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Abstract: This paper introduces a new measure of non-compactness within a bounded domain of RN

in the generalized Morrey space. This measure is used to establish the existence of solutions for a
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1. Introduction

Fractional calculus (FC) extends the traditional concepts of integer-order calculus by
introducing fractional-order derivatives and integrals [1,2]. This generalization allows for a
more flexible and comprehensive mathematical framework, which is particularly valuable
for modeling complex systems that exhibit non-locality and memory effects phenomena
that standard calculus struggles to address effectively. FC has emerged as a critical area of
research due to its unique ability to capture and describe processes where the history of
the system or its spatial interactions play a crucial role. Over the past few years, fractional
calculus has gained substantial attention, with a rapidly growing body of research exploring
its wide range of applications across various scientific and engineering fields [3–8]. The
increasing interest in FC is largely driven by its success in modeling physical systems that
require more than local and immediate effects for accurate representation. For instance,
FC has proven to be highly effective in describing diffusion processes, where the rate
of diffusion depends on past states, and in control theory, where systems with memory
or delayed responses are better understood through fractional models. Similarly, heat
conduction and electromagnetics benefit from FC’s ability to model systems that involve
long-range interactions and cumulative effects over time [9–11].

Results regarding compactness in the spaces Lp(Rd), with 1 ≤ p < ∞, and C(K),
meaning the space of continuous functions on a compact metric space K with values in R,
are essential for establishing the existence of solutions to functional integral, integral, and
differential equations.

Kuratowski [12] proposed the first definition of the measure of non-compactness.
According to his definition, letting Ω be any bounded subset of a metric space, if it is
possible to cover Ω with a finite number of balls, then the smallest diameter among these
balls is referred to as the Kuratowski’s measure of non-compactness. Saha et al. [13] applied
the measure within the Hölder space, specifically when studying nonlinear functional
integral equations with changed arguments. Mehravaran et al. [14] introduced a set
of measures of non-compactness in the locally Sobolev space and then used it to study
the existence of solutions for a class of Volterra integro-differential nonlinear equations.

Axioms 2024, 13, 688. https://doi.org/10.3390/axioms13100688 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13100688
https://doi.org/10.3390/axioms13100688
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0009-0005-7581-4142
https://orcid.org/0000-0002-6228-2395
https://orcid.org/0000-0001-7359-4370
https://doi.org/10.3390/axioms13100688
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13100688?type=check_update&version=1


Axioms 2024, 13, 688 2 of 11

Mehravaran et al. [15] proposed a measure of non-compactness for regulated functions
in a specific space, and demonstrated a Darbo-type fixed point theorem. Metwali and
Vishnu [16] defined a compactness criterion in Lebesgue spaces and constructed a related
measure of non-compactness. They applied it using a modified Darbo-type fixed point theo-
rem to prove that products of n-Hammerstein integral equations have monotonic integrable
solutions. Tamimi et al. [17] developed a measure of non-compactness in the generalized
Morrey space and used it to address the existence of solutions to systems of nonlinear
integral equations. Zhu and Han [18] used the measure of non-compactness, the convex-
power condensing operator, the solution operator, and the Banach contraction principle
to investigate nonlinear time fractional-order (FO) partial integro-differential equations.
Zhu and Han [19] used the Schauder fixed point theorem to explore the approximate
controllability of mixed-type non-autonomous FO differential equations. Zhu et al. [20]
adopted the measure of non-compactness, the β-resolvent family, and fixed point theorems
to study the existence and uniqueness of mild solutions for FO non-autonomous evolution
equations. Banaei and Mursaleen [21] established Darbo’s fixed point theorems using
measures of non-compactness and weakly JS-contractive conditions in Banach spaces.
They applied these results to a system of differential equations. Aghajani and Haghighi [22]
employed measures of non-compactness and the Darbo fixed point theorem to establish
criteria for the existence of solutions to systems of nonlinear equations in Banach spaces.
Bokayev et al. [23] provided sufficient conditions for the pre-compactness of sets in the
generalized Morrey spaces Mp

w. Arab et al. [24] introduced compact sets in Ck and Ck
0

spaces and developed new measures of non-compactness. They applied them to prove the
existence of solutions for functional integro-differential equations.

