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Abstract: The class activation map (CAM) represents the neural-network-derived region of interest,
which can help clarify the mechanism of the convolutional neural network’s determination of any
class of interest. In medical imaging, it can help medical practitioners diagnose diseases like COVID-
19 or pneumonia by highlighting the suspicious regions in Computational Tomography (CT) or
chest X-ray (CXR) film. Many contemporary deep learning techniques only focus on COVID-19
classification tasks using CXRs, while few attempt to make it explainable with a saliency map.
To fill this research gap, we first propose a VGG-16-architecture-based deep learning approach in
combination with image enhancement, segmentation-based region of interest (ROI) cropping, and
data augmentation steps to enhance classification accuracy. Later, a multi-layer Gradient CAM
(ML-Grad-CAM) algorithm is integrated to generate a class-specific saliency map for improved
visualization in CXR images. We also define and calculate a Severity Assessment Index (SAI) from
the saliency map to quantitatively measure infection severity. The trained model achieved an
accuracy score of 96.44% for the three-class CXR classification task, i.e., COVID-19, pneumonia, and
normal (healthy patients), outperforming many existing techniques in the literature. The saliency
maps generated from the proposed ML-GRAD-CAM algorithm are compared with the original
Gran-CAM algorithm.

Keywords: convolutional neural networks (CNNs); class activation map (CAM); bacterial/viral
infection; disease diagnosis; medical imaging

1. Introduction

Lung infections caused by bacteria, viruses, and fungi commonly produce diseases
such as pneumonia, tuberculosis, asthma, and others that internationally account for 1.5 mil-
lion deaths annually. Recently, the world has experienced one of the most transmissive
diseases, COVID-19, caused by the SARS-CoV-2 virus, which infects the lungs and mutates
rapidly as an RNA virus [1]. This characteristic has created many variants, such as Alpha,
Beta, Gamma, Delta, and the most recent Omicron variant of coronavirus [2,3]. This makes
it difficult for medical researchers to develop a proper treatment and remedy plan for
infected people. Consequently, prevention, early diagnosis, and understanding of the viral
phenomena are the keys to saving human lives from these life-threatening diseases.

For diseases like COVID-19 or pneumonia, in general, the infected lung becomes
inflamed and may become filled with fluid. Once infected, a patient may experience
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many signs and symptoms such as fever, cold, cough, and headache. Besides looking
for these indicators, medical practitioners usually perform some assay for the accurate
diagnosis of the diseases. For example, the current COVID-19 examination involves
collecting nose and throat swabs from patients and performing the polymerase chain
reaction (PCR) test to detect the presence of viral RNA or using rapid antigen tests to detect
viral protein fragments in suspected patients [4]. Medical imaging, such as chest X-ray
(CXR) or Computational Tomography (CT) scan, is another common and convenient way to
diagnose a lung infection disease [5–7]. The CT scan or CXR films of infected people appear
with some vascular markings and hazy lung regions, commonly known as ground-glass
opacity (GGO) [8]. Medical practitioners need to carefully assess the GGO for proper
disease diagnosis, which is time-consuming and sometimes tiresome. The use of CXRs for
diagnosis requires a high level of skill, experience, and concentration from the radiologist.
Millions of CXRs are generated annually, and a radiologist has to examine a voluminous
number of CXR films, culminating in an infeasible diagnostic workload [9]. Moreover, the
COVID-19 pandemic has elevated the number of chest radiographs in clinical laboratories,
resulting in increased pressure on radiologists and healthcare providers. Consequently,
according to the Association of American Medical Colleges, it is estimated that the United
States could experience a shortfall of radiologists by 2033 [10].

Computer-aided diagnosis (CAD) systems effectively reduce the diagnostic workload
and aid the radiologist or primary doctor in making swift decisions [11]. It plays a sup-
porting and explanatory role in diagnosis using medical imaging. Medical imaging deals
with the information in an image that doctors use to evaluate and analyze abnormalities
quickly. Analysis of images in the medical field using the CAD system is crucial because it
requires a high level of sophistication and accuracy. Researchers nowadays are putting their
efforts into making the CAD system more intelligent, accurate, and robust with the help of
artificial intelligence (AI), computer vision, and machine learning (ML) techniques [12–14].
The main goal of CAD systems is to identify abnormal signs like GGO and extract useful
information like shape, size, and density to serve as an automated decision support system
for professionals.

