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Abstract: The Mongolian gerbil is a distinctive experimental animal in China, as its genetic qualities
possess significant value in the field of medical biology research. Here, we aimed to establish an eco-
nomical and efficient panel for genetic quality detection in Mongolian gerbils using single-nucleotide
polymorphism (SNP) markers. To search for SNPs, we conducted whole-genome sequencing (WGS)
in 40 Mongolian gerbils from outbred populations. Reliable screening criteria were established to
preliminarily select SNPs with a wide genome distribution and high levels of polymorphism. Subse-
quently, a multiple-target regional capture detection system based on second-generation sequencing
was developed for SNP genotyping. Based on the results of WGS, 219 SNPs were preliminarily
selected, and they were established and optimized in a multiple-amplification system that included
206 SNP loci by genotyping three outbred populations. PopGen.32 analysis revealed that the average
effective allele number, Shannon index, observed heterozygosity, expected heterozygosity, average
heterozygosity, polymorphism information content, and other population genetic parameters of the
Capital Medical University (CMU) gerbils were the highest, followed by those of Zhejiang gerbils and
Dalian gerbils. Through scientific screening and optimization, we successfully established a novel,
robust, and cost-effective genetic detection system for Mongolian gerbils by utilizing SNP markers
for the first time.

Keywords: Mongolian gerbils; SNP; genetic quality control; second-generation sequencing

1. Introduction

The Mongolian gerbil is a distinctive experimental animal in China, and it possesses
significant value in the field of medical biology research. With the Mongolian gerbil,
studies have been conducted on variations in the Circle of Willis (CoW) [1–3], cerebral
ischemia [4–6], and gastric diseases associated with Helicobacter pylori [7,8]. Additionally,
gerbil stroke models [9–12] and hereditary spontaneous diabetes models [13,14] have been
established. Genetic monitoring is the main method employed to assess genetic diversity
and the stability of the genetic background in experimental animals, enabling the detection
of potential genetic mutations and genetic pollution [15]. Whole-genome sequencing (WGS)
has already been conducted for the Mongolian gerbil [16], and the size of its whole genome
length is about 3,931,855,312 bp [17]. Unfortunately, the available genetic testing methods
for Mongolian gerbils are extremely limited. At present, the prevailing method of genetic
analysis for gerbils in China is based on microsatellites [18–21], but an internationally
acceptable testing approach for genetic quality remains absent.

In comparison with microsatellites, single-nucleotide polymorphisms (SNPs) possess
the advantages of widespread distribution, enhanced stability, simplified analysis, and high
throughput capacity, rendering them more suitable as markers for genetic monitoring. SNP
markers have been widely used in genetic evaluations in many kinds of laboratory animals,
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such as mice [22–25] and rats [26–29]. They have been widely used in animal and plant
breeding, disease-resistance gene markers, and the screening and identification of varieties
of disease-related genes. The existing standard GB14923-2022 [30] “Genetic Quality Control
of Experimental Animals” (China) recommends the utilization of 35 SNP marker genes for
the genetic monitoring of inbred mice; however, there is currently a lack of well-defined
SNP-based genetic quality assessment methods for Mongolian gerbils. Therefore, it is
important to establish an internationally advanced genetic quality testing method using
SNPs for Mongolian gerbils. This not only fills the gap in relevant standards but also holds
significant implications for the enhancement of the genetic testing technology level and
ensuring the overall quality of the Mongolian gerbil.

In this study, we succeeded in screening SNP loci with a wide distribution across
the genome, high polymorphism rates, no linkage disequilibrium, and high confidence
using large-scale whole-gene resequencing and multiple-target capture techniques. We
developed an SNP genotyping method suitable for high-throughput genetic detection in
Mongolian gerbils.

2. Materials and Methods
2.1. Animal Samples

Mongolian gerbils were collected from three outbred populations from Zhejiang
(n = 37), CMU (n = 31), and Dalian (n = 32) and two inbred populations with diabetes
(n = 10) and cerebral ischemia (n = 10). The gender of the gerbils was randomly selected. We
randomly selected animals from the inbred populations and selected distantly genetically
related individuals from the outbred populations. The original animals in the populations
of Zhejiang, CMU, and Dalian were captured in inner Mongolia in 1978, 1982, and 1972,
respectively. This study was approved by the Animal Experiments and Experimental
Animal Welfare Committee of Capital Medical University (AEEI-2021-309).

