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Abstract: In the ongoing battle against antibiotic-resistant infections, Acinetobacter baumannii has
emerged as a critical pathogen in healthcare settings. To understand its response to antibiotic-induced
stress, we integrated transcriptomic data from various antibiotics (amikacin sulfate, ciprofloxacin,
polymyxin-B, and meropenem) with metabolic modeling techniques. Key metabolic pathways,
including arginine and proline metabolism, glycine–serine and threonine metabolism, glyoxylate
and dicarboxylate metabolism, and propanoate metabolism, were significantly impacted by all
four antibiotics across multiple strains. Specifically, biotin metabolism was consistently down-
regulated under polymyxin-B treatment, while fatty acid metabolism was perturbed under amikacin
sulfate. Ciprofloxacin induced up-regulation in glycerophospholipid metabolism. Validation with an
independent dataset focusing on colistin treatment confirmed alterations in fatty acid degradation,
elongation, and arginine metabolism. By harmonizing genetic data with metabolic modeling and a
metabolite-centric approach, our findings offer insights into the intricate adaptations of A. baumannii
under antibiotic pressure, suggesting more effective strategies to combat antibiotic-resistant infections.
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1. Introduction

Acinetobacter baumannii is a Gram-negative, obligate aerobic bacterium and is respon-
sible for nosocomial and community-acquired infections [1]. As an ESKAPE pathogen
with increasing multidrug resistance [2], it can lead to severe infections like pneumonia,
bacteremia, urinary tract infections, and meningitis, particularly in immunocompromised
individuals. The development of resistance to last-resort antibiotics has led the World
Health Organization (WHO) to designate it as a “Priority 1: Critical” pathogen [3].

Carbapenems, including meropenem, are β-lactam antibiotics used as a first-line
therapy for multidrug-resistant (MDR) A. baumannii infections. They disrupt cell wall
synthesis by inhibiting penicillin-binding proteins during the final phase of peptidogly-
can assembly [4]. However, their prior use has resulted in an increased prevalence of
carbapenem-resistant strains [5]. Amikacin sulfate, an aminoglycoside antibiotic, targets A.
baumannii by binding to the 30S ribosomal subunit, leading to the production of mistrans-
lated proteins [6]. These faulty proteins misassemble in the membrane and are degraded by
proteases, aiding in bacterial elimination [7]. Colistin (polymyxin E) and polymyxin-B are
the current antibiotics of choice for MDR A. baumannii infections when susceptibility testing
suggests that carbapenems and aminoglycosides are unlikely to be effective [8]. Polymyxins
target the lipid A component of lipopolysaccharides (LPS)/lipooligosaccharides, which
are localized in the outer membrane of the bacteria. Disorganization of the membrane
causes the leakage of intracellular metabolites [9]. Acinetobacter isolates can be susceptible
to fluoroquinolone-class antibiotics such as ciprofloxacin. Ciprofloxacin disrupts DNA
replication, transcription, and repair by inhibiting DNA gyrase and topoisomerase IV, and
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it also induces double-strand breaks (DSBs) in DNA [10]. Alternative treatments for A.
baumannii, including tetracyclines, beta-lactamase inhibitors, and combination therapies,
are available [11]. However, understanding the bacterium’s subcellular response to these
treatments is crucial, as resistance can develop over time. One powerful approach to
this challenge is transcriptome analysis since it enables the identification of genome-wide
alterations in the gene expression levels.

Several studies have utilized RNA-Seq datasets to examine the transcriptomic re-
sponses of A. baumannii to antibiotic stress [12–14]. Qin et al. analyzed 12 A. baumannii
strains with varying antibiotic resistances and found that amikacin up-regulates genes
involved in protein folding and lysis, whereas carbapenems down-regulate transcription
factor genes [12]. Another study reported that colistin affects the expression of genes related
to outer membrane biogenesis in A. baumannii, likely due to the disruption of membrane
integrity [13]. Li et al. identified common differentially expressed genes (DEGs) in sev-
eral A. baumannii strains under polymyxin treatment, affecting membrane biogenesis and
homeostasis, lipoprotein and phospholipid transport, efflux pumps, PNAG biosynthesis,
and fatty acid biosynthesis [14]. In addition, sub-inhibitory doses of minocycline primarily
altered the expression of the genes related to the chaperonin system, stress response, and
transport system [15]. Although these studies have elucidated various cellular responses
to antibiotics, they have not specifically addressed metabolic alterations in A. bauman-
nii. Given the critical role of bacterial metabolism in antibiotic response [16–18], further
investigation focusing on metabolic changes is warranted.