The recent advancements in artificial intelligence, especially convolution neural net-
works (CNNs), have made the potential of automated medical image analysis nearly com-
parable to that of health professionals. CNNs are now being used in many applications rang-
ing from industry to healthcare and marine object detection to space
exploration [15–17]. The application of CNNs shows promising performance in object
classification, detection, segmentation, and the extraction of useful information without
human involvement. Unlike other application fields, investigation of medical imaging
must be both sensitive and not overly produce false-negative cases, especially for highly
contagious diseases like COVID-19. A false-negative decision of a COVID-19-positive
patient could severely jeopardize the patient and the community. While examining the
CXR films of a virus or bacterial-infected patient, doctors visually observe CXR films and
make a diagnosis. Consequently, an enhanced visualization with a colored scheme can
ease the observation process. However, contemporary techniques used for COVID-19 or
pneumonia diagnosis are more focused on the task of disease classification and detection
and are monochromatic to provide any visual aid.

In response to this challenge, we propose a machine-learning-enabled diagnosis tech-
nique with improved visualization of viral or bacterial infected lesions in CXR, using
the multi-layer gradient class activation map (ML-Grad-CAM) techniques. The proposed
framework consists of three major steps: (1) segmentation-based region of interest (ROI)
cropping and data augmentation; (2) a CNN classifier for normal, COVID-19, and pneu-
monia CXR classes; and (3) a Grad-CAM algorithm to improve the visualization with a
saliency map. We also calculate a severity assessment index (SAI) to provide a measure
of severity of the infection, which could be an effective indication for prognosis purposes.
Thus, major contributions of this proposed approach read as follows:



Diagnostics 2024, 14, 1699 3 of 17

1. Improve multi-class classification accuracy by using segmentation-based ROI crop-
ping and transfer learning;

2. Improve visualization of disease lesions in CXR films using lower-level information in
the saliency map; we named it the ML-Crad-CAM (multi-layer Grad-CAM) algorithm;

3. Propose severity assessment index (SAI) value from the saliency map as an indication
of the severity level, which could be used for prognosis purposes.

The rest of the paper is organized as follows. Section 2 provides a brief overview of
the latest related work in this field. In Section 3, we present a detailed description of the
dataset and the proposed research framework. In Section 4, we discuss the experimental
design and outcomes of the three experiments i.e., whole CXR dataset unbalanced (original
dataset), whole CXR dataset balanced, and cropped ROI dataset balanced. In Section 5,
we present and compare the visualization of the saliency map using the ML-Grad-CAM
algorithm. This section also defines and calculates the Severity Assessment Index (SAI)
value. Finally, in Section 6, we conclude with some future research directions.

2. Related Works

Ayan and Ünver [18] experimented with the Xception and VGG16 models for pneumo-
nia detection based on transfer learning. The test results showed that the VGG16 network
exceeded the Xception network at an accuracy of 0.87% over 0.82%. Leveraging the concept
of transfer learning and feature extraction, Chouhan et al. [19] developed five different
models and used them as an ensemble to increase the accuracy of pneumonia detection
using CXR images. The authors reported a 96.4% accuracy score using their developed
ensemble deep learning model. Another ensemble approach was proposed by Sirazitdi-
nov et al. [8], where they used RetinaNet and Mask R-CNN for pneumonia detection and
localization in CXR images. Besides the regular classification task, this proposed ensemble
approach can indicate the infected region in the form of a rectangular bounding box. Jain
et al. [20] performed a thorough investigation with two newly proposed CNN architectures
and four popular CNNs, namely VGG16, VGG19, ResNet50, and Inception-v3, to classify
CXR images into two classes viz., pneumonia and non-pneumonia. The authors achieved
the highest accuracy score of 92.31% for the second proposed CNN model, where they
used three convolution layers with the adjustment of necessary hyperparameters. Liu
et al. [21] proposed the SysFormer framework for tuberculosis diagnosis to leverage the
bilateral symmetry property of CXR images in an attempt to improve diagnosis. The
authors investigated the SysFormer approach on the Tuberculosis X-ray (TBX11 K) dataset
and observed an accuracy of 95.1%.

As COVID-19 emerged late 2019, many researchers began exploring in the use of
deep learning techniques in application to COVID-19 diagnosis. For example, Wang
et al. [22] demonstrated convolutional transfer learning (TL) methods using five (VGG16,
InceptionV3, ResNet50, DenseNet121, and Xception) pre-trained deep learning models and
found the Xception model to be the leading one producing an accuracy of 96.7%. Using
a similar approach, Abbas et al. [23] proposed a deep CNN framework, called DeTraC
(Decompose, Transfer, and Compose), to classify COVID-19 CXR films. The DeTraC method
can classify COVID-19 films with 93.1% accuracy. Another CNN-based deep learning model
was proposed by El-Rashidy et al. [24] for COVID-19 detection based on patients’ X-ray
scan images and transfer learning. Their proposed model achieved a promising result with
an accuracy of 97.9%. Minaee et al. [25] used the transfer learning method to investigate
four popular convolutional neural networks, including ResNet18, ResNet50, SqueezeNet,
and DenseNet-121, to discriminate COVID-19 X-ray films from normal films and obtained
the highest accuracy of 92.3 with the SqueezeNet. Ismael and Şengür [26] introduced a new
CNN model by integrating deep feature extraction and Support Vector Machine (SVM)
to differentiate COVID-19 and normal (healthy) CXR images. The combination of deep
feature extraction and SVM classifier with linear kernel function reported a classification
accuracy of 94.7%. Nayak et al. [27] explored the impact of hyperparameters of eight CNN
models (AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet, ResNet-34, ResNet-50,
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and Incention-V3) to improve the accuracy of the early COVID-19 screening using CXR
images. The study revealed that the ResNet-34 outperforms the other models with an
accuracy of 98.33%.

