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Abstract: Colorectal cancer (CRC) ranks third in terms of cancer incidence worldwide and is re-
sponsible for 8% of all deaths globally. Approximately 10% of CRC cases are caused by inherited
pathogenic mutations in driver genes involved in pathways that are crucial for CRC tumorigenesis
and progression. These hereditary mutations significantly increase the risk of initial benign polyps or
adenomas developing into cancer. In recent years, the rapid and accurate sequencing of CRC-specific
multigene panels by next-generation sequencing (NGS) technologies has enabled the identification
of several recurrent pathogenic variants with established functional consequences. In parallel, rare
genetic variants that are not characterized and are, therefore, called variants of uncertain significance
(VUSs) have also been detected. The classification of VUSs is a challenging task because each amino
acid has specific biochemical properties and uniquely contributes to the structural stability and
functional activity of proteins. In this scenario, the ability to computationally predict the effect of a
VUS is crucial. In particular, in silico prediction methods can provide useful insights to assess the
potential impact of a VUS and support additional clinical evaluation. This approach can further
benefit from recent advances in artificial intelligence-based technologies. In this review, we describe
the main in silico prediction tools that can be used to evaluate the structural and functional impact of
VUSs and provide examples of their application in the analysis of gene variants involved in hereditary
CRC syndromes.

Keywords: hereditary colorectal polyposis syndromes; hereditary nonpolyposis colorectal cancer;
variants of uncertain significance; in silico prediction tools; protein stability; protein functions

1. Introduction

Colorectal cancer (CRC) is the third most common cancer in the world and accounts
for more than 8% of deaths from all causes annually [1]. Between 6 and 10% of all CRC
cases and around 20% of those detected before the age of 50 have identifiable hereditary
pathogenic mutations in genes that significantly increase CRC susceptibility [2,3]. In most
hereditary CRC syndromes, cancer arises from primary lesions such as polyps and adeno-
mas, but the pathways leading to carcinoma development vary in the different disorders.
The identification of the main hereditary mutations involved in these disorders has been
crucial to improving the comprehension of the basic molecular processes responsible for
CRC tumorigenesis [4]. Genetic susceptibility to CRC seems more widespread than previ-
ously expected. Recent reports uncovered disease-causing genetic variants in a wide variety
of cancer susceptibility genes with high and moderate penetrance [5]. These pathogenic
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variants have been described in over 10% of patients diagnosed with advanced cancer,
including CRC [6].

The advent of next-generation sequencing (NGS) technologies has significantly en-
hanced our ability to identify genetic variants. In addition to expediting the identification
of recurrent pathogenic variants with established functional consequences, NGS has also
revealed several rare uncharacterized genetic variants, which are, therefore, called variants
of uncertain significance (VUSs) [7]. The majority of VUSs can be grouped into three
main categories based on the type of genetic alteration, i.e., missense substitutions (most
frequent), splice junction variants, and in-frame insertion or deletion variants (in-frame
indels), but their functional classification has proven challenging when using multigene
panels in genetic testing [4,8]. The assessment of the functional impact of a missense VUS
is complex due to the specific biochemical properties of each amino acid, which modify the
stability and function of the affected protein. Therefore, a missense substitution can have a
variety of effects, ranging from no impact to completely abolishing protein function or even
leading to the acquisition of new functions or increased stability. Splice junction variants
can abrogate splicing or increase or decrease its efficiency. In particular, they can affect
precursor mRNA-spliceosome interactions, leading to exon skipping, full intron inclusion,
and alternative use of neighboring cryptic splice sites [9]. These events result in nucleotide
insertions or deletions (in-frame indels) that impair protein structure and function due to
extra or missing amino acids or even entire domains [10].

VUS assessment is particularly important when the variant occurs in a clinically
significant gene, as the interpretation of its structural and functional implications can
be very useful in clinical practice and for the surveillance of hereditary disorders [11].
Clinicians, therefore, need clear guidance regarding the significance of variants that may
have practical consequences. Following genetic testing to detect mutations in germline
CRC susceptibility genes, three possible outcomes can occur: (i) no variant is found; (ii) the
identified variant is known as pathogenic or benign; or (iii) the identified variant is a VUS.
If a pathogenic variant is detected, the patient should receive genetic counseling and be
treated according to gene-specific guidelines and their personal and family history of cancer.
Moreover, “cascade testing” should be performed on relatives at risk to ascertain whether
they also carry the variant, and appropriate screening programs should be recommended,
including earlier and more frequent colonoscopies [12,13].