We can generalize many important theorems from Lp to functions in generalized
Morrey spaces. The benefit of working in Morrey spaces, as compared to Lp, is that we can
study functions without compact support. This space controls the local integrability of func-
tions, and it makes Morrey spaces more flexible for certain applications. Tamimi et al. [17]
developed the first measure of noncompactness in the generalized Morrey spaces; this
measure was defined on RN, and it is a powerful tool for studying the integral equation on
unbounded domains.

In this paper, we introduce the new noncompactness measure defined on a bounded
domain of RN. This measure can be applied to investigate the solution for integral equations
on every bounded domain of the generalized Morrey spaces. By using the measure of non-
compactness within generalized Morrey spaces, we investigate the existence of solutions
for the Hadamard FO system of integral equations

u(ξ) = f1

(
ξ, u(ξ), v(ξ)),

ξ∫
1
(ln(

ξ

η
))α−1 b1(η, u(η), v(η))

η
dη

)
,

v(ξ) = f2

(
ξ, u(ξ), v(ξ)),

ξ∫
1
(ln(

ξ

η
))α−1 b2(η, u(η), v(η))

η
dη

)
,

(1)

where ξ ∈ [0, T], η ∈ R, α ∈ (0, 1), and fi : [0, T]×R3 → R for i = {1, 2}.

Definition 1 ([25]). Given the function f : [a, ∞) → R, with a > 0, its left-sided Hadamard FO
integral of order α > 0 is

Hα
a+ f (t) =

1
Γ(α)

∫ t

a

(
ln

t
s

)α−1 f (s)
s

ds,

assuming that the integral exists, Γ(α) =
∫ ∞

0 tα−1e−tdt, and ln(·) denotes the natural
logarithm function.



Axioms 2024, 13, 688 3 of 11

Definition 2 ([25]). For f ∈ Cn[a, ∞) and a, α > 0, the α-order left-sided Hadamard FO
derivative is

Hα
a+ f (t) =

1
Γ(n − α)

(
t

d
dt

)n ∫ t

a

(
ln

t
s

)n−α−1 f (s)
s

ds,

where n − 1 < α ≤ n and n = ⌈α⌉+ 1, with ⌈·⌉ denoting the Gaussian function.

Hadamard first introduced the concept of Hadamard fractional-order (FO) calculus in
his work [26]. This form of fractional calculus differs significantly from the more commonly
known Riemann–Liouville (R-L) fractional calculus, particularly in terms of the kernel
functions that define the fractional derivatives. In a recent study, Ould et al. [27] explored
the uniqueness of mild solutions, as well as Ulam–Hyers and Ulam–Hyers-Rassias stability,
for abstract fractional differential equations of Sobolev type with nonlocal boundary condi-
tions. Their work employed the Hadamard derivative to achieve these results. Additionally,
Maazouz et al. [28] tackled the issue of existence and uniqueness of solutions for boundary
value problems related to nonlinear fractional-order pantograph equations. Their approach
involved the use of a variable-order fractional derivative of Hadamard type. Furthering
the exploration of Hadamard derivatives, Benkerrouche et al. [29] analyzed impulsive
boundary value problems (BVP) for differential equations with variable fractional order
that include the Caputo–Hadamard fractional derivative. Moreover, Ntouyas et al. [30]
initiated research into fractional boundary value problems involving a combination of
sequential Riemann–Liouville and Hadamard–Caputo fractional derivatives, with iterated
fractional integral boundary conditions supplementing the differential equations. Indeed,
the Hadamard and the R-L FO calculus use the kernel functions kH(t, s) = (log t

s )
α−1

and kR−L(t, s) = (t − s)α−1, respectively. For any µ > 0, kH(µt, µs) = kH(t, s), while
kR−L(µt, µs) = µα−1kR−L(t, s) ̸= kR(t, s), highlighting another difference. For more infor-
mation on the Hadamard FO calculus, please see references [25,30–33].