While these methodologies only deal with the binary classification (pneumonia vs.
non-pneumonia, TB vs. non-TB, or COVID-19 vs. normal) task, some researchers focused
on multi-class (COVID-19, normal, and viral pneumonia) classification tasks. For instance,
Chowdhury et al. [28] proposed a parallel-dilated convolutional neural network (CNN)
to perform classification tasks among COVID-19, normal, and viral pneumonia films and
obtained an accuracy of 96.5%. Similarly, Wang et al. [29] utilized the ResNet-101 and
ResNet-152 models with good effects for fusion and dynamically improved their weight
ratio during the training process. After training, their model achieved 96.1% classification
accuracy on the test data. Another attempt to address the multi-class task was performed
by Loey et al. [30]. They proposed a Bayesian optimization based CNN model for the
recognition of chest X-ray images using a large-scale and balanced dataset. The proposed
CNN model achieved 96% accuracy. Khan et al. proposed a CNN model based on the
Xception model architecture for the automatic detection of COVID-19 from CXR images.
The proposed model produced a 95% accuracy for a three-class classification task [6].
Rahman et al. [31] utilized four pretrained CNNs to test three schemes of classification
task for normal vs. pneumonia; bacterial vs. viral pneumonia; and normal, bacterial,
and viral pneumonia with reported accuracy scores of 98%, 95%, and 93.3%, respectively.
Hussain et al. [32] proposed a novel CNN model named CoroDet for automatic detection
of COVID-19 using CXR and experimented with two-class (COVID-19 and normal), three-
class (COVID, Normal, and Non-COVID), and four-class (COVID, normal, non-COVID,
and pneumonia) classification problems. The authors reported the accuracy score of 99.1%,
94.2%, and 91.2% for 2-class, 3-class, and 4-class classification problems, respectively.

The research articles available in the literature mostly focused on the task of disease
detection or classification using chest X-ray images. Most of them addressed the binary
class classification problem i.e., either pneumonia vs. normal or COVID-19 vs. normal.
Some researchers have experimented with three-class and four-class classification schemes.
It is observed that the accuracy of the binary classification tasks is high, while the multi-
class classification problems have comparatively low performance [27,32]. This necessitates
the development of more efficacious machine learning models for the multi-class classifi-
cation task, especially to distinguish among COVID-19, pneumonia, and other common
respiratory disease classes. As part of various experiments in this paper, it became apparent
that the condition of lungs infected with COVID-19 is very similar to pneumonia infection.
Moreover, very few researchers paid attention to enhancing their visualizations in order
to ease the task of radiological interpretation. Panwar et al. [33] and Umair et al. [34]
deployed the Grad-CAM algorithm to create a class-specific heatmap image overlay to
highlight the features extracted in the CXR images. As a matter of fact, the research area of
generating class-specific heatmaps for CXR images, and visualization with a colored-based
scheme remained under-represented in the literature. The proposed research addresses
this research gap by improving the multi-class classification technique while improving the
visualization of disease lesions in CXR films using the ML-Grad-CAM (multi-layer Grad
CAM) algorithm.

3. Methodology

This section describes the methodology of disease diagnosis and the visualization
process. The machine learning framework adopted in this study is schematically shown
in Figure 1. The framework is divided into two major modules. In the first module, we
cropped the region of interest (ROI) from the original CXRs. The second module is designed
for classification and visualization using the saliency map. A detailed description of each
of the modules is provided in the following subsections.
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Figure 1. The framework of CXR image classification and lesion visualization; (a) image preprocessing
with ROI cropping and augmentation, (b) multi-class classification with modified VGG16 architecture,
and (c) the integration of the ML-GRAD-CAM algorithm for visualization.