2.2. DNA Extraction

A DNA extraction kit (FastPure® Cell/Tissue DNA Isolation Mini Kit, Vazyme Biotech
Co., Ltd., Nanjing, China) was used to extract genomic DNA from the Mongolian gerbils’
ear and tail tissues. The concentration and purity of DNA from each sample were deter-
mined with an A260/A280 measurement using a Nanodrop 2000C micro-spectrophotometer
(Thermo Fisher Scientific Inc., Waltham, MA USA) and further evaluated through agarose
gel electrophoresis; then, the samples were stored at −20 ◦C.

2.3. Sequencing and Quality Control

Due to the limited availability of a comprehensive SNP database for the Mongo-
lian gerbil, we conducted whole-genome sequencing (WGS) with a coverage of 10× on
20 Mongolian gerbils from Zhejiang and 20 CMU Mongolian gerbils, aiming to econom-
ically seek polymorphic SNP loci among animals through sequence comparison. Ge-
nomic DNA was sequenced with the Combinatorial Probe–Anchor Synthesis method
in the DNBSEQ System (company, Beijing GenePlus Clinical Laboratory Co., Ltd., Bei-
jing, China; machine, DNBSEQ-T7RS; read lengths, PE150; date out, 1.75-7T). Raw reads
were filtered using the fastp-v0.21.0 software (https://github.com/OpenGene/fastp, ac-
cessed on 16 January 2023). Paired-end reads were mapped to MunDraft-v1.0 (https:
//www.ncbi.nlm.nih.gov/genome/gdv?org=meriones-unguiculatus&group=muridae, ac-
cessed on 16 January 2023) using the BWA-v0.7.17 software (https://sourceforge.net/
projects/bio-bwa/files/, accessed on 16 January 2023). SNP calling and filtering were
performed with the GATK-v4.0.0.0 software (https://gatk.broadinstitute.org, accessed
on 16 January 2023). The BCFtools-v1.20-6 software (http://www.htslib.org/download/,
accessed on 16 January 2023) was used for quality control of the data, and the following
standards were set: (i) removal of SNP loci with a QualByDepth value of less than 2.0;
(ii) removal of SNP loci with a FisherStrand value of less than 60.0; (iii) removal of SNP loci
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with an RMSMappingQuality value of less than 30.0; and (iv) removal of SNP loci with a
sequencing depth of less than 8.0.

2.4. SNP Locus Selection

Our SNP screening criteria included the following five points: (i) for a uniform
distribution across the genome, candidate loci were selected from different fragments
to avoid linkage; (ii) the genotype frequency ranged between 25% and 75%, which was
to ensure the polymorphism of the loci; (iii) to improve the amplification efficiency, no
other SNPs or indels were found within a 200 bp region upstream or downstream of
the selected loci; (iv) no complete linkage was observed among the selected loci; and,
additionally, (v) so that they would correlate as much as possible with the phenotype,
these SNPs predominantly resided in gene regions with a high concentration of missense
mutations, nonsense mutations, and nonstop mutations. In accordance with this procedure,
we screened a high-quality SNP locus panel.

2.5. Primer Design and Sequencing

After obtaining the candidate SNPs, we handed over the region of interest (ROI),
that is, the information on the physical locations of the SNPs, to iGeneTech Biotechnology
Beijing Co. Ltd., Beijing, China, and used MFEprimer-v3.1 to design and validate multiple
PCR primers that targeted the genomic sequence of the SNPs in our panel. Based on the
thermodynamic stability [31,32], highly specific multiplex primers were designed on both
sides of the ROI; the amplicon was 160–260 bp. We then evaluated primer dimerization
and non-specific amplification, tested the designed and synthesized primers, and replaced
the primers that had a poor detection effect. Subsequently, sequencing was performed
on an Illumina® NovaSeqTM 6000 system (Illumina, Inc., San Diego, CA USA) using
amplicon-targeted capture in the PE150 paired-end sequencing mode.

2.6. Population Genetic Analysis

The genotype of each SNP locus in the form of AA, BB, and AB for all samples
was input into the Popgen.32 Analysis software [33]. We used this software to calculate
population genetic parameters such as average effective allele number, Shannon index,
observed heterozygosity, expected heterozygosity, and average heterozygosity for different
individuals at each SNP locus.