According to the National Comprehensive Cancer Network (NCCN, https://www.nc
cn.org, accessed on 5 July 2024) guidelines, clinical surveillance for patients with a VUS in an
oncogene associated with hereditary CRC syndromes should be the same as that indicated
for the general population [14]. Still, in these cases, the clinical geneticist is responsible
for evaluating the patient’s clinical phenotype and family history to decide whether a
segregation analysis of the VUS in the family is warranted. Although VUSs are not used
as markers to increase clinical surveillance, it should be noted that many of the variants
originally classified as VUSs have been subsequently characterized as pathogenic, thus
initially escaping NCCN-recommended clinical surveillance programs, with serious clinical
implications for the affected patients. Therefore, the discovery of a VUS poses a problem
because it is unclear if the mutation is benign or pathogenic, and family members cannot
be stratified according to their risk of developing CRC. This makes clinical management
more challenging. Clinicians can only evaluate the putative functional implications of
a VUS based on information gathered from specific databases, which unfortunately are
not updated on a regular basis, and current literature [15]. These limitations may be
overcome, at least in part, by the use of in silico tools. This approach can provide valuable
insights by predicting the potential impact of the identified variants on protein structure
and function. As such, in silico tools are crucial resources for prioritizing specific VUSs for
further investigation and guiding clinical decisions [11].

Ideally, the management of genetic disorders associated with CRC would require
collaborative efforts from multidisciplinary teams to integrate computational predictions
with experimental validations and genetic counseling. These three key aspects are essential
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for enhancing the accuracy of VUS interpretation and promoting more efficient clinical
surveillance, with the ultimate goal of advancing personalized medicine.

In this review, we summarize current in silico methodologies available to assess the
structural and functional implications of VUSs in key genes playing a role in hereditary
CRC syndromes.

2. Pathology of Hereditary CRC Syndromes

CRC is an epithelial-originated cancer that typically begins as an adenoma. While
the majority of CRCs occur in individuals with no family history of the disease or other
risk conditions, approximately 30% of CRC patients have family members affected by the
same cancer [16]. Current epidemiological evidence shows that people are more likely
to develop CRC or adenomatous polyps if they have one or more first-degree relatives
affected by these conditions. Although not fully clear yet, this may be due to a mix of
shared environmental variables and genetic factors [17].

CRC screening guidelines recommend that most average-risk patients start screening
at 50 years of age [18]. The suggested screening age and frequency may vary based on the
presence of polyps with specific histotypes or a family history of CRC. Patients who have a
first-degree relative diagnosed with CRC and a family history of the disease should have a
colonoscopy every 5 years beginning at 40 years of age or 10 years before their relative’s
diagnosis age [18,19].

Hereditary CRC syndromes are associated with a significant increase in CRC risk and
early onset of the disease. Based on the number and histotype of CRC lesions, they can be
classified into two major phenotypic categories: polyposis and nonpolyposis syndromes [1].

2.1. Hereditary CRC Polyposis Syndromes

Hereditary CRC polyposis syndromes comprise familial adenomatous polyposis (FAP),
attenuated familial adenomatous polyposis (AFAP), MUTYH-associated polyposis (MAP),
polymerase proofreading-associated polyposis (PPAP), NTHL1 tumor syndrome, Peutz–
Jeghers syndrome (PJS), juvenile polyposis syndrome (JPS), PTEN hamartoma tumor
syndrome (PHTS), hereditary mixed polyposis syndrome (HMPS), serrated polyposis
syndrome (SPS), and the recently characterized gastric polyposis and desmoid FAP (GD-
FAP) [1,20].

FAP is an autosomal dominant hereditary cancer syndrome caused by germline het-
erozygous mutations in the adenomatous polyposis coli (APC) gene, which is located
on chromosome 5q21 and is considered the ‘gatekeeper’ tumor suppressor gene for
CRC [21,22]. This condition is the second most prevalent inherited CRC syndrome, repre-
senting about 1% of all CRC cases [1]. FAP is characterized by the early (late childhood)
appearance of hundreds to thousands of adenomatous polyps [22]. In patients with FAP,
the development of CRC depends on the co-occurrence of two molecular events triggering
the disease, as postulated by Knudson’s two-hit hypothesis. The first is a germline APC
mutation, and the second may be an additional somatic mutation in APC or its loss of
heterozygosity (LOH) [23]. Although further mutations in the KRAS, TP53, and SMAD4
genes may occur during FAP-related tumorigenesis, APC loss or germline mutations are
crucial steps triggering CRC [24,25]. FAP genotypes are further complicated by the presence
of several VUSs in the APC gene.

AFAP is a subtype of FAP in which patients develop less severe symptoms. AFAP
patients exhibit fewer than 100 polyps, delayed initiation of colorectal adenomas, and a
likely lower lifetime risk of CRC. In these patients, adenomas are often flat and located in
the proximal colonic region and upper gastrointestinal tract [26]. Approximately 10% of
AFAP patients display mutations in exon 9 as well as in the 5′ and 3′ terminal regions of
the APC gene. Additionally, 7% of these patients have a genetic alteration in the MUTYH
gene [27]. Based on the annotations recorded in the ClinVar Miner database (https://clin
varminer.genetics.utah.edu/, accessed on 7 April 2024 [28]), out of 10,625 APC variants
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associated with FAP and AFAP syndromes, 6139 are VUSs (accessed on 7 April 2024)
(Table 1).

Table 1. Number of driver genetic variants identified in hereditary CRC syndromes as reported in the
ClinVar Miner database (https://clinvarminer.genetics.utah.edu/, accessed on 7 April 2024 ClinVar
version 2024-03-31, [28]).