In the following, we propose a novel measure of non-compactness within a bounded
domain of RN in the context of generalized Morrey spaces. This newly defined measure
is employed to analyze the existence of solutions for a coupled Hadamard FO system of
integral equations in those spaces. Additionally, we provide an example that illustrates the
applicability of the attained results and highlights potential avenues for further research
and applications in a variety of fields.

The rest of this research paper is organized as follows. Section 2 introduces some basic
definitions and results. Section 3 establishes a new measure of non-compactness within
the framework of generalized Morrey spaces on bounded domains. Section 4 provides an
example to confirm the effectiveness and applicability of this measure. Finally, Section 5
summarizes the key findings.

2. Preliminaries

This section provides some fundamental definitions and results that are necessary for
the work presented in this paper.

Definition 3 ([21]). The mapping µ : ΛΘ −→ [0,+∞] is a measure of non-compactness in Θ if:

A1. ker µ := {U ∈ ΛΘ : µ(U) = 0} is Definition 3. nonempty and ker µ ⊂ DΘ,
A2. U ⊆ V =⇒ µ(U) ≤ µ(V),
A3. µ(U) = µ(U) = µ(Conv U),
A4. µ(cU + (1 − c)V) ≤ cµ(U) + (1 − c)µ(V), for each c ∈ [0, 1],
A5. If {Un} is a sequence of closed sets from ΛΘ, such that Un+1 ⊆ Un and lim

n→∞
µ(Un) = 0,

then the set U∞ =
∞⋂

n=1
Un ̸= ∅, where DΘ is the set of all precompact sets in ΛΘ, and ΛΘ is

the set of all nonempty, bounded subsets of Θ.
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Theorem 1 ([34]). Consider a nonempty, bounded, convex, and closed subset F within a Banach
space Ω, with a continuous mapping E : Ω −→ Ω, and let µ be a measure of non-compactness on
Ω. If, for any nonempty subset U of Ω, a constant c ∈ [0, 1) exists so that

µ(EU) ≤ cµ(U),

then E possesses at least one fixed point in Ω.

Theorem 2 ([22]). Consider a nonempty, bounded, convex, and closed subset E of a Banach space
V, and let µ be an arbitrary measure of non-compactness on V. Suppose that, for n ∈ N and
i = 1, 2, . . . , n, continuous operators Hi : En → E exist, and for any subsets U1, . . . , Un of E, a
constant λ ∈ [0, 1) exists so that

µ(Hi(U1, . . . , Un)) ≤ λ max{µ(U1), . . . , µ(Un)}. (2)

Then, for every i, there exist elements γ∗
1 , . . . , γ∗

n ∈ E, so that Hi(γ
∗
1 , . . . , γ∗

n) = γ∗
i .

Definition 4 ([23]). Let ΩN
p∞ be the set of all non-negative, measurable and not equivalent to zero

functions ϑ : (0,+∞) −→ (0,+∞), which for some ξ > 0

||ϑ(.)r
N
P ||L∞(0,ξ) < ∞,

and for all ξ > 0
||ϑ(.)||L∞(ξ,+∞) < ∞,

where 1 ≤ p ≤ ∞.

Definition 5 ([23]). The local generalized Morrey space Mϑ
p ≡ Mϑ

p(Ω) on Ω = [a1, b1]× ... ×
[an × bn] ⊆ RN is the finite quasi-norm

|| f ||ϑp ≡ sup
u∈Ω,

0<r<diam(Ω)

||ϑ(.)|| f ||Lp(B(u,.))||L∞(0,r), (3)

where ϑ ∈ ΩN
p∞ .

Theorem 3. The space Mϖ
p (RN) is a non-trivial normed vector space if and only if ϖ ∈ ΩN

p∞ .

Example 1. Let us consider

f (x) =

{√
π, x ∈ [2ν, 2ν + 1],

−
√

π, x ∈ (2ν − 1, 2ν),

where ν ∈ Z. If ϑ(r) = r−
1
2 , we have

sup
x∈R

||ϖ(.)|| f ||L2(B(x,0))||L∞(0,+∞) = sup
x∈R,r>0

|r−
1
2 (

∫ x+r

x−r
f 2(s)ds)

1
2 | =

√
2π.

