between
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pollinators and their host plants may contribute to sustaining ecological interactions and
population persistence.

Species distribution modeling is an evolving approach with inherent limitations, yet
it remains a valuable tool in ecological research (e.g., [36–38,86]). Our models reached
acceptable evaluation metrics (Table S4), suggesting only minor changes in C. pallida’s
range under different climatic scenarios (Figure S1). Depending on the species, the average
AUC ranged from 0.71–0.81 and the average CBI from 0.61–0.84 (Table S4). Future studies
could enhance model accuracy by incorporating additional factors such as land cover,
surrounding vegetation, and soil type to better address the habitat needs of the desert
pallid bee. The data in our study, sourced from GBIF, primarily consist of presence-only
records from community scientists with varying levels of taxonomic expertise. Although
GBIF is a popular open-source data hub frequently used for species distribution modeling
(e.g., [87,88]), sampling biases remain a significant concern. Technologies such as computer
vision are improving species identification accuracy and consistency [89,90]; however, sam-
pling biases remain a concern now amplified with numerous participants. Most observers,
extending back to museum collections in the 1950s, like to travel a maximum of two hours
from their house and sample close to roads. Improved sampling in remote areas and
including presence-absence observations could enhance the model output. However, to
date, these types of comprehensive surveys remain much more costly compared to what
most current biological monitoring resources can support.

With an eye toward the uncertainty of predicting many years into a complex and
unknown future climate regime, we found that our four desert species in the arid south-
west US and northern Mexico may be able to cope and persist with the forecasted climatic
changes. Arizona, the center of the desert pallid bee distribution, is expected to experience
higher average temperatures, wetter conditions in the north, and drier conditions in the
south [91,92], which could create more suitable habitats at higher altitudes and northern
regions for C. pallida as well as other lowland desert-adapted species. This is encouraging
for maintaining ecosystem services such as pollination and plant recruitment necessary
for soil stability and air quality in desert ecosystems. However, this interpretation may be
negatively influenced by decreases in insect body size linked to increases in temperatures,
which has been observed in C. pallida [47,93]. The decrease places further thermal stress
on these bee populations as smaller insects are often less resilient to extreme heat [94,95].
The stability of the C. pallida alternative reproductive tactic (ART)—which likely relies
on competing selective forces related to nesting density, female provisioning, and male
mating success [96]—could be affected by declines in the species’ mean body size and the
decreasing frequency of large-morph males. Similarly, the palo verde trees (P. florida and
P. microphylla) may experience dieback at severe levels of drought and high evapotranspira-
tion. Although desert species have adaptations to cope with high temperatures and arid
conditions [14,15], the impacts on larval development are less clear, and it may be beneficial
to explore the physiological limits of the bee and its host plants.

Broadly, our results suggest that desert species might be more resilient to warm-
ing compared to those in temperate and tropical regions [97,98], though species-specific
responses will vary. Desert dwellers have evolved adaptations to withstand high tempera-
tures and arid conditions, including efficient water use, heat dissipation, and microclimate
utilization [14,15]. Combining these characteristics with potential trait plasticity and adap-
tation makes desert organisms more likely better prepared for future variations in climate
extremes compared to their temperate and tropical counterparts [99].

In this study, we find that the desert pallid bee may expand its current range to new
habitats and occupy more protected public land where conservation action is more feasible
in North America, suggesting that immediate conservation action may not be necessary.
However, species in regions experiencing more periods of extreme heat remain at risk despite
their adaptations to arid climates [100,101]. Thus, while the expected geographic expansion
and elevational shift involving C. pallida and its host plants may appear promising, proactive
conservation management may still be necessary in the future as climate conditions evolve.



Insects 2024, 15, 793 10 of 14

5. Conclusions

Our study found that the desert pallid bee (C. pallida) may tolerate and potentially
benefit from warming temperatures (+1–2 ◦C) during the period of 2021–2040. Both C. pall-
ida and its key host plants show a positive spatial relationship with rising temperatures,
suggesting their distributions could expand slightly by 32% to 137% and shift to higher
elevations in future years. The upward shift in elevation is consistent with existing re-
search and implies that there may be physiological or behavioral limits to the predicted
environmental conditions in lowland deserts. Overall, the positive response to a predicted
warming climate suggests that desert bees may be more resilient to climate change com-
pared to insects in tropical or temperate regions, offering a potential bright spot in insect
conservation amidst widespread declines elsewhere.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/insects15100793/s1, Figure S1: Forecasted SDMs for C. pallida
based on climate data from three 20-year periods subsequent to 2021–2040, each under two carbon
emission scenarios; Figure S2: Forecasted SDMs for the three host plants (O. tesota, P. florida, and
P. microphylla) based on climate data from three 20-year periods subsequent to 2021–2040, each under
two carbon emission scenarios; Table S1: Distribution of filtered observation numbers among states in
the United States of America (USA) and Mexico (MX); Table S2: Number of records for each species
used in the MaxEnt models; Table S3: Environmental variables included each species’ best-fit model
and their percent contribution; Table S4: Best-fit model for each species.
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