3.1. Dataset

From the onset of the COVID-19 pandemic, the research community has actively engaged
with healthcare providers to collect chest X-ray images for the application of machine learning
and deep learning on radiology images. In such efforts, teams of researchers [35,36] have
collaborated with several universities and individual medical practitioners to create a database
of chest X-ray images for COVID-19-positive cases. The images were collected from several
sources, such as the PadChest dataset, a German medical school (Figshare dataset), GitHub,
Kaggle, Twitter, and the Radiological Society of North America (RSNA). As the images are
collected from different sources, the former are not of the same quality. Moreover, the quality
of the CXR images may vary due to patient’s health conditions and breathing states, machine
setup, and human error. Hence, the quality of the raw images was enhanced using the
Gamma correction. See [37] for a more detailed description of gamma correction-based image
enhancement. This dataset is publicly available and one of the most widely used datasets for
performing experiments related to COVID-19 diagnosis and prediction. This dataset consists
of a total of 21,164 CXR images in four categories; of which, the numbers of COVID-19, normal,
lung opacity (non-COVID-19 lung infection), and viral pneumonia images are 3616, 10,192,
6012, and 1345, respectively. However, in this work, we considered three categories of CXRs,
i.e., COVID-19, normal, and pneumonia. The images are in portable network graphics (PNG)
file format with a resolution of 299×299 pixels.

3.2. ROI Cropping

ROI refers to a meaningful and target region in an image. In this study, our target
region is the region within the lung boundary in the CXR images. In medical examinations,
the clinicians mainly look into the lung region to identify the presence of any bacterial or
viral infections. However, machine learning algorithms, especially CNN models, take the
entire CXR images as input and extract computational features for classification and disease
prediction. Usually, raw CXR images capture surrounding artifacts, non-lung tissues, and
other noises. Due to the presence of extraneous boundaries, the CNN models may learn
non-lung features, which may deteriorate the accuracy of diagnosis. To avoid such an issue,
the lung region is cropped from the original CXRs before feeding them into the CNN model.
To identify the lung region, we rely on supervised lung segmentation techniques. In our
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earlier work [38], a patch-based and lightweight segmentation network was designed using
the U-Net architecture (see Figure 2) for this purpose. One major advantage of this network
is that it is lightweight and shows excellent segmentation performance on many datasets.
However, the network was trained on the Montgomery County (MC) tuberculosis control
program dataset [39] producing an average Dice Coefficient (DC) of 94.21%, whereas this
study is based on a different dataset. As the new dataset has different CXR images with
four different categories, the pre-trained U-Net is used to extract relevant features based on
the principle of transfer learning. Transfer learning effectively allows us to use the weights
and biases derived from a pre-trained deep learning model and use it as a starting point for
another application. See [40] for a detailed review of transfer learning.

Figure 2. A patch-based U-Net segmentation network [38] was used for transfer learning. Cropped
patches were fed into the network to segment individual patches and later merged together to obtain
the whole lung region segmentation.

The network is pre-trained to segment individual CXR patches. Patches refer to simply
cropped portions from the original images. For any new CXR image, we crop the patches
and input them into a pre-trained modified U-Net network. This generates segmented
patches as outputs, which are subsequently merged together at the same location as the
cropped patches on a 256×256 background image. Thus, a whole segmented mask is
generated from each CXR image, which is a binary mask of the lung region. Once the lung
boundary is segmented, the top left and right bottom coordinates are identified. Using
these two coordinates, the ROI is marked in a bounding box (bbox). Notice that, due to
the inevitable error of the segmentation network, some portions of the lung region may
be erroneously segmented and miss some pixels along the lung boundary. In such cases,
the ROIs may miss some useful information along the lung boundary and have a negative
effect on the downstream CNN model. To mitigate this risk, a tolerance of 10 pixels is
added to the rectangular bounding box, as shown in Figure 3c. In addition, the size of the
cropped ROI may differ from image to image, which is further resized to 224×224 in the
downstream CNN architecture.

Figure 3. Cropping ROI from CXR: (a) original CXR image, (b) segmented mask with tight rectangular
bbox, (c) bounding box around the lung region with additional 10 pixels (green), and (d) cropped ROI.
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3.3. Data Augmentation

The performance of machine learning (ML) techniques is greatly affected by an im-
balanced dataset. Most of the ML algorithms used for classification are designed with the
assumption of an equal number of data for each class. If the dataset is imbalanced, ML
algorithms tend to learn features mostly for the majority class and have better predictive
performance than for the minority class. In this dataset, we have 3616 COVID-19 images,
6012 pneumonia images, and 10192 normal images with a ratio of approximately 1:2:3.
For the training scheme, we took 80% of images from each category, resulting in 2892,
4809, and 8153 training samples for COVID-19, pneumonia, and normal cases, respectively.
The dataset is imbalanced as the number of COVID-19 CXRs is one-third of the normal
CXRs. Obviously, this could lead to an imbalanced classification problem resulting in
poor predictive accuracy for COVID-19 cases. To overcome this issue, data augmentation
techniques are employed for the COVID-19 and pneumonia CXR images. All the COVID-19
CXR images are transformed by using the “vertical shift” and “zoom” operations. Thus, the
number of COVID-19 CXRs increased 3 times to a total number of 8678 images. Half of the
pneumonia images were transformed through either a “vertical shift” or “zoom” operation,
which generated a total of 7214 CXRs. We did not perform any augmentation operations on
the normal CXRs. After performing the augmentation steps, the dataset became balanced
with nearly equal numbers of images for each class. Table 1 shows the number of images
before and after augmentation, along with the augmentation techniques for each class.