Genome-scale metabolic models (GSMMs) provide a comprehensive collection of
organism-specific biochemical reactions and predict metabolic changes in bacteria during
infection or under antibiotic treatment [19–23]. iAB5075 has the highest genome coverage
(1015 genes) and the highest number of reactions (2207 reactions) among the available A.
baumannii metabolic models [19]. The integration of omics data with GSMMs can enhance
prediction quality [20,24], but the literature lacks a systematic and comparative analysis of
A. baumannii’s metabolic alterations in response to a range of antibiotics using both GSMMs
and RNA-Seq data.

In the present study, we analyzed an extensive publicly available RNA-Seq dataset
belonging to A. baumannii to elucidate the bacterial metabolic pathways and metabolites
under antibiotic pressure. This dataset captures the transcriptomic responses of different
A. baumannii strains to sub-minimum inhibitory concentration (MIC) doses of clinically
relevant antibiotics (amikacin sulfate, ciprofloxacin, polymyxin-B, and meropenem). These
antibiotics have different mechanisms of action, and we aimed to identify how this is
reflected in the alterations of pathways and metabolites. To achieve this, we integrated the
data with the most comprehensive genome-scale metabolic model of A. baumannii (iAB5075)
and compared the responses of five different A. baumannii strains to antibiotics, while the
control samples received no treatment. Additionally, we identified the reporter metabolites,
those experiencing the most significant transcriptional changes across all strains under
antibiotic treatment. Considering the close relationship between antibiotic resistance and
metabolic alterations [16,17], our findings highlight key metabolic pathways involved in A.
baumannii’s response to antibiotics.

2. Materials and Methods

The overall methodology followed in this study is shown in Figure 1.

2.1. Transcriptomic Data Collection and Analysis

We obtained the raw RNA-Seq data for nine Acinetobacter baumannii strains from
NCBI’s BioProject public repository (accession number: PRJNA234525). Each strain was
represented by 20 samples across 10 distinct experiments, each performed in duplicate,
resulting in a total of 200 samples in the dataset. These experiments included treatments
with two dosages of four antibiotics (amikacin sulfate, ciprofloxacin, polymyxin-B, or
meropenem), a no-treatment control, and an NaCl treatment. The experiments were
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performed in Mueller–Hinton Broth (MHB), where antibiotic treatments were administered
at 25% or 75% of the approximate MIC value of each antibiotic. NaCl-treated samples were
excluded from this study.
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Figure 1. The workflow followed in this study. RNA-Seq data was processed and normalized to map
each transcriptomic sample individually in the genome-scale metabolic model. Perturbed reactions
in response to antibiotics were used to identify corresponding perturbed KEGG pathways, and DEGs
were used to identify reporter metabolites.

We aligned the data for each strain (180 samples in total) to the genome assembly
of the model strain AB5075 from NCBI (RefSeq assembly accession: GCF_000963815.1)
using the Bowtie2 (v2.5.0) [25]. We then proceeded with the five strains that had overall
alignment rates exceeding 90%. Table 1 lists the gene expression omnibus (GEO) dataset
IDs and strain IDs of these strains. Consequently, we analyzed 90 samples from these
five strains, which were treated with four different antibiotics at two different dosages or
left untreated.

Table 1. A. baumannii strains used in this study and corresponding GEO (gene expression omnibus)
dataset IDs. Each strain had 18 samples from nine different experiments (four antibiotic treatment
experiments at MIC25 dosage, four antibiotic treatment experiments at MIC75 dosage, and one
experiment without antibiotic treatment). Each experiment was performed in duplicates.