Hereditary CRC
Syndrome

Driver
Genes Pathogenic Likely

Pathogenic
Uncertain

Significance
Likely
Benign Benign Total

FAP and
AFAP APC 1796 213 6139 2249 228 10,625

MAP MUTYH 9 1 14 27 0 51

PPAP
POLD 4 2 2378 1732 98 4214
POLE 16 12 379 231 60 698

NTHL1 tumor
syndrome NTHL1 58 38 102 3 0 201

PJS STK11 193 55 837 750 77 1912

JPS
BMPR1A 164 41 813 552 30 1600
SMAD4 139 37 586 569 17 1348

PHTS PTEN 487 122 730 456 53 1848

HMPS GREM1 0 0 4 0 0 4

SPS RNF43 2 2 104 2 1 111

LS

MLH1 527 120 86 40 55 828
MSH2 756 255 470 165 86 1732
MSH6 203 55 156 57 47 518
PMS2 83 32 61 13 36 225

MMR-p HNPCC RPS20 0 0 5 0 0 5

GD-FAP was recently described as a novel FAP clinical variant characterized by
widespread gastric polyposis and the presence of desmoid tumors as extracolonic lesions.
Genetically, GD-FAP patients exhibit germline mutations in the extreme 3′ end of the APC
gene [20].

MAP is an autosomal recessive syndrome caused by biallelic germline variants in
the MUTYH gene, which encodes a central effector of the DNA base excision repair (BER)
pathway involved in oxidative stress response [29]. Patients with MAP show a phenotype
that mimics FAP and AFAP syndromes, ranging from one colorectal adenocarcinoma and a
few polyps to serrated polyps [30]. Monoallelic MUTYH mutations have been linked to a
higher risk of CRC, particularly in MAP patients with first-degree relatives who had the
disease [31]. Based on current ClinVar Miner data, 14 out of 51 genetic variants identified
so far in the MUTYH gene are classified as VUSs.

PPAP is an autosomal dominant polyposis syndrome characterized by germline het-
erozygous missense variants located in the exonuclease (proofreading) domains of the
polymerase-coding genes POLE or POLD [32]. PPAP patients may exhibit FAP or AFAP
phenotypes along with other tumors showing somatic hypermutation [33]. Based on the
annotations reported in the ClinVar Miner database, 2378 VUSs have been identified in the
POLD gene and 379 in the POLE gene (Table 1).

NTHL1 tumor syndrome, a recently identified rare autosomal recessive polyposis, is
caused by biallelic variations in the NTHL1 gene. NTHL1 is a DNA N-glycosylase that
catalyzes the first step of the BER pathway [34,35]. Patients with NTHL1 tumor syndrome
exhibit many tumors, all clinically associated with polyposis [35]. To date, 201 NTHL1
germline variants have been associated with NTHL1 tumor syndrome, more than half of
which (102) are VUSs (Table 1).

https://clinvarminer.genetics.utah.edu/
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Hamartomatous polyposis syndromes (HPS) are a subtype of CRC polyposis that
exhibit autosomal dominant patterns of inheritance and include PJS, JPS, and PHTS [36].

PJS is caused by germline mutations in the tumor suppressor serine-threonine kinase
STK11 gene (STK11) and is often associated with autosomal dominant mutations in the
serine/threonine-protein kinase MTOR gene (MTOR) [37,38]. STK11 regulates cell pro-
liferation, metabolism, and cell polarity [39,40]. Germline pathogenic STK11 mutations
are detected in 50–70% of PJS patients [4]. Clinically, the appearance of PJS polyps occurs
early, at an average age of 12 years. PJS patients may develop a variable number of polyps
located exclusively in the small intestine and often exhibit mucocutaneous pigmentations
and a family history of PJS [36]. Of note, out of 1912 germline STK11 mutations that have
been associated with PJS, 837 are VUSs.

JPS is defined by the presence of several colonic and/or stomach hamartomas. Approx-
imately 50–70% of JPS patients have been shown to harbor germline pathogenic mutations
in the BMPR1A and SMAD4 genes. JPS is linked to a high risk of gastric and colorectal
malignancies. People with SMAD4 mutations have an increased likelihood of developing
hereditary hemorrhagic telangiectasia (HHT) [36]. Based on ClinVar Miner annotations,
1600 germline BMPR1A variants and 1348 germline SMAD4 variants are associated with
JPS. Of these, 813 and 586 have been identified as VUSs, respectively.