Example 2. We consider

g(x) =

{
sech(x), x ∈ [2ν, 2ν + 1],
0.5. tanh(x), x ∈ (2ν + 1, 2ν + 2),
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where ν ∈ ⊭Z, which belongs to Mϑ
2 (R If ϑ(r) = r−

1
2 , and we have

sup
x∈R

||ϖ(.)|| f ||L2(B(x,0))||L∞(0,+∞) = sup
x∈R,r>0

|r−
1
2 (

∫ x+r

x−r
f 2(s)ds)

1
2 | =

√
2π.

This shows that discontinuous functions can belong to the generalized Morrey space. Figure 1
presents a plot of this function.
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Figure 1. Morrey spaces.

Theorem 4 ([23]). Suppose that ϑ ∈ ΩN
p∞ and 1 ≤ p ≤ ∞. If, for a subset Q of Mϑ

p(RN),

D1. sup
g∈Q

||g||ϑp < ∞,

D2. lim
T→∞

sup
g∈Q

||gχBc(0,T)||ϑp = 0,

D3. lim
|d|→0

sup
g∈Q

||Tdg − g||ϑp = 0,

where Tdg(u) := g(u + d) for all u, d ∈ RN , then the subset Q is precompact in Mϑ
p(RN).

Lemma 1 ([24]). Assume that E is a metric space and that, for each ϵ > 0, there exist a constant
γ > 0, a metric space F and a mapping ψ : E −→ F, such that ψ[E] is totally bounded. Moreover,
for u, v ∈ E, if d(u, v) < ε, then d(ψ(u), ψ(v)) < γ. Under these conditions, E is totally bounded.

3. Measure of Non-Compactness on Bounded Domains

This section establishes a novel measure of non-compactness within the framework of
generalized Morrey spaces on bounded domains. This new measure builds upon existing
concepts of non-compactness, offering a more refined tool for analyzing the compactness
properties of sets in these spaces.

Theorem 5. Assume that Ω is a compact subset of RN . If F ⊂ Mϑ
p(Ω) is bounded and equicontin-

uous with norm of local generalized Morrey space, then F is totally bounded in Mϑ
p(Ω).

Proof. By using the equicontinuity of F and compactness of Ω for all ε > 0, we can obtain
a finite set of u1, ..., um ∈ Ω, such that |u − ui| < ε, with neighborhood U1, ..., Um covering
Ω, so that || f (u)− f (ui)||ϑp < ε. Define φ : F −→ Rm, such that φ( f ) := ( f (u1), ..., f (um))
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by boundedness of F. The image φ[F] is totally bounded on Rm. Additionally, if f , g ∈ F
satisfy ||φ( f )− φ(g)||ϑp < ε, then by Lemma 1, F is totally bounded.

Theorem 6. Let H be a bounded subset of Mϑ
p(Ω), with 1 ≤ p ≤ ∞, and

ϖ(g, ε) := sup
{
||Tdg − g||ϑp : |d| < ϵ

}
, (4)

ϖ(H, ε) := sup{ϖ(g, ε) : g ∈ H}, (5)

ϖ0(H) := lim
ϵ→0

ϖ(H, ε), (6)

where Tdg(ξ) := g(ξ + d) for all ξ, d ∈ Ω. Therefore, ϖ0 : ΩMϑ
p(Ω) −→ R+ is a measure of

non-compactness on Mϑ
p(Ω).

Proof. Let H ∈ ΛΩ, such that ϖ0(H) = 0. According to Equations (4)–(6), it holds that
lim
|d|→0

||Tdg − g||ϑp = 0 uniformly for all g ∈ H. Therefore, by Theorem 5, we conclude

that H is precompact. The condition (A2) is straightforward, and thus φ0(H) ≤ ϖ0(H̄).
To prove the reverse inequality, assume that g ∈ H̄ and that there exists a sequence
{gn}∞

n=1 ⊂ H such that gn → g in Mϑ
p(Ω). For ϵ > 0, a k ∈ N exists such that, for all m > k,

||g − gm||ϑp <
ϵ

2
. For each d ∈ RN with |d| < ε

||Tdg − g||ϑp ≤ ||Tdg − Tdgm||ϑp + ||Tdgm − gm||ϑp + ||gm − g||ϑp
= ||gm − g||ϑp + ||Tdgm − gm||ϑp + ||g − gm||ϑp
≤ ε + ϖ(gm, ε).