GEO Dataset A. baumannii Strain Number of Samples Used in
This Study

GSE56222 1207552 18
GSE56223 1428368 18
GSE56224 1457504 18
GSE56218 34654 18
GSE56219 478810 18

Transcriptomic datasets were downloaded in FASTQ format through the SRA Explorer
platform (https://sra-explorer.info/, accessed on 1 January 2023). Reads were trimmed
using Sickle (v1.33) [26] based on the average Phred quality score threshold of 25. After
alignment of the trimmed reads onto the reference genome the SAMtools software package
(v1.16.1) was used to convert SAM files into BAM files and sort them by chromosomal
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coordinates [27]. Read counts of gene transcripts were determined using the featureCounts
tool (v1.6.0) [28].

2.2. Genome-Scale Metabolic Modeling for Transcriptome Mapping

A genome-scale metabolic model (GSMM) of A. baumannii AB5075, “iAB5075”, was
downloaded in the SBML format [19]. The model includes 2207 reactions controlled by
1015 genes. The model simulations were performed using the COBRA Toolbox (v3.0) [29]
and Gurobi optimization software (v 10.0.0) in MATLAB R2022b.

A preliminary assessment of the model revealed ATP leakage by the model. All the
uptake reactions in the model were blocked, and the rate of the R_ATPM reaction, the
reaction that represents non-growth-associated maintenance (NGAM) energy expenditure,
was maximized. A nonzero rate for the reaction pointed to ATP leakage by the model.
Next, given that all the uptake reactions were blocked, all the reactions in the model were
scanned by single reaction deletion, and the rate of R_ATPM was maximized for each
deletion to determine the reaction that stopped ATP leakage when blocked. To speed up
the scanning procedure, reactions that were already inactive when all the uptake reactions
were blocked were identified using a flux variability analysis [30] and not included in
the reaction deletion simulations. As a result, the reaction with ID “R_MGt5”, which
transports magnesium from cytosol to the extracellular environment, was detected as the
leakage-causing reaction. This reaction was inactivated in all the simulations in this study.

The gene length-corrected trimmed mean of M values (GeTMM) [31] were calculated
from the raw read counts of the RNA-Seq datasets using edgeR to normalize for both
library depth and gene length [32]. During the normalization procedure, we used a
“counts per million” (CPM) threshold to eliminate unexpressed genes (average CPM across
samples ≤ 0.5). iMAT was used for transcriptome mapping on the GSMM [33]. The
reaction rate of NGAM was set to 8.39 mmol ATP/gDCW/h in iMAT simulations based on
the value reported for Escherichia coli [34]. A. baumannii is an obligate aerobic bacterium;
hence, the minimum possible oxygen uptake rate was set to “0.01” to ensure its activity. The
minimum growth rate was assigned as “0.1” to prevent its removal from the model in iMAT
simulations and to mimic the fact that the reactions involved in macromolecule synthesis
will always be active in a cell. Uptake rates of inorganic molecules were constrained to
be not higher than 25% of the carbon uptake rate. iMAT uses lower and upper thresholds
to find an optimal trade-off between removing low-expression reactions while keeping
high-expression reactions. The 25th and 75th quantiles of the average expression levels
of genes across all samples in the dataset were used as lower and upper thresholds for
creating iMAT-based models. The iMAT function in the COBRA Toolbox was used to run
the computational analysis. The metabolic models generated for each sample by iMAT
were represented as binary vectors, where zero indicated reactions were removed from the
GSMM by iMAT for that sample. Logistic SVD [35] was applied to the binary matrix to
produce 3D-PCA plots in R (version 4.3.2), following the removal of the reactions that are
active (or inactive) in all the samples from the matrix.

2.3. KEGG-Based Pathway Enrichment Analysis

The KEGG pathway annotations for A. baumannii were obtained from genome2D (http:
//genome2d.molgenrug.nl, accessed on 11 March 2023) [36] and eggNOG-mapper [37].
The FASTA file of A. baumannii coding sequences was used as input for eggnog-mapper.
Annotation data from these two sources were combined, with duplicates and irrelevant
metabolic annotations removed. Gene–protein–reaction rules in the GSMM model were
then used to link genes to the altered reactions, and these genes were subsequently mapped
to associated KEGG pathways. Furthermore, the identified reaction-pathway associations
were manually curated for accuracy (Table S1).

Each sample includes two biological replicates in the RNA-Seq datasets. We identified
reactions that were either active in both replicates of the treatment group and inactive in
both replicates of the control group, or vice versa, to compile a list of perturbed reactions
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(up-regulated and down-regulated reactions). Enriched KEGG pathways associated with
these perturbed reactions were then determined using Fisher’s exact test (p ≤ 0.05) (Table S4,
Figure S1).