PHTS is an autosomal dominant disease caused by germline pathogenic mutations
in the PTEN gene. Rarely, it may also be caused by mosaicism with de novo PTEN
mutations [36,41]. This syndrome comprises a spectrum of hamartoma conditions, includ-
ing Bannayan–Riley–Ruvalcaba syndrome (BRRS), a congenital disease characterized by
macrocephaly, lipomas, pigmented macules, and intestinal hamartomatous polyposis [42];
Cowden syndrome (CS), which is associated with a high risk for benign and malignant
tumors of the thyroid, breast, kidney, and endometrium [36,43]; Lhermitte–Duclos disease
(LDD), which is characterized by abnormal cerebellum growth [44]; segmental outgrowth-
lipomatosis-arteriovenous malformation-epidermal nevus (SOLAMEN) syndrome, whose
main clinical features are the presence of lipomas, hamartomatous polyps, macrocephaly,
and a higher susceptibility to developing several tumors [45]; the PTEN-related Proteus
syndrome (PS), which causes vascular abnormalities and various tissue overgrowths [46];
and macrocephaly-autism syndrome (MCEPHAS) [47]. Interestingly, out of 1848 PTEN
germline mutations associated so far with PHTS diseases, 730 are VUSs (Table 1).

HMPS is characterized by multiple colorectal polyps of different histotypes (hamar-
tomas, serrated lesions, and adenomas). The most frequent germline mutations detected in
this polyposis are located in the coding and non-coding regions (upstream intron duplica-
tion) of the GREM1 gene [48]. Currently, all four germline variants detected in this gene are
classified as VUSs (Table 1).

SPS is a rare condition defined by the occurrence of at least one of the following
diagnostic criteria: (i) serrated polyp(s) in the proximal colon in a person who has a first-
degree family member affected by the disease; (ii) more than five serrated polyps in the
proximal colon, of which two are larger than 10 mm; and (iii) more than twenty serrated
polyps [49]. Due to the low frequency of SPS cases, a driver gene has not been identified yet;
however, emerging evidence suggests that germline mutations in the RNF43 gene may be
associated with this polyposis [50–52]. Yet, out of 111 RNF43 germline mutations identified
in patients with SPS, the vast majority (104) have been classified as VUSs (Table 1).

2.2. Hereditary Nonpolyposis CRC

Hereditary nonpolyposis colorectal cancer (HNPCC) syndromes are classified as
DNA mismatch repair-deficient (MMR-d) or -proficient (MMR-p) based on the presence or
absence of germline mutations in DNA MMR genes [50].

Lynch syndrome (LS) is an MMR-d HNPCC characterized by mutations in one or
more DNA MMR genes (MLH1, MSH2, MSH6, and PMS2) [53]. These mutations have a
high degree of penetrance and are thus linked to increased susceptibility to certain types of
cancer [4]. An individual who has inherited a DNA MMR gene mutation faces a 70–80%
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chance of developing CRC during their lifetime, with this risk starting at a young age.
Furthermore, women harboring genetic alterations in these genes have a significantly
higher susceptibility to endometrial cancer, with a combined lifetime risk ranging from
40% to 60% [54]. The Amsterdam Criteria and Bethesda Guidelines, which are widely
used for identifying individuals with LS, rely on the detection of particular site-specific
malignancies that occur at an early age [4,55].

MMR-d cancers display marked instability at certain DNA microsatellites and are
therefore classified as microsatellite instability-high (MSI-H). Additionally, these tumors
are characterized by loss of expression of the affected DNA MMR protein, as determined by
immunohistochemistry [53]. While CRC and endometrial cancer are the primary malignan-
cies found in most LS families, individuals carrying these mutations also have a higher risk
of developing ovarian, gastric, small intestinal, urinary tract, brain, pancreatic, and prostate
cancer, as well as sebaceous neoplasms of the skin. MSI detection is based on PCR assays
to amplify microsatellite sections of the DNA, followed by a comparison between normal
and tumoral samples. This analysis can be used as a preliminary assessment to identify
candidates for LS multigene panel testing [56]. Among the germline variants associated
with LS, 828 have been identified in the MLH1 gene (86 of which are classified as VUSs),
1732 in the MSH2 gene (470 VUSs), 518 in the MSH6 gene (156 VUSs), and 225 in the PMS2
gene (61 VUSs) (Table 1).

Approximately 50% of the patients that fulfill the Amsterdam criteria for the diagnosis
of HNPCC have MMR-p disease, with no detectable germline variants in MMR genes.
These individuals have a lower CRC lifetime risk compared with LS patients and are not
at higher risk for malignancies other than colon cancer [57]. Currently, the only gene that
could be associated with MMR-p HNPCC is RPS20, which encodes for a ribosomal protein.
To date, five VUSs potentially associated with HNPCC have been identified in this gene
(Table 1) [4].

The diagnosis of hereditary CRC syndromes is based on the classification of the
identified variants in databases such as ClinVar and SIFT; thus, in silico approaches are
already integrated, at least in part, into current clinical practice. However, as reported in
Table 1, there is a high number of variants whose functional impact and clinical significance
have not been defined yet.