Therefore, ϖ(H̄, ε) ≤ ε + ϖ(H, ε). Hence,

ϖ0(H̄) ≤ ϖ0(H). (7)

This completes the proof of (A3). Because the norm has a triangular property, one can check
(A4) quickly. In the following, the correctness of (A5) is verified. Suppose that {gn} is a
sequence formed of closed sets in ΛMϑ

p
(Ω), so that gn+1 ⊆ gn and limn→∞ ϖ0(Hn) = 0.

For any n ∈ N, select gn ∈ Hn. Now, it needs to be shown that gn converges to some g0.
Suppose that one defines H = {gn}. Then, it is necessary to prove that H is compact. Hence,
it must be proven that H is equicontinuous and bounded. In the following, it is known that
lim

n→∞
ϖ0(gn) = 0, so for any ϵ > 0, there exists a L > 0 such that, for m > L, ϖ0(gm) < ϵ.

Then, ∥Tdgm − gm∥p < ϵ. This implies equicontinuity of {gm}∞
m=L. By applying Lemma 1,

it can be concluded that {gm}∞
m=L is compact, and thus, {gi}L

i=1 is also compact.

4. Applications within Generalized Morrey Spaces

This section illustrates the practical usefulness of the newly introduced measure of
non-compactness. An example is carefully chosen to show how the new measure can be
effectively applied to solve complex problems within generalized Morrey spaces.

We examine the system (1) within the framework of generalized Morrey spaces and
demonstrate that if system (1) satisfies the conditions

A. Function Ji : R+ −→ R+ is continuous and function fi : R4 −→ R is measurable.
Therefore, positive constants λ1, λ2 and λ3 exist, such that 0 < λ1 + λ2 < 1, and

| fi(ξ1, u1, v1, z1)− fi(ξ2, u2, v2, z2)| ≤ |Ji(ξ1)− Ji(ξ2)|+ λ1|u1(ξ)− u2(ξ)|+
λ2|v1(ξ)− v2(ξ)|+ λ3|z1(ξ)− z2(ξ)|,

(8)

where i ∈ {1, 2} and λ3 ∈ R+.
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B. The function bi : R3 −→ R is bounded and continuous, with a positive constant M
such that |bi(ξ, u, v)| ≤ M.

C. fi,0(ξ) := fi(ξ, 0, 0, 0) belongs to Mϑ
p(Ω) ∩ Lp(Ω).

Then, the system (1) has at least one solution.

Theorem 7. Under conditions A–C, the system (1) has at least one solution in Mϑ
p(Ω).

Proof. We start with

||u||ϑp ≡ sup
u∈Ω,

0<r<diam(Ω)

||ϖ(.)||u||Lp(B(u,.))||L∞(0,r) < r0,

||v||ϑp ≡ sup
u∈Ω,

0<r<diam(Ω)

||ϖ(.)||v||Lp(B(v,.))||L∞(0,r) < r0,

and

Fi(u(ξ), v(ξ)) = fi

(
ξ, u(ξ), v(ξ),

∫ ξ

1
(ln

ξ

η
)α−1 bi(η, u(η), v(η))

η
dη

)
. (9)

According to the Cauchy–Schwartz inequality, we obtain

|Fi(u, v)(ξ)| ≤ | fi(ξ, u(ξ), v(ξ)),
∫ ξ

1
(ln(

ξ

η
))α−1 bi(η, u(η), v(η))

η
dη)− fi(ξ, 0, 0, 0) + fi(ξ, 0, 0, 0)| (10)

≤ λ1|u(ξ)|+ λ2|v(ξ)|+ λ3M(T − 1)
1
2

1
2α − 1

(ln(T))2α−1. (11)

By the Lebesgue-dominated convergence theorem, we have

||Fi(u, v)(ξ)||ϑp ≤ λ1||u(ξ)||ϑp + λ2||v(ξ)||ϑp + λ3M(T − 1)
1
2

1
2α − 1

(ln(T))2α−1. (12)