2.7. Compilation of Principal Component Analyses and Population Structure

Principal component analysis (PCA) and R (v4.3.2) were used to generate a PCA figure
and a 3D PCA image. To estimate the genetic structure of our dataset, STRUCTURE v2.3.4
(https://web.stanford.edu/group/pritchardlab/structure.html, accessed on 16 January
2023) was run with 10,000 burn-ins and 50,000 iterations for the Markov Chain Monte Carlo
(MCMC) method [34,35]. The frequency model of ‘correlated allele frequencies’ among
populations was used, and an ‘admixture’ with K values ranging from 2 to 6 was tested
across a total of ten runs. The estimated ln probability values (−LnP(D)) for each K value
were plotted using the online STRUCTURE harvester tool v0.6.94 [35] (http://alumni.soe.
ucsc.edu/~dearl/software/structureHarvester/, accessed on 16 January 2023).

3. Results
3.1. Establishment and Optimization of the SNP Detection System

By conducting a comparative analysis of the WGS results for 40 Mongolian gerbils,
3,853,611 SNP loci were identified in the genetic region. To screen an efficient SNP panel
for genetic quality control in Mongolian gerbils, we established criteria for selecting high-
quality SNPs from the SNP dataset derived from WGS (Figure 1). Based on the SNP
screening criteria, we selected 219 high-quality loci for the development of the Mongolian
gerbil SNP detection system (Supplementary Table S1).

https://web.stanford.edu/group/pritchardlab/structure.html
http://alumni.soe.ucsc.edu/~dearl/software/structureHarvester/
http://alumni.soe.ucsc.edu/~dearl/software/structureHarvester/
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Figure 1. SNP screening criteria.

In order to further optimize the effective SNPs, we genotyped 219 SNP loci in 120 sam-
ples from five Mongolian gerbil populations. We deleted thirteen loci for the follow-
ing reasons: (1) MAPQ < 59, indicating that the reads located at these loci were not
unique compared with the reference genome and that the genotyping results were un-
reliable; (2) the loci were homomorphic in all samples; (3) there was complete linkage
(Supplementary Table S2). In summary, a panel of 206 high-quality SNP loci was opti-
mized and recommended for the genetic evaluation of Mongolian gerbil populations
(Supplementary Table S3).

3.2. Genetic Analysis of the Outbred Mongolian Gerbil Populations

We applied the SNP detection system to the analysis of the genetic structure of three
outbred Mongolian gerbil populations using the Popgen.32 software (Table 1). Our findings
revealed that the Mongolian gerbils from CMU exhibited the highest values for various
parameters, including the average effective allele numbers (ne), Shannon index (I), observed
heterozygosity (Obs Het), expected heterozygosity (Exp Het), and average heterozygosity
(Ave Het). The gerbils in the Zhejiang, diabetes, Dalian, and cerebral ischemia populations
displayed progressively lower values.

Table 1. Genetic structure of the three outbred Mongolian gerbil populations.

Mongolian Gerbils Na ne I Obs
Hom Obs Het Exp

Hom
Exp
Het Ave Het Percentage of

Polymorphic Loci

CMU 1.9903 1.6953 0.5753 0.6019 0.3981 0.6002 0.3998 0.3934 99.03%
Zhejiang 2.0000 1.6550 0.5594 0.6229 0.3771 0.6167 0.3833 0.3782 100%
Dalian 1.5146 1.3408 0.2882 0.7770 0.2230 0.8014 0.1986 0.1955 51.46%

Note: Na: average allele numbers; Ne: effective allele numbers; I: Shannon index; Obs Hom: observed homozy-
gosity; Obs Het: observed heterozygosity; Exp Hom: expected homozygosity; Exp Het: expected heterozygosity;
Ave Het: average heterozygosity.

A dendrogram based on Nei’s genetic distance and the UPGMA method was created
for the three outbred populations (CMU, Zhejiang, and Dalian), revealing that the Dalian
Mongolian gerbils exhibited the greatest genetic divergence from the other Mongolian
gerbil populations. Conversely, the Zhejiang population displayed a closer genetic distance
to the CMU population (Figure 2).
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3.3. Structure Analysis of the Three Mongolian Gerbil Populations

The results of the population genetic structure analysis are shown in Figure 3. The
number of assumed populations (K) was set to 2–6 in this study. It was found that the ∆K
value was highest at K = 2, and it was recommended to divide this into two populations.
The Dalian populations were separated from the other populations at K = 2. This was
consistent with the results of the genetic distance analysis. Coherently, we found that the
three populations showed different proportions of components at K = 3. These data indicate
that the genetic structure of the outbred CMU population was similar to that of the outbred
Zhejiang population.
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3.4. Principal Component Analysis in the Three Mongolian Gerbil Populations