3. In Silico Prediction of VUS Impact on Protein Function in Hereditary CRC Syndromes

In recent years, the growing repository of genetic data has led to the identification of
numerous VUSs, adding further complexity to clinical decision-making. On the other hand,
the identification of a myriad of genetic variants resulting from NGS studies has accelerated
the development of bioinformatics tools, allowing researchers to computationally predict
the functional implications of sequence variations and identify pathogenic variants [58].
Several classes of sequence variations at the nucleotide level are involved in human dis-
eases, including substitutions, insertions, deletions, frameshifts, and nonsense mutations.
Frameshift mutations and nonsense mutations are highly likely to have a detrimental
impact on protein function. Therefore, the efforts of bioinformaticians have mainly focused
on the development of algorithms that predict the effects of missense variants based on
different approaches, such as the conservation level of amino acids at a specific position
across comparable sequences or the structural impact of the amino acid change in protein
stability or function [59].

In silico tools leverage computational algorithms to predict the consequences of VUSs
at the molecular level. The first tools were created about twenty years ago, such as SIFT
(Sorting Intolerant From Tolerant, https://sift.bii.a-star.edu.sg/index.html, latest version
updated on 25 April 2024, accessed on 14 April 2024 [60,61]) and PolyPhen (Polymorphism
Phenotyping, later upgraded to PolyPhen2, http://genetics.bwh.harvard.edu/pph2
version polyphen-2.2.3-databases-2021_05.tar.bz2, accessed on 14 April 2024 [62,63]). SIFT
uses sequence homology and the physical characteristics of amino acids to predict whether
an amino acid substitution impacts the function of the affected protein. In particular, it

https://sift.bii.a-star.edu.sg/index.html
http://genetics.bwh.harvard.edu/pph2


Cells 2024, 13, 1314 7 of 24

calculates the probability that a given amino acid substitution at a particular position
will be tolerated. If the normalized value is below a specific threshold, the amino acid
substitution is predicted to have a deleterious effect on protein function [62]. PolyPhen2 is
more focused on predicting the potential effect of coding nonsynonymous single nucleotide
polymorphisms (SNPs) based on a Bayesian probabilistic classifier with machine learning
techniques and has an excellent pipeline for multiple sequence alignment [63].

SIFT and PolyPhen were used by Chao and colleagues to develop a bioinformatic
algorithm named multivariate analysis of protein polymorphisms-mismatch repair (MAPP-
MMR) to specifically classify pathogenic and benign MLH1 and MSH2 missense variants
associated with LS [64].

Similarly to SIFT and PolyPhen, PROVEAN (Protein Variation Effect Analyzer; http:
//provean.jcvi.org/, PROVEAN v1.1, accessed on 14 April 2024 [65]) is a software that
predicts whether amino acid substitutions or indels affect the biological activity of a protein.
It filters sequence variants to find critical nonsynonymous or indel variants that may have
deleterious effects on protein function [65].

SIFT, PROVEAN, and PolyPhen-2, together with two other tools (PhD-SNP (version
PhD-SNP2.0.7, accessed on 14 April 2024) and SNPs&GO last version 8.0, accessed on
14 April 2024), were used in a comparative in silico prediction analysis to identify three
MSH6 missense mutations (G932Q, F1104Q, and E1234Q) that may contribute to protein
dysfunction and CRC development [66]. In another study, Jansen and colleagues identified
in silico nine predicted damaging missense variants in the POLD1 gene by performing an
integrated prediction analysis with SIFT and PROVEAN [67].

In 2011, a novel in silico prediction tool named Mutation Assessor (http://mutati
onassessor.org/r3/, Release 3, accessed on 14 April 2024 [68]) was created to predict
the functional consequences of amino acid substitutions by considering the evolutionary
conservation level of the mutated amino acid in protein homologs. This algorithm has
been validated on 60,000 germline and somatic variants of diseases recorded in the OMIM
database (https://www.omim.org/, version 2024, accessed on 14 April 2024), including
those identified in the Cancer Genome Atlas project (https://www.cbioportal.org/,
version v6.0.14, accessed on 14 April 2024). Of note, this tool was used to filter the potential
pathogenetic variants in a subset of CRC patients carrying germline and somatic mutations
in APC and TP53 but not in other WNT genes (TCF7L2, AMER1, FBXW7, SOX9, CTNNB1).
The final result of this multiple correspondence analysis was the identification of two CRC
oncodriver signatures [69].

The Panther (Protein Analysis Through Evolutionary Relationships, https://www.
pantherdb.org/tools, release 19.0, accessed on 14 April 2024 [70]) server is a classification
system developed to provide details on the phylogeny, function, and functional impact
of genetic variants that influence the evolution of protein-coding gene families. In an
interesting work, Panther and other in silico tools were used to find novel pathogenetic
missense variants (R358W, K306S, R310G, S433R, and R361C) in SMAD proteins, which are
driver effectors of juvenile polyposis. In particular, the authors performed a comparative
in silico analysis with different tools, including PANTHER, SIFT, PolyPhen, SNPs&GO,
I-Mutant 3.0, and MUpro, to evaluate damaging missense variants in SMAD genes at both
the structural and functional levels [71].