We choose r0 such that
λ3M(T − 1)

1
2 (ln(T))2α−1

(2α − 1)(1 − λ1 − λ2)
< r0, (13)

Therefore, we prove that Fi is a self-map. We show that un → u and vn → v in Br0 with
norm Mϑ

p(Ω). So, we show that Fi(un, vn) → Fi(u, v) for i ∈ 1, 2. By using A and C, we get

| fi(ξ, un(ξ), vn(ξ)),
∫ ξ

1
(ln(

ξ

η
))α−1 bi(η, un(η), vn(η))

η
dη)

− fi(ξ, u(ξ), v(ξ)),
∫ ξ

1
(ln(

ξ

η
))α−1 bi(η, u(η), v(η))

η
dη)|

≤ λ1|un(ξ)− u(ξ)|+ λ2|vn(ξ)− v(ξ)|

+ λ3

∣∣∣∣∣
∫ ξ

1

(
ln
(

ξ

η

))α−1 bi(η, un(η), vn(η))− bi(η, u(η), v(η))
η

dη

∣∣∣∣∣. (14)
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By the Lebesgue-dominated convergence theorem, we have

|| fi(ξ, un(ξ), vn(ξ)),
∫ ξ

1
(ln(

ξ

η
))α−1 bi(η, un(η), vn(η))

η
dη)

− fi(ξ, u(ξ), v(ξ)),
∫ ξ

1
(ln(

ξ

η
))α−1 bi(η, u(η), v(η))

η
dη)||ϑp

≤ λ1||un(ξ)− u(ξ)||ϑp + λ2||vn(ξ)− v(ξ)||ϑp

+ λ3

∣∣∣∣∣
∣∣∣∣∣
∫ ξ

1

(
ln
(

ξ

η

))α−1 bi(η, un(η), vn(η))− bi(η, u(η), v(η))
η

dη

∣∣∣∣∣
∣∣∣∣∣
ϑ

p

. (15)

Then ||Fi(un, vn)− Fi(u, v)||ϑp → 0 as n → ∞, confirming that Fi is continuous in the local
generalized Morrey space.

Now, we show that, for the nonempty subsets X1, X2 ∈ Br0 , we have

ϖ(Fi(X1, X2)) ≤ C1 max ϖ(X1, X2), (16)

with C1 := max{λ1, λ2}. We choose u ∈ X1 and v ∈ X2. For an arbitrary ε > 0 and ξ, d ∈ Ω
with |d| < ε, we have:

|Fi(u, v)(ξ + d)− Fi(u, v)(ξ)| =

| fi(ξ + d, u(ξ + d), v(ξ + d),
∫ ξ+d

1
(ln(

ξ + d
η

))α−1 bi(η, u(η), v(η))
η

dη)

− fi(ξ, u(ξ), v(ξ),
∫ ξ

1
(ln(

ξ

η
))α−1 bi(η, u(η), v(η))

η
dη)|

< |Ji(ξ + d)− Ji(d)|+ λ1|u(ξ + d)− u(ξ)|+ λ2|v(ξ + d)− v(ξ)|

+ λ3|
∫ ξ+d

1
(ln(

ξ + d
η

))α−1 bi(η, u(η), v(η))
η

dη − ln(
ξ

η
))α−1 bi(η, u(η), v(η))

η
dη|. (17)

By the Lebesgue-dominated convergence theorem, we have

||Fi(u, v)(ξ + d)− Fi(u, v)(ξ)||ϑp =

< ||Ji(ξ + d)− Ji(d)||ϑp + λ1||u(ξ + d)− u(ξ)||ϑp + λ2||v(ξ + d)− v(ξ)||ϑp

+ λ3||
∫ ξ+d

1
(ln(

ξ + d
η

))α−1 bi(η, u(η), v(η))
η

dη − ln(
ξ

η
))α−1 bi(η, u(η), v(η))

η
dη||ϑp. (18)

Applying the Riesz–Fischer and the Lebesgue-dominated convergence theorems, the proof
is completed.

Remark 1. In a similar manner, the investigation of both finite and infinite systems of fractional
integral equations within the context of generalized Morrey spaces constitutes an important area of
research. For an in-depth analysis of this subject, readers are encouraged to consult the thorough
examination found in reference [17].