Table 1. The number of CXR Training Samples before and after data augmentation.

Class Before
Augmentation

Augmentation
Techniques After Augmentation

COVID-19 2892 “Vertical shift” and
“Zoom” 8678

Pneumonia 4809 “Vertical shift” or
“Zoom” 7214

Normal 8153 “None” 8153

3.4. Classification and Visualization

In this module, we first classified COVID-19, pneumonia, and normal chest films
based on the CXR images. Then, the saliency map was used to visualize the suspected
infected and suspicious lesion areas in the lung boundary. The details of these two schemes
are described next.

Classification: The process of convolution is very effective in capturing the discrimina-
tory features among the different classes of interest. Ideally, low-level convolution layers
represent the local texture of the lung infections. As the convolution layer goes deeper,
it can extract more abstract but comprehensive features of different types of infections,
making the CNN model an outstanding automatic classifier. In the last decade, different
types of classifiers have been proposed in the literature. Among them, the VGG16, VGG19,
ResNet50, ImageNet, DenseNet, and InceptionV3 are the most popular and widely used
classifiers. Compared to these deep learning classifiers, the VGG16 has demonstrated
superior performance in many applications for a variety of datasets [41], especially those
where lower-level features are paramount to classification. Due to its potential superiority,
in this study, the classification scheme is designed based on the VGG16 architecture, as
shown in Figure 4.

Unlike the original VGG16 network, we modified the top layers for classifying the
three categories of CXR images. Our model consists of five convolution blocks, where
each of the first two convolution blocks has two convolution layers and each of the last
three convolution blocks has three convolution layers. A 5×5 kernel was used for the first
convolution block, whereas we set a 3×3 kernel for the subsequent blocks. The numbers of
filters were set to 64, 128, 256, 512, and 512, respectively. The input image size is 224×224×3
for both the training and testing sets. After each of the convolution blocks, a maxpooling
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layer is deployed to downsample the image size by half. Thus, we obtained 7×7×512
feature vectors at the end of the fifth convolution block, which are then passed through the
global average pooling layer. The global average pooling layer takes the average of each
of the 512 feature maps and generates a single vector of 512 neurons. One advantage of
global average pooling is that it is more inherent to the convolution structure by enforcing
correspondences between feature maps and categories [42]. Following the global average
pooling layer, the network relates to the output layer through a “softmax” activation
function, which creates a probability distribution for the three classes.

Figure 4. The CNN model for CXR image classification.

Visualization: In deep learning, as convolution layers go deeper, they become more
difficult to explain and are considered to be a black box model. In recent years, many
researchers have attempted to make deep learning more explainable and sensible. Class
activation maps (CAMs) are one such powerful technique that helps researchers understand
how the images are being categorized [43]. The primary idea of CAMs is to identify which
parts or pixels of any image have a higher contribution to any particular prediction. In other
words, CAMs can explain which parts of the image activate the most for any specific class.
The activated pixels and parts can be visualized by overlaying a heatmap on the original
image. This principle can be applied in conjunction with the above classification scheme,
where we design a CNN model to classify the diseases, for example, COVID-19, pneumonia,
and normal CXR images in this study. After training the network, a new CXR image is
fed into the model to predict the class of the CXR. With the CAM tool, the radiologist will
be able to see which parts of the CXR activate the COVID-19/pneumonia/normal class.
This is very helpful for two main reasons. First, it can interpret the reasoning behind the
classification of CXR images. Inherently, the CNN model can automatically identify the
features of the different types of pneumonia lesions from the CXR images, which brings the
second benefit of the CAM approach, i.e., it gives the radiologist an idea about the location
and severity of the infected lung region.

In this work, we proposed adding the CAM, in conjunction with the CXR classification
model, for better visualization. The proposed visualization module is developed based on
the Gradient class activation map (Grad-CAM). Grad-CAM uses the gradient information
from the last convolutional layer of the CNN to understand each neuron for a decision
of interest. To obtain the class discriminative localization map of width w and height h
for any class c, the gradient of the score yc is computed with respect to feature maps for
a convolution layer. Unlike the Grad-CAM, here, we use the gradient information from
multiple pooling layers, i.e., with respect to multiple feature maps instead of the single
feature maps of the very last layer of the CNN model, as shown in Figure 5. The primary
motivation for using gradient information from multiple layers is to use lower-level but
useful information in the saliency map. Using such lower-level information has been
proven very effective for the purpose of segmentation and visualization [44]. Multiple class
activation maps (ci) were determined for each of the pooling layers in the VGG16 network,
which were later merged together using distributed weights (wi) to obtain the final saliency
map using Equation (1).