MutationTaster2 (https://www.mutationtaster.org/, version2021, accessed on 14
April 2024 [72]) is a web-based software designed to predict the potential impact of different
types of genetic variants, with a particular focus on missense, intronic and synonymous
variants, indel mutations, and variants in intron-exon junction regions. The MutationTaster2
predictor employs a Bayes classifier and interprets the clinical significance of the analyzed
VUSs by using a comprehensive collection of SNPs from the ClinVar [73] and HGMD [74]
public databases, which contain established disease variants. In a recent case report, the
MutationTaster software was used to predict the functional impact of the MLH1 frameshift
mutation p.(Glu34ArgfsTer4) identified in a patient with LS. The variant was predicted to
result in a non-functional protein and have a disease-causing effect [75].

http://provean.jcvi.org/
http://provean.jcvi.org/
http://mutationassessor.org/r3/
http://mutationassessor.org/r3/
https://www.omim.org/
https://www.cbioportal.org/
https://www.pantherdb.org/tools
https://www.pantherdb.org/tools
https://www.mutationtaster.org/
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Unlike other tools mentioned above, SNAP2 (Screening for Non-Acceptable Polymor-
phisms, http://www.ngrl.org.uk/Manchester/page/snap-screening-nonacceptable
-polymorphisms.html, version 2024, accessed on 14 April 2024) [76]) does not provide
predictions on the likelihood of a variant to cause a disease. Instead, it is designed to
specifically assess whether the variant affects the molecular function of the protein and can
thus be very helpful when combined with other prediction methods in a comprehensive
computational analysis. For instance, in a recent study, SNAP2 was used together with
other tools to classify as deleterious seven nonsynonymous SNPs (C76Y, C124R, C124Y,
C376Y, R443C, R480W, and W487R) found in the highly conserved regions of BMPR1A, a
gene associated with JPS [77].

Align-GVGD (http://agvgd.hci.utah.edu/agvgd_input.php, accessed on 23 July
2024 [78]) is one of the first free software for multiple sequence alignments. Based on the
physical and chemical characteristics of amino acids, it predicts the regions that are most
likely to encompass missense substitutions with deleterious or neutral effects [78]. This in
silico software was used to reclassify a VUS identified in a patient with multiple colonic
adenomatous polyps. The patient had the heterozygous pathogenic variant c.1187G>A
(p.Gly396Asp) in exon 13 and the VUS c.1379T>C (p.Leu460Ser) in exon 14 of the MUTYH
gene [79]. The authors reclassified the VUS as pathogenic based on the genetic evidence
that it was in trans with the pathogenic mutation, on the clinical phenotype, and on in silico
prediction findings suggesting a deleterious effect [79].

Of note, a recent in silico phylogenetic study of pathogenic variants involved in DNA
repair, and therefore in CRC tumorigenesis, identified a high degree of conservation of
these variants only between modern and ancient humans and not between homologous
proteins of different species [80]. This evidence seems to question the validity of in silico
software (e.g., SIFT, Mutation Assessor) designed for the prediction of deleterious variants
based on evolutionarily conserved amino acid positions in homologous proteins. On
the other hand, another recent study showed that the outcomes of functional analyses of
VUSs identified in MMR genes of potential LS patients agree with the findings of in silico
prediction analyses based on the conservation of residue variations in the affected DNA
repair proteins [81]. Interestingly, a computational study assessed the usefulness of in silico
tools to topologically map variants to surface or buried regions of highly conserved protein
structures. This study confirmed that benign variants were predominantly buried inside the
proteins, while pathogenic variants were mainly located on their surface [82]. Overall, this
evidence suggests that in silico methods designed for identifying deleterious variants in
human cancer genes based on the evolutionary conservation of variant residues may be less
informative about the clinical significance of a VUS than previously thought. Nonetheless,
in silico analysis of the conserved regions between homologous proteins is very useful to
establish whether a given VUS maps to a domain that is conserved in different species and,
therefore, is likely critical for the biological function of the affected protein.

Despite their limitations, in silico predictions offer a valuable initial screening step in
VUS interpretation. Discrepancies among prediction tools emphasize the need for com-
plementary approaches to assess VUS significance. In this regard, the accuracy of variant
classification can be enhanced by integrating multiple prediction algorithms and experi-
mental data. Various experimental methodologies can be used to ascertain whether a VUS
will impact mRNA and protein stability and/or biological functions. The effects on mRNA
stability and function can be investigated by low-throughput techniques such as RT-PCR,
Sanger sequencing, digital droplet PCR (ddPCR), and in vitro minigene and mutagenesis
assays. The effects on protein structure and stability can be assessed by different approaches,
including immunohistochemistry analysis to evaluate the presence/absence of the pro-
tein in patient-derived tissues and immunoblotting analysis, which is a semiquantitative
technique allowing the identification of potentially truncated proteins. On the other hand,
high-throughput methodologies such as nuclear magnetic resonance (NMR) spectroscopy,
X-ray crystallography, and cryo-electron microscopy (cryoEM) are essential for analyzing
structural changes in the tridimensional conformation of mutated proteins [83]. The impact