2.4. Reporter Metabolite Analysis

Each metabolite in the iAB5075 model was scored using the p-values of the genes
controlling the reactions that consume or produce that metabolite [38]. The p-values were
calculated from the raw read counts using the R/Bioconductor package DESeq2 v1.42.1
(DOI: 10.18129/B9.bioc.DESeq2). The p-values obtained were first transformed into Z-
scores using the inverse of the normal cumulative distribution (Θ−1) function:

Zni = Θ−1(1 − pi), (1)

Then, the Z-score for a metabolite (Z_met) was determined by combining the Z-
scores of the genes controlling the consuming or producing reactions of the metabolite, as
described in Equation (2):

Zmet =
1√
k

∑ Zni (2)

where k is the number of controlling genes for that metabolite. The mean and standard
deviation of Z-scores were determined by sampling 10,000 sets of k enzymes from the
network, thereby normalizing the Z_met scores (Equation (3)). The corrected Z-scores were
then converted back to p-values using CDF, identifying metabolites with a minimum of
3 neighbors and p value < 0.01 as reporters.

Z corrected
metabolite

=
(Zmet − µk)

σk
(3)

3. Results
3.1. Sample-Specific iMAT-Based Metabolic Models from RNA-Seq Data

The iAB5075 metabolic model contains 2207 reactions. Using the iMAT algorithm,
we generated sample-specific metabolic models with 750 to 896 reactions by identifying
and excluding inactive reactions based on RNA-Seq data. We represented iMAT results as
binary vectors, where 0 indicated removed reactions and 1 indicated retained reactions for
each transcriptomic sample. This approach enabled us to construct a matrix where reactions
from all samples were expressed in binary format. We compared binary vectors from each
antibiotic treatment group with those from the control group to identify reactions that were
removed in both replicates of one group and retained in both replicates of the other. These
reactions were classified as perturbed reactions (Table S2). The total number of perturbed
reactions was highest for strain 1428368 (n = 94) under polymyxin-B-MIC75 treatment,
strain 34654 under polymyxin-B-MIC75, and strain 1207552 under ciprofloxacin-MIC75
treatment (n = 93) (Figure 2a). Overall, the number of perturbed reactions was between
20 and 94 across the comparisons. The highest number of enriched KEGG pathways was
identified for strain 34654 under polymyxin-B-MIC25 and strain 478810 under amikacin
sulfate-MIC25 treatment, respectively (n = 12, p value ≤ 0.05) (Figure 2b).

We used the binary matrix of active/inactive reactions for each transcriptomic sample
to create PCA plots, which allowed us to observe similarities and divergences between the
samples based on their associated metabolic perturbations. The results of the PCA analyses
are presented in Figure 3, separately colored for the strains and the antibiotic types. Strain
478810 was slightly separated from the other strains based on the list of perturbed reactions
(Figure 3a), consistent with the findings reported by Li et al. [14]. Their 16S rRNA BLAST
and MLST-based analysis classified this strain as a distinct Acinetobacter strain. Samples
treated with amikacin sulfate and meropenem were clustered closer, while ciprofloxacin
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and polymyxin-B samples were more scattered and were clearly separated from each other
(Figure 3b).
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Figure 3. PCA plots of the binarized iMAT models for each sample are shown in (a,b). (a) Labeling
with respect to strains, and (b) labeling with respect to antibiotic treatment (The proportion of
deviance explained is 36% for k = 3).

3.2. Enriched Metabolic Pathways across Different Antibiotics

We used the genes associated with the perturbed reactions to obtain the enriched
KEGG pathways they are involved in (see Methods). The MIC25 and MIC75 results were
lumped for each antibiotic before plotting the Venn diagram, and all pathways showing
alterations in at least one strain were included (Tables S3 and S4).