saliency map (s) =
1

∑N
i=n wi

(
N

∑
i=n

wi · ci), where wi =
1

N − i + 1
(1)

where N = 5 (the number of pooling layers in VGG16 architecture) and n is the index of the
first pooling layer considered for merging in this model. For example, if we start merging
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from the very first pooling layers, the value of n will be 1. Starting from the second pooling
layer will impose the value of 2 for n, etc. Further, wi represents the weight for merging
a set of pooling layers, which is designed in such a way that it does not invalidate the
basic reasoning of the original Grad-CAM algorithm in the literature. For example, in the
event of generating the saliency map only from the very last activation map (c(i=5)) of the
model architecture, Equation (1) turns out to be as simple as ci since the wi turns out to be
1. However, in the event of using multiple activation maps, we add the weights according
to the index of the activation maps. The architecture in Figure 5 generates five activation
maps (N = 5). The weights are determined based on the information intensity and priority
of the pooling layers. Obviously, the last pooling layer comprises more comprehensive
features and useful information compared to the other pooling layers. Hence, we set
the larger weight for the very last layer and reduce the weight for the previous layers
according to Equation (1), depending on the number of merging layers. For example, the
third activation map (with n = 3) will have a weight of 1/(5 − 3 + 1) = 0.33. It is observed
that merging all five pooling layers sometimes deteriorates the visualization by introducing
some surrounding noises into the saliency map. On the other hand, using only the very last
pooling layers sometimes misses some useful areas to highlight. Based on our experiment,
in this work, we use the last three pooling layers to visualize the saliency map. The detailed
results and explanation are reported in Section 5.

Figure 5. Architecture of multi-layer Grad-CAM (ML Grad-CAM).

4. Experimental Design and Results

As illustrated in Section 3.2, before applying augmentation techniques, we split the
images into three sets, 80%, 10%, and 10%, for training, validation, and testing, respectively,
for each category. This maintains the proportion and inclusion of each category of images
into each set of training, testing, and validation data. Thus, we have 18,854 images for
training, 1982 images for validation, and 1984 for testing, as reported in Table 2. To train
the model, we used a well-tuned set of hyperparameters to ensure optimal performance
and generalization. The Adam optimizer [45] was employed with a learning rate of 0.0004,
facilitating efficient learning with adaptive adjustments. A batch size of 16 images was used
to balance the memory usage and training stability. The “He initialization” [46] was used to
ensure proper scaling of weights at the start. To mitigate overfitting, we included a weight
decay (ℓ2 regularization) of 10−4 and a dropout rate of 0.2 [47]. The model was trained
for 50 epochs with early stopping criteria of 10 epochs to halt training if the validation
performance plateaued. The loss is calculated by using the categorical cross-entropy [48].
The reason for choosing the categorical cross-entropy is the one-hot encoding format of
the label, which makes our results comparable with other existing works in the literature
that also used the same loss function (Table 3). The model produces the final maximum
training accuracy of 0.9855 and validation accuracy of 0.9622 at the 48th epoch. The history
of model training is demonstrated in Figure 6. All the training of CNNs is implemented
using TensorFlow on a standard PC with a single 16 GB memory GPU GeForce GTX 1080
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Ti. The entire training takes about 12 h. We also used the weights of the trained model to
calculate the gradient with respect to each of the feature layers and find the saliency map.

Table 2. Data split for experimental design.

Class Training Validation (10% of
Original Data)

Test (10% of Original
Data)

COVID-19 2892 362 362
Normal 8153 1019 1020

Pneumonia 4809 601 602
Total 15,854 1982 1984

Table 3. Comparative study of the performance in terms of accuracy.

Reference Methid Classification Task COVID Pneumonia Noraml Accuracy

[22] TL Binary 565 - 537 96.7%
[23] TL Binary 105 - 80 93.1%
[24] DL Binary 250 - 500 97.9%
[25] TL Binary 184 - 5000 92.3%
[28] CNN Multi-Class 219 1345 1341 96.5%
[29] ResNet Multi-Class 140 9576 8851 96.1%
[30] DL Multi-Class 3616 3616 3616 96.0%

Proposed
Method DL Multi-Class 362 602 1020 96.5%

Figure 6. History of the model training by epoch (left) training and validation accuracy and (right)
training and validation loss.