http://www.ngrl.org.uk/Manchester/page/snap-screening-nonacceptable-polymorphisms.html
http://www.ngrl.org.uk/Manchester/page/snap-screening-nonacceptable-polymorphisms.html
http://agvgd.hci.utah.edu/agvgd_input.php
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of a VUS on protein function can be evaluated by different in vitro methodologies, such
as pull-down and enzymatic assays (if the protein is an enzyme), and by high-throughput
approaches, such as mass spectrometry analysis (to assess the loss of post-translational
modifications site in mutated protein) or the recently developed multiplexed (functional)
assays for variant effects (MAVEs). MAVEs allow the stratification of variants by their
impact and are based on a one-by-one, post hoc approach that offers an in-depth under-
standing of sequence-function correlations based on a versatile methodology. Indeed,
MAVE experiments enable the analysis of variants in several classes of sequence, including
enhancers, promoters, mRNA untranslated regions, splice sites, and in parallel in different
types of proteins [84]. Overall, each of these experimental methodologies alone may be
poorly informative; therefore, it is often necessary to integrate various approaches accord-
ing to the VUS type, the availability of resources, equipment, and skills, and a cost-benefit
assessment. Generally speaking, the main advantage of low-throughput techniques is
that they are less expensive, fast, and do not require high skills; however, they sometimes
do not provide sufficient insight to answer the experimental question. Conversely, high-
throughput techniques are more informative but also more expensive and time-consuming.
Although necessary to validate the clinical significance of a VUS, experimental approaches
have limitations in terms of time and costs, thus the availability of state-of-the-art in silico
functional predictors for early VUS analysis remains crucial.

Future advancements in machine learning algorithms and the incorporation of multi-
omics data are anticipated to improve the reliability of in silico predictions. Currently,
clinical and experimental databases have proven very useful in improving the interpretation
of VUS’s impact on protein function. In Table 2, we provide a list of databases that are
commonly used by clinical experts and researchers faced with the challenge of interpreting
the clinical significance of a VUS.

Table 2. List of major databases for analyzing the clinical significance of genetic variants. The
resources are listed in alphabetical order.

Database Description Link References Number of Tool
Citations *

ActiveDriverDB

Human proteo-genomics database that
annotates disease mutations and
population variants using
post-translational modifications

https:
//activedriverdb.org/
(accessed on 14 April 2024)

[85] 3

cBioPortal
(Cancer Genomics
Portal)

Open-access resource that is useful to
interactively explore multidimensional
cancer genomics data sets. It presently
provides access to data from about
100,000 tumor samples collected from 218
different cancer research studies

https://www.cbioportal.org/
(accessed on 14 April 2024) [86] 2113

ClinVar
(Clinical Variants)

Portal of human variations classified for
diseases

https://www.ncbi.nlm.n
ih.gov/clinvar/ (accessed
on 14 April 2024)

[73] 1055

ClinVar Miner
(Clinical Variants
Miner)

Portal for viewing and filtering ClinVar
data

https://clinvarminer.gen
etics.utah.edu/ (accessed
on 14 April 2024)

[28] 4

COSMIC
(Catalogue Of Somatic
Mutations In Cancer)

Curated database of somatic and
germline mutations

https://cancer.sanger.ac.u
k/cosmic (accessed on 14
April 2024)

[87] 212

dbNSFP
(Database for
Nonsynonymous
SNPs’ Functional
Predictions)

Database of functional predictions and
annotations for human nonsynonymous
SNPs

http://database.liulab.scie
nce/dbNSFP#database
(accessed on 14 April 2024)

[88] 35

https://activedriverdb.org/
https://activedriverdb.org/
https://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://clinvarminer.genetics.utah.edu/
https://clinvarminer.genetics.utah.edu/
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
http://database.liulab.science/dbNSFP#database
http://database.liulab.science/dbNSFP#database
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Table 2. Cont.

Database Description Link References Number of Tool
Citations *

dbSNP
(Single Nucleotide
Polymorphism
Database)

SNP catalog designed to facilitate
large-scale studies and association
between genetics, functional
implications, population genetics, and
evolutionary biology of SNPs

https://www.ncbi.nlm.n
ih.gov/snp/ (accessed on
14 April 2024)

[89] 1087

dbVar
(Database of Genomic
Variation)

Repository of structural variations in the
human genome allowing to search, read,
and download data from submitted
studies

https://www.ncbi.nlm.n
ih.gov/dbvar/ (accessed
on 14 April 2024)

[90] 27

DoCM
(Database Of Curated
Mutations)

Curated database of validated cancer
driver mutations

http://www.docm.info/
(accessed on 14 April 2024) [91] 16

GnomAD
(GeNOMe
Aggregation Database)

Collection of standardized exome and
genome sequencing data from numerous
large-scale sequencing initiatives

https://gnomad.broadinst
itute.org/, accessed on 14
April 2024

[92] 866

HGMD
(The Human Gene
Mutation Database)

Comprehensive repository of inherited
mutation data for medical research,
genetic diagnosis, and NGS studies

https://www.hgmd.cf.ac
.uk/ac/index.php/,
accessed on 14 April 2024

[93] 225

InSiGHT
(International Society
for Gastrointestinal
Hereditary Tumours)