Antibiotic-target interactions can trigger cellular metabolic shifts as a secondary re-
sponse to their interaction with their targets. Our results unveiled that across multiple
strains of A. baumannii exposed to different antibiotics, disruptions were observed in several
key metabolic processes. We determined 45 pathway perturbations induced by these antibi-
otics in A. baumannii (Figure 4). Specifically, biotin metabolism (polymyxin-B treatment),
fatty acid degradation and elongation (amikacin sulfate treatment), alpha-linolenic acid
metabolism (amikacin sulfate treatment), linoleic acid metabolism (polymyxin-B treatment),
and propanoate metabolism (polymyxin-B treatment) were significantly enriched in at least
four strains (Figure 4). On the other hand, six pathways were commonly affected by four
types of antibiotics (Figure 5), with five of these pathways being perturbed in multiple
strains (arginine and proline metabolism, glycine–serine and threonine metabolism, biosyn-
thesis of unsaturated fatty acids, propanoate metabolism, and glyoxylate and dicarboxylate
metabolism). Additionally, twelve pathways were commonly perturbed by three types of
antibiotics, with ten of these pathways affected in multiple strains (Figure 5).
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We accessed an additional dataset reporting the transcriptomic response of A. bauman-
nii to colistin (GEO Dataset ID: GSE62794) [13] and analyzed it independently to validate
our findings. We preprocessed the RNA-Seq samples, derived from 60 min treatment
with colistin (0.2 mg), and their corresponding control samples from raw data to GeTMM-
normalized counts as detailed in Figure 1. iMAT-based models were constructed and
perturbed KEGG pathways were identified. The validation dataset captures perturbations
in fatty acid degradation and elongation and arginine metabolisms. Alpha-linolenic acid
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and quorum sensing were significant pathways in one strain treated by polymyxin-B in our
study, and both pathways were significant in the validation dataset. Albeit not significant
at the pathway level, there were multiple strains with perturbed reactions from those path-
ways in the original results. Moreover, reactions from pyrimidine metabolism, glyoxylate,
and dicarboxylate metabolism, glycine–serine and threonine metabolism, and propanoate
metabolism were identified to be perturbed in the validation dataset. In their original
study [13], they only reported two metabolic pathways as perturbed using a differential
gene expression approach for colistin treatment: fatty acid degradation and biotin synthesis.

3.3. Key Findings from the Reporter Metabolite Analysis

We performed an additional analysis of the transcriptomic dataset using a different
metabolism-oriented computational approach: reporter metabolite analysis. Both the
iMAT approach and reporter metabolite analysis are based on GSMMs. However, reporter
metabolite analysis does not use any mass balance constraints but instead scores each
metabolite based on the p-values of the genes whose corresponding enzyme consumes or
produces that metabolite. The two approaches were complementarily used before [39].

We identified reporter metabolites for each condition relative to the control samples.
To ensure that the pattern we observed in the PCA graph (Figure 3) was independent
of the iMAT approach, we initially performed hierarchical clustering on the identified
reporter metabolite profiles (Figure 6a). Consistent with the iMAT results, ciprofloxacin and
polymyxin-B are the most distinct antibiotics based also on reporter metabolite analysis.
Several conditions involving meropenem or amikacin sulfate treatment, on the other hand,
clustered together. Polymyxin-B was distinctly grouped from other antibiotics when
iMAT-based up-regulated and down-regulated pathways were identified across different
antibiotic dosages, highlighting its unique impact on metabolic profiles (Figure S2). Then,
we lumped the reporter metabolites of MIC25 and MIC75 for each antibiotic, similar to the
iMAT analysis, and identified metabolites commonly observed across strains or antibiotics
(Table S5). The most commonly observed 20 reporter metabolites are given in Figure 6b.
Metabolites from purine/pyrimidine metabolisms, the TCA cycle, fatty acid metabolism,
and amino acid metabolism dominate the common reporter metabolites.
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4. Discussion

In combating A. baumannii infections, amikacin sulfate, ciprofloxacin, polymyxin-
B, and meropenem are critical antibiotics, each targeting essential bacterial processes
(Figure 7). However, the rise of antibiotic resistance necessitates understanding A. bauman-
nii’s adaptive responses. This study aimed to elucidate the molecular mechanisms of these
responses through a metabolism-oriented investigation. We presented a detailed discussion
of perturbed pathways across multiple strains or by various antibiotics to provide insights
into the subcellular basis of antibiotic responses.
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Biotin acts as a cofactor for several enzymes in lipid metabolism, including acetyl
coenzyme A carboxylase and propionyl-CoA carboxylase. The reactions catalyzed by biotin
synthase were found to be perturbed in all five strains subjected to polymyxin-B treatment
(Figure 4). Notably, a study found that the gene associated with biotin biosynthesis was
upregulated over 150-fold in colistin-treated A. baumannii [40]. Disruption of this gene
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increased resistance to colistin, highlighting biotin’s crucial role in responding to membrane
perturbation by polymyxin. In line with this finding, a recent study showed that the
inhibition of biotin synthesis in E. coli restored resistance to colistin [41].