Example 3. Here, we present an example that illustrates the effectiveness and applicability of
Theorem 7. For every positive constant T such that ξ ∈ [0, T], we consider a system of fractional
differential equations:


u(ξ) = e−ξ +

u(ξ)
eξ + 3

+
v(ξ)

ξ2 + 3
+
∫ ξ

1 (ln(
ξ
η ))

−1
6

arctan(u(η) + v(η))
η

dη,

v(ξ) =
1

1 + cosh(ξ)
+

u(ξ)
20 + cos(ξ)

+
v(ξ)

π + cos2(ξ)
+
∫ ξ

1 (ln(
ξ
η ))

−1
6

sin(u(η) + v(η))
η

dη.
(19)
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According to system (1) and Equation (9), we obtain
f1(ξ, u, v, z) = e−ξ +

u
eξ + 3

+
v

ξ2 + 3
+ z,

f2(ξ, u, v, z) =
1

1 + cosh(ξ)
+

u
20 + cos(ξ)

+
v

π + cos2(ξ)
+ z.

We set ϑ = r
−1
2 , and α =

1
2

. Since f1(ξ, 0, 0, 0) = e−ξ and f2(ξ, 0, 0, 0) =
1

1 + cosh(ξ)
, then

||J1||ϑp ≤
√

2, and ||J2||ϑp ≤ 1√
2

. Furthermore,

λ1 = max

{
sup

0≤ξ≤T

{
1

eξ + 3

}
, sup

0≤ξ≤T

{
1

cos(ξ) + 20

}}
=

1
3

,

λ2 = max

{
sup

0≤ξ≤T

{
1

ξ2 + 3

}
, sup

0≤ξ≤T

{
1

cos2(ξ) + π

}}
=

1
3

,

λ3 = 1.

Hence, conditions A − C are satisfied. Then, for each p ≥ 1, the system (19) has a solution in Mϑ
p .

Example 4. We demonstrate that the fractional integral system (20) possesses a solution within
the space Mϑ

p :
u(ξ) = arctan(ξ2 + 1) +

cos(v(ξ))
| sinh(ξ)|+ 15

+
∫ ξ

1 (ln(
ξ
η ))

− 1
6

cos(v(η))
η

dη,

v(ξ) = tanh(ξ) +
arctan(u(ξ) + v(ξ))

ξ5 + 20
+
∫ ξ

1 (ln(
ξ
η ))

− 1
6

sech(u(η))
η

dη.

(20)

According to system (1) and Equation (9), we obtain
f1(ξ, u, v, z) = arctan(ξ2 + 1) +

cos(v)
| sinh(ξ)|+ 15

+ u,

f2(ξ, u, v, z) = tanh(ξ) +
arctan(u + v)

ξ5 + 20
+ u.

We set ϖ(r) = r
−1
3 , and α =

1
3

. Since f1(ξ, 0, 0, 0) = arctan(ξ2 + 1) and f2(ξ, 0, 0, 0) =

tanh(ξ), then ||J1||ϑp ≤
3√2
8 π2, and ||J2||ϑp ≤ 3

√
2. Additionally,

λ1 = max

{
0, sup

0≤ξ≤T

{
1

ξ2 + 20

}}
=

1
20

,

λ2 = max

{
sup

0≤ξ≤T

{
1

| sinh(ξ)|+ 15

}
, sup

0≤ξ≤T

{
1

ξ2 + 20

}}
=

1
15

,

λ3 = 1.

Hence, conditions A–C are satisfied. Then, for each p ≥ 1, the system (20) has a solution in Mϑ
p .

5. Concluding Remarks

This paper introduced a novel measure of non-compactness within a bounded domain
in RN for generalized Morrey spaces. This measure was utilized to demonstrate the
existence of solutions for a coupled Hadamard fractional-order system of integral equations
in these spaces. Examples were provided to illustrate the application of the main result.
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The paper also suggested future research directions, including the study of infinite systems
of integral equations in Morrey spaces and extending these results to other domains, such
as Morrey spaces on R2.
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