As mentioned earlier in Sections 3.1 and 3.2, we cropped the ROI and balanced the
dataset to improve the training accuracy. To justify the adaptation of these two steps, we
conducted three experiments: (1) Exp-1: train and observe the accuracy of the classification
model using whole CXR images unbalanced; (2) Exp-2: train and observe the accuracy
of the classification model using whole CXR images balanced (without cropping ROIs);
and (3) Exp-3: train and observe the accuracy of the classification model using ROI CXR
images balanced. Figure 6 demonstrates the training history for experiment 3 only. After
the completion of training, each experimental model was tested using unseen test data.
The confusion matrix of the results is shown in Figure 7.

Ablation Study: The purpose of this ablation study is to investigate the performance
of the trained model in different experimental settings by removing certain steps to under-
stand the contribution of the model to the overall performance. In Figure 7, we observed
that the model produces many wrong predictions when the unbalanced and whole CXR
images are used for training the classification network (Exp-1). However, balancing the
dataset improves the prediction accuracy for all three cases (Exp-2). As expected, crop-
ping the ROIs further improves the prediction results. In comparison to the pneumonia
cases, the model was underserved for the COVID-19 and normal cases. It predicts many
COVID-19 cases as normal films and vice versa. This confusion arises due to the lack of
distinguishable phenomena between COVID-19 and normal CXR films, especially at the
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early stage of COVID-19 infection. This convoluted situation is greatly improved when we
train the model using the balanced and ROI images (Exp-3). In addition to the confusion
matrix, the performance of these experiments is measured using accuracy, precision, and
recall as per Equations (2)–(4):

AccuracyOverall(Acc) =
Number of correct prediction
Total number of prediction

(2)

Precisioni(P) =
True positivei

True positivei + False positivei
(3)

Recalli(R) =
True positivei

True positivei + Flase negativei
(4)

where i represents the class (COVID, pneumonia, and normal) of the prediction. These three
metrics are widely used to gauge the performance of deep learning models for classification
tasks. Notice that we measure the overall accuracy of the predicted model; however, the
precision and recall are measured by class as this is a multiclass classification task. The
metrics are calculated based on the test dataset and are documented in Table 4. Clearly,
balancing the dataset with ROI cropping significantly increases the performance of the
trained model.

Figure 7. Confusion matrix: (a) using whole CXR images unbalanced; (b) using whole CXR images
balanced (without ROI cropping); and (c) using ROI CXR images balanced.

Table 4. Performance measures of the different experiments on the test dataset.

Experiments Overall
Acc. P(C) * R(C) P(P) R(P) P(N) R(N)

Exp-1 0.856 0.681 0.867 0.893 0.792 0.918 0.890
Exp-2 0.930 0.834 0.928 0.956 0.947 0.953 0.921
Exp-3 0.965 0.891 0.972 0.983 0.977 0.983 0.955

* C, P, and N represent the COVID, pneumonia, and normal classes, respectively.

A comparative study has been performed with the existing literature to assess the
performance of our proposed methodology. To maintain the consistency of comparison,
we only compare our results with the approach that used the dataset, as described in
Section 3.1. The comparative results are documented in Table 3.

5. Visualization and Discussion

Based on the above experiments and observation, we train the deep learning network
using the ROI CXR images to build our final classification models. Once trained, the model
is used in combination with the multi-layer Grad-CAM (ML-Grad-CAM) algorithm to
generate the saliency map for each of the test images. Later, the saliency map is overlaid
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on the original to visualize the heatmap for predicting the three different categories of
CXR images. We also compare the heatmap generated using the ML-Grad-CAM with the
original Grad-CAM architecture. The comparison of different heatmaps is depicted for the
COVID-19, normal, and pneumonia cases in Figure 8, Figure 9, and Figure 10, respectively.

Figure 8. Comparison of heatmaps for COVID-19 CXR images. The rows show three randomly
selected images from the COVID-19 test dataset. Column 1 shows the original images with potential
suspected lung regions, column 2 shows the heatmap from the Grad-CAM algorithm, and the last
column shows the heatmap obtained from the proposed ML Grad-CAM algorithm.

Figure 9. Comparison of heatmaps for normal CXR images. The rows show three randomly selected
images from the normal test dataset. Column 1 shows the original images, column 2 shows the
heatmap from the Grad-CAM algorithm, and the last column shows the heatmap obtained from the
proposed ML Grad-CAM algorithm.
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Figure 10. Comparison of heatmaps for pneumonia CXR images. The rows show three randomly
selected images from the Pneumonia test dataset. Column 1 shows the original images with potential
suspected lung regions, column 2 shows the heatmap from the Grad-CAM algorithm, and the last
column shows the heatmap obtained from the proposed ML Grad-CAM algorithm.