Fatty acid degradation and elongation pathways were significantly perturbed in
four strains following amikacin sulfate treatment. These pathways were also affected in
two strains when treated with polymyxin-B or meropenem (Figure 4, Table S6). Reporter
metabolites such as acetoacetyl-CoA, trans-hex-2-enoyl-CoA, and propanoyl-CoA were con-
sistently identified in multiple strains under amikacin sulfate, polymyxin-B, or meropenem
treatment (Table S5). A metabolomics study found significant perturbations in myristic
acid and 16-hydroxypalmitic acid levels in A. baumannii treated with amikacin [42], with
even greater perturbations observed when combined with polymyxin-B. Another study re-
ported that supplementing amikacin treatment with short-chain fatty acids notably reduced
biofilm formation and growth in Mycobacterium avium [43]. Additionally, pathways for
polyunsaturated fatty acids, such as linoleic acid and alpha-linolenic acid, were perturbed
in four strains in response to amikacin and polymyxin-B treatments, respectively.

Arginine and proline metabolism, along with glycine–serine and threonine metabolism,
were significantly enriched with perturbed reactions across all four antibiotics and multi-
ple strains in our study. Key metabolites of arginine biosynthesis, acetyl-glutamate, and
acetyl-glutamate semialdehyde were among the reporter metabolites of amikacin sulfate,
polymyxin-B, and meropenem. Phosphoserine, the precursor of serine, was also identi-
fied as a reporter metabolite in all antibiotics. Proline metabolism is known to have a
major role in the virulence of certain pathogens [44], and arginine was reported to reverse
antibiotic tolerance in E. coli [16]. Proline has well-known roles in protecting cells from
oxidative stress and enhancing protein stability [45]. Both proline and arginine levels were
significantly decreased when A. baumannii was treated with polymyxin-B combined with ri-
fampicin [46]. A recent study showed that serine reduced the virulence of A. baumannii [47].
A proteome-based comparison of multi-drug-resistant and drug-susceptible clinical iso-
lates of A. baumannii identified glycine–serine and threonine metabolism as perturbed [48].
Studies have demonstrated that metabolic pathways associated with glycine, serine, and
threonine are indeed a critical avenue for adaptation and resistance [49,50].

Glyoxylate and dicarboxylate metabolism and propanoate metabolism were also
among the pathways identified to be significantly perturbed in multiple strains by all four
antibiotics. Similarly, methyl-isocitrate, a metabolite with a key role in both glyoxylate and
propanoate metabolisms, was a reporter metabolite in multiple strains in response to all
antibiotics. The role of the glyoxylate cycle in antibiotic resistance was shown before in
E. coli [51] and in M. tuberculosis [52]. The same study on M. tuberculosis also reported an
association of propionyl-CoA with drug resistance. Mutations in the genes of propanoate
metabolism were shown to mediate multidrug tolerance in bacteria in another study [53].
The complementary role of glyoxylate and propanoate pathways on bacterial virulence was
also discussed elsewhere [54]. Both pathways were perturbed in A. baumannii biofilms, and
biofilm formation is a major cause of antimicrobial resistance in A. baumannii [55]. When
biofilm formation was suppressed in A. baumannii, genes of propanoate metabolism were
among the major differentially expressed genes [56].