It is well established that PCA can be used to show the main differences in genetic
distances between complex samples through a reduction in the data dimensionality. The
results of PCA based on the allele frequency distributions of 206 polymorphic SNP loci in
all three outbred populations are shown in Figure 4. In the genotype-based PCA results,
PC1 (21.5%) and PC2 (8.2%) extracted 29.7% of the total genetic variation. The principal
component analysis completely separated the Dalian population in a two-dimensional
schematic diagram of PC1 (Figure 4A). All populations were separated by three PCs
(Figure 4B). Again, the results of the PCA demonstrated that the Zhejiang and CMU
populations were closer in terms of genetic distance.
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3.5. Genetic Analysis of the Outbred Mongolian Gerbil Populations

We also observed that the genotypic distribution of some loci was population-specific,
and there were significant differences between populations. For instance, the locus
MG15 exhibited polymorphism in the Dalian gerbils and Zhejiang gerbils with genotypes
AG/GG/AA, but it exhibited monomorphism in the CMU gerbils, with only one kind of
genotype (GG). The locus MG126 exhibited homomorphism in the Dalian and CMU gerbils,
with only one genotype (CC or TT, respectively), whereas the Zhejiang gerbils exhibited
three genotypes: TT/TC/CC. The three outbred populations could be easily distinguished
with these two loci (Table 2). In total, we found seven loci that were specific in different
populations (Table 2); they could be regarded as unique loci of a certain population and
applied to easily distinguish the three outbred populations.

Table 2. Allele frequencies of seven SNP loci in the three outbred populations.

Number Genotyping Zhejiang Dalian CMU p Value

MG15
AA 0.08 0.09 0.00

<0.001AG 0.35 0.47 0.00
GG 0.57 0.44 1.00

MG89
CC 0.00 0.00 0.68

<0.001CT 0.05 0.00 0.32
TT 0.95 1.00 0.00

MG126
CC 0.03 1.00 0.00

<0.001CT 0.09 0.00 0.00
TT 0.89 0.00 1.00

MG159
CC 0.97 0.59 0.97

<0.001TT 0.03 0.41 0.03

MG164
AA 0.32 0.97 0.74

<0.001AC 0.35 0.03 0.26
CC 0.32 0.00 0.00

MG206
AA 0.22 0.97 0.39

<0.001AG 0.62 0.03 0.42
GG 0.16 0.00 0.19

MG215
CC 0.03 0.00 0.90

<0.001CT 0.54 0.00 0.10
TT 0.43 1.00 0.00
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3.6. Genetic Analysis of the Inbred Mongolian Gerbil Lines

In the panel of 206 SNP loci, 156 were found to be monomorphic in the inbred cerebral
ischemia and 77 loci were found to be monomorphic in the inbred diabetes lines; 64 loci
were monomorphic in both lines, but 15 of them exhibited different genotypes between the
two lines and could be used to distinguish the two inbred populations (Table 3).

Table 3. Fifteen loci with different phenotypes between the two inbred lines.

Number CHROM POS Variant_Classification REF ALT Inbred Cerebral
Ischemia Line

Inbred Diabetes
Line

MG37 NW_018657859.1 1,081,095 5′Flank C G G/G C/C
MG46 NW_018657888.1 735,326 Missense_Mutation A G A/A G/G
MG47 NW_018657888.1 1,469,235 Nonstop_Mutation A T T/T A/A
MG49 NW_018657893.1 1,416,535 Missense_Mutation C T C/C T/T
MG54 NW_018657915.1 154,939 Intron T C T/T C/C
MG73 NW_018658000.1 110,223 Missense_Mutation T C T/T C/C
MG82 NW_018658044.1 1,083,386 Missense_Mutation G T T/T G/G
MG94 NW_018658087.1 982,880 Missense_Mutation T C C/C T/T

MG107 NW_018658151.1 621,718 3′Flank G T T/T G/G
MG114 NW_018658168.1 333,441 5′Flank C T T/T C/C
MG124 NW_018658203.1 697,270 Missense_Mutation C T T/T C/C
MG132 NW_018658278.1 540,596 Nonsense_Mutation C A A/A C/C
MG142 NW_018658707.1 206,847 Missense_Mutation C A A/A C/C
MG190 NW_018661696.1 2303 Missense_Mutation A G G/G A/A
MG219 NW_018692212.1 1211 5′Flank G A G/G A/A

4. Discussion

This study presents the pioneering utilization of WGS to identify and select SNPs
in Mongolian gerbils. By implementing stringent criteria, from a genetic region with
3,853,611 SNPs, we successfully identified 219 high-quality SNP loci with high levels of
polymorphism and wide distribution across the genome and subsequently developed a
multiple-SNP detection system.