The heatmap provides a visual cue for the potential infectious region in the CXR
films, leading to quick and easy diagnosis. The red dotted circles indicate the infectious
region in the original CXRs images, which are clearly highlighted in the heatmap images.
Additionally, it can serve the purpose of identifying the severity of the infections by virtue
of the heatmap’s spread. Usually, a heatmap highlights the regions (image pixels) with
the most contribution for a particular class or category of interest, which, in other words,
is the class activation map. For example, in predicting positive and negative classes, the
machine learning model must learn to identify which pixels are contributing toward the
positive class and negative class. The Grad-CAM algorithm can take the gradient for any
particular class and highlight the features (pixels) in the heatmap. Thus, CXR films with
fewer infection symptoms, alternatively considered as images with fewer features, should
have fewer pixels to be highlighted in the Grad-CAM heatmap, as shown in Figure 9
(images with normal CXR films). On the other hand, as shown in Figures 8 and 10, the
CXR film indicating high viral/bacterial infections drives the generation of an intensive
heatmap as compared to the normal case or descent CXR images.

From this perspective, the heatmap could be used to interpret the severity of bacterial
infection in the lung region. To this end, we calculated a severity assessment index (SAI)
for each of the generated saliency maps. The severity assessment index is derived from
the intensity of each pixel in the saliency map and expressed in a single numeric value as
the indication of the overall severity (the higher the value, the more severe the infection).
We take the average over all the numerical values in the saliency map for a given image
and use the resulting score as an overall index of the infection in the lung region. Thus, we
define the severing assessment index (SAI) as Equation (5):

SAI =
1

7 × 7
(

M,N

∑
i,j

si,j) (5)

where, s(i,j) are the intensity of each pixel of the saliency map (S) and 7× 7 is the dimension
of the matrix S. We evaluate the SAI values for the three categories of CXRs: COVID-19,
normal, and pneumonia. The distributions of the SAI scores for each category are shown
in Figure 11. Clearly, most of the CXRs of each category contain low to medium levels
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of infections. A comparably low number of CXRs have a high level of severity. The SAI
score is a useful indication of the severity level of infection in the lung region. To make it
obvious, the SAI scores for some selected CXR images are shown in Figure 12, along with
the corresponding heatmap.

Figure 11. Distribution of SAI Scores for (a) COVID-19 CXRs, (b) normal CXRs, and (c) pneumo-
nia CXRs.

As can be seen, images that present a higher infection (COVID-19 or pneumonia) have
higher SAI values, while the images with normal cases have comparatively low values.
For example, the first CXR film of row 1 in Figure 12, having fewer lesions in the lung,
generates a low value of SAI (0.296). However, images with increased lesions (third image
of row 1) generate an intensive heatmap and a higher SAI value of 0.475. We observe the
same trends as the CXR examples in the pneumonia class. As reported in the third row in
Figure 12, we obtain a low SAI value of 0.322 and a high SAI value of 0.419, depending on
the lesion in the lung region. For the CXRs of the normal class, the generated heatmaps are
generated with very minimal pixel intensities and, thus, provide low values of SAI close to
zero, indicating a healthy lung.

Figure 12. Examples of CXR images with their corresponding heatmaps and SAI values. The first row
shows examples of COVID-19 classes with their corresponding heatmap and SAI values. Similarly,
the second and third rows show examples of the normal and pneumonia classes, respectively.

6. Conclusions

In this paper, we propose a deep learning technique for the diagnosis of COVID-
19, pneumonia, and normal (healthy lung) cases using CXR images with an improved
visualization of the saliency map. To improve the accuracy of COVID-19 diagnosis, we
experiment and train a modified VGG-16 network with raw CXR films, segmentation-
based cropped lung region (ROI), and data balancing. As expected, the model trained with



Diagnostics 2024, 14, 1699 15 of 17

cropped ROI and the balanced dataset performs better than other experimental setups and
attains an overall accuracy score of 96.44%. We also propose the multi-layer Grad-CAM
algorithm to generate a better saliency map and improve the visualization of suspicious
regions in the lung region. The saliency maps generated from the ML-Grad-GAM algorithm
are compared with the original Grad-CAM algorithm. Visualization with improved saliency
maps can help medical practitioners locate the infected location or identify the presence of
ground glass opacity (GGO) in CXR films. In addition, the severity assessment index (SAI)
value calculated from the saliency map provides a quantitative measure to understand
the level of severity of infection, for any given patient. Such a machine-learning-enabled
diagnostic system could be an effective tool for medical practitioners when they need to
examine a high number of CXRs each day, especially in situations similar to COVID-19
pandemic. It should be acknowledged that this diagnostics system must not fully replace
doctors or radiologists, but it could serve as a decision support system by reducing the
overall workload and patients’ waiting time by making the diagnostic process quick and
easy. In this study, we deal with classifying three categories of CXRs using publicly available
datasets. Our future effort will include extending our model for clinical COVID-19 and
other viral/bacterial infection cases and generalizing the model with a more sophisticated
deep learning algorithm to make this clinically applicable.
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