In addition, several reactions associated with the key pathways were identified to
be perturbed by multiple antibiotics in multiple strains, although the pathways were not
significant in the enrichment analysis. Reactions of pyruvate metabolism are among such
reactions. Antibiotics are known to target major energy-consuming processes within the
cell [19,57], and pyruvate is a central metabolite for energy by bridging glycolysis and
TCA cycle pathways. Alteration in this pathway was previously reported in response to
antibiotic treatment in proteomic studies [58,59]. Several metabolites from glycolysis and
the TCA cycle were also among the common reporter metabolites, including fumarate,
isocitrate, and phosphoenolpyruvate. Reactions of two-component systems and ABC
transporters were also among the perturbed reactions in almost all antibiotic applications.
Sensing the antibiotic is the initial step in the bacterial defense against external stressors,
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including antibiotics. Two-component regulatory systems (TCS) in bacteria function as
essential sensory pathways that facilitate microbial adaptation to the environment [60].
This system can control the gene expression related to antibiotic resistance and also regulate
ABC (ATP binding cassette) transporters [61]. ABC transporters can provide a resistance
mechanism to bacteria by exporting the antibiotics outside.

The results presented in this study are predicated upon the analysis of perturbed
reactions rather than the conventional examination of differentially expressed genes, the
standard methodology in transcriptome data analysis. The inherent advantage of em-
ploying genome-scale metabolic modeling lies in its ability to incorporate mass-balance
constraints around intracellular metabolites, thereby fine-tuning gene expression data. As
intracellular metabolites do not accumulate over time, reactions governing the production
of a given metabolite must occur at a rate equal to the rate of reactions responsible for its
consumption. The application of iMAT, a genome-scale metabolic modeling tool, capitalizes
on these constraints to predict the active/inactive state of reactions from transcriptome data.
Therefore, a reaction predicted to be perturbed by iMAT between two compared conditions
can hint at post-transcriptional modifications since the genes encoding the enzymes of
these reactions will not necessarily be differentially expressed.

One should note that the approach we followed here uses metabolic fluxes (i.e.,
reaction rates) inherently and identifies perturbed reactions with a conservative approach.
In this approach, we only considered reactions that do not carry a flux in one condition (i.e.,
inactive) while carrying flux in the other condition (i.e., active). There may be reactions
that carry flux in both conditions, with a significant difference in the flux values. A flux-
prediction-based approach would identify such reactions, leading to a higher number of
perturbed reactions and pathways. This may also explain why the reporter metabolite
approach identified some commonly regulated metabolites, such as histidine, that were not
captured by the iMAT approach. The two approaches use different information to catalog
metabolic perturbations. Therefore, they can also be used in a complementary manner.

5. Conclusions

Here, we used a genome-scale metabolic model (GSMM)-based framework to investi-
gate metabolic pathways altered in A. baumannii in response to four different antibiotics,
using an extensive transcriptomic dataset encompassing five different strains. From this
dataset, only polymyxin-B had been investigated previouslyby employing the standard
approach of identifying differentially expressed genes [14]. Since that study was not
metabolism-focused, they only reported perturbations in the generic pathways of amino
acid metabolism and fatty acid degradation/biosynthesis. In contrast, several specific
metabolic pathways were captured by our analysis for the same antibiotic, indicating the
importance of a metabolism-oriented approach.

We have identified key pathways perturbed in multiple strains by the same antibiotic.
Understanding these common or antibiotic-specific pathways is crucial for developing new
treatments and overcoming antibiotic resistance. Indeed, about a third of current antibiotics
target metabolic genes [62], and a strong link exists between bacterial metabolism and
antibiotic resistance [17]. Our study provides a detailed catalog of reactions and pathways
perturbed by amikacin sulfate, polymyxin-B, ciprofloxacin, and meropenem. Future studies
could aim to create broader transcriptomic datasets that include various antibiotics with
both similar (other carbapenem or polymyxin types), and distinct mechanisms of action.
Additionally, future research might focus on experimentally validating these reactions and
pathways as novel targets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life14091102/s1, Table S1: Reactions, associated genes, and
pathways of the iAB5075 metabolic model; Table S2: Perturbed reactions in iMAT models; Table S3:
Pathways of perturbed reactions; Table S4: p-values of the pathway enrichment analysis; Table S5:
Reporter metabolites and the number of strains or antibiotics they were found in. Table S6: Pathways
perturbed in at least two strains for each antibiotic. Figure S1: Up-regulated and down-regulated
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KEGG pathways under antibiotic treatments. Figure S2: Hierarchical clustering of up-regulated and
down-regulated KEGG pathways across different antibiotic treatment dosages.
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