In comparison with single-SNP amplification and genotyping methods, the multiple-
target region capture technology (MultipSeq Primer for the genotyping of SNP loci) based
on next-generation sequencing technology is more cost-effective and has higher efficiency,
enabling the simultaneous acquisition of a greater number of loci and genotyping re-
sults [32,36,37]. In the present study, by testing the 219 selected SNPs in 120 animals, it
was found that three loci had a low amplification quality, seven loci presented the same
genotype in all animals, and three loci were completely linked with other loci. These loci
were omitted due to their low capabilities for distinguishing different gerbil populations.

The use of reasonable criteria in the selection of high-quality SNPs that are suitable
for genetic detection is a critically important issue. We noted that the loci were on sep-
arate chromosomes or sufficiently far apart on the same chromosome to ensure a wide
distribution and show minimal linkage disequilibrium [38–40]. First, candidate loci were
selected from different fragments across the entire genome. Second, no complete linkage
was observed among the loci, thus improving the detection efficiency. To ensure that
the loci were SNPs rather than SNVs, SNP sites were only conserved if MAF > 0.3 [40].
Third, the genotype frequency ranged between 25% and 75% in this study. To ensure the
specific amplification of each locus [41], Wang et al. compared the reference genome of
grapes and selected SNP loci with no other variations within the range of 100 bp before and
after [40]. Fourth, no other SNPs or indels were found within a 200 bp region upstream or
downstream of the selected loci in this study, thus further ensuring the specificity of locus
amplification. SNPs were preferably located in coding regions [41], ensuring their close
association with phenotypic changes. Fifth, in this study, the SNPs predominantly resided
in gene regions with a high concentration of missense mutations, nonsense mutations,
and nonstop mutations. These strict screening criteria were reasonable and creative and
ensured the high reliability, polymorphism, and even distribution of all selected loci.
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The average effective heterozygosity is an important parameter of population genetic
diversity, effectively reflecting the richness of the identified genes [15,33]. When STR is
employed as a marker for the detection of genetic diversity, it is generally believed that
the population genetic diversity is low when the average effective heterozygosity is less
than 0.5. When the average effective heterozygosity of a population is greater than 0.7,
the genetic diversity is high [15]. However, the absolute values of the average effective
heterozygosity of the three populations of gerbils in the present study were all lower
than 0.5 [33,42]. This may be attributed to the inherent characteristics of different genetic
markers; STR is always multi-allelic, and the number of alleles at a single locus can even
reach higher than 10, while SNPs usually have only two alleles, indicating that we should
apply different criteria to evaluate the population genetic diversity when using different
markers [33]. Thus, our data indicated good genetic diversity among the three outbred
populations. The results showed that the CMU population exhibited the highest genetic
diversity; the Dalian group, on the other hand, exhibited the lowest values of genetic
heterozygosity, which may have been related to the time at which the original animals
were captured from the wild; the longer the duration of their confinement, the greater the
reduction in their genetic diversity.

The loci exhibiting population-specific genotype distributions can serve as highly in-
formative markers for population identification. At present, the existing standard GB14923-
2022 [30] “Genetic Quality Control of Experimental Animals” (China) recommends the
utilization of 35 SNP marker genes for the genetic monitoring of four inbred strains of
mice. Wei et al. [43] also developed a combination of eight SNP loci that can distinguish
10 inbred mice strains. In the present study, seven SNP loci could be regarded as unique
loci of a certain population and applied to easily distinguish the three outbred populations.
The MG15 locus may be used to effectively differentiate the CMU population from the
Dalian and Zhejiang populations, while a single locus, MG126, may be used to distinguish
between the three populations of CMU, Zhejiang, and Dalian. A combination of fifteen
SNP loci may be used to distinguish the two inbred populations.

Compared to the STR detection method, STR detection has advantages such as simple
operation, easy interpretation, and low cost. The mutation rate of SNPs is only one-
thousandth of STR, which is more stable during population inheritance. However, there
are certain limitations of this study. The population cultivation of Mongolian gerbils is not
as mature as that of mice. Only three populations were collected in the outbred population,
and the number of animals selected for sequencing validation was small, resulting in a
scarce amount of data. Some differential loci need to be further determined by expanding
the sample size of the population in later stages of research.

5. Conclusions

We successfully established a novel genetic detection system for SNPs in Mongolian
gerbils that is efficient and precise when conducting genetic analyses on several outbred
and inbred gerbil populations. These findings will significantly advance the level of genetic
detection for characteristic gerbils in China.
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