Extensive database of DNA variations
that have been re-sequenced in genes
associated with gastrointestinal cancer

https://www.insight-grou
p.org/variants/databases/
(accessed on 14 April 2024)

[94] 62

LoVD
(Leiden Open
Variation Database)

Web-based open-source database
collecting DNA sequence variants
associated with genetic (hereditary)
diseases

https://www.lovd.nl/
(accessed on 14 April 2024) [95] 158

OMIM
(Online Mendelian
Inheritance in Man)

Collection of genetic phenotypes
associated with Mendelian inherited
disorders

https://omim.org/
(accessed on 14 April 2024) [96] 8182

PharmGKB
(Pharmacogenomics
Knowledge Base)

Comprehensive database providing
researchers and clinicians with
information regarding how genetic
diversity affects drug response

https:
//www.pharmgkb.org/
(accessed on 14 April 2024)

[97] 546

SNPedia
(Single Nucleotide
Polymorphism
encyclopedia)

Database referencing peer-reviewed
scientific literature that gathers data on
the impact of DNA polymorphisms with
an emphasis on medical, phenotypic, and
genealogical correlations of SNPs

https://www.snpedia.co
m/index.php/SNPedia
(accessed on 14 April 2024)

[98] 19

UMD
(Universal Mutation
Database)

Database of driver mutations, focusing
on their importance for the twelve main
types of cancer

https://bio.tools/umd
(accessed on 14 April 2024) [99] 15

VarSite
(Variant Site database)

Web service that maps natural variations
from gnomAD and known
disease-associated variants from UniProt
and ClinVar onto 3D protein structures
stored in the Protein Data Bank

https:
//www.ebi.ac.uk/thornt
on-srv/databases/VarSite
(accessed on 14 April 2024)

[100] 4

VIPdb
(Variant Impact
Predictor Database)

Comprehensive resource that facilitates
the exploration of suitable tools and aids
in the creation of enhanced methods for
accurately predicting the impact of
genetic variants

https://genomeinterpreta
tion.org/vipdb (accessed
on 14 April 2024)

[101] 3

* Based on a PubMed search performed using the name or URL link of the tools as keywords (accessed July 2024).

https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/dbvar/
https://www.ncbi.nlm.nih.gov/dbvar/
http://www.docm.info/
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://www.hgmd.cf.ac.uk/ac/index.php/
https://www.hgmd.cf.ac.uk/ac/index.php/
https://www.insight-group.org/variants/databases/
https://www.insight-group.org/variants/databases/
https://www.lovd.nl/
https://omim.org/
https://www.pharmgkb.org/
https://www.pharmgkb.org/
https://www.snpedia.com/index.php/SNPedia
https://www.snpedia.com/index.php/SNPedia
https://bio.tools/umd
https://www.ebi.ac.uk/thornton-srv/databases/VarSite
https://www.ebi.ac.uk/thornton-srv/databases/VarSite
https://www.ebi.ac.uk/thornton-srv/databases/VarSite
https://genomeinterpretation.org/vipdb
https://genomeinterpretation.org/vipdb
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Despite having been created several years ago, these databases are still used by the
scientific community to assess the clinical and functional implications of genetic variants,
especially in hereditary disorders like CRC (Table 2). Below are some significant examples
of their applications in clinical and functional studies on CRC hereditary syndromes.

The authors of a recent report analyzed the occurrence of second cancers in individuals
with early-onset (aged less than 50 years) LS. They provided evidence from cBioPortal an-
notations to show that the FLT3 gene had the highest frequency of copy number alterations
among 1438 CRC patients aged 18 to 48 years old with concomitant acute myeloid leukemia
(AML). The presence of co-occurring genetic alterations in FLT3/JAK2 and JAK2/CTNNB1
was observed. The results provided valuable insights into the increased likelihood of AML
and LS occurring together [102].

In another study, the LOVD database was employed to identify gene-phenotype as-
sociations and genotype-phenotype correlations in the BMPR1A gene. This information
was then used to make recommendations for the clinical surveillance of JPS and mod-
ify the American College of Medical Genetics and Genomics (ACMG) classification of
pathogenicity for BMPR1A or SMAD4 variants associated with JPS cases [103].

Recently, a tumor mutational signature analysis conducted using the COSMIC database
identified the presence of homologous recombination deficiency (HRD) in familial CRC
disorders. Remarkably, this report showed that pathogenic mutations in both BRCA1 and
RNF43 were inherited together and were associated with CRC in a family with a specific
type of familial CRC known as familial colorectal cancer type X (FCCTX) [52].

Notably, the gnomAD database was recently used to assess the novel pathogenic
association of a series of genes, including NSD1, HDAC10, KRT24, ACACA, and TP63, with
CRC predisposition [104], while other databases, i.e., ClinVar, HGMD, and InSight, were
previously used in a meta-analysis to identify a new pathogenic variant associated with
LS in MSH6 exon 4. In this pilot study, the authors suggested combining NGS testing
and canonical MSI analysis in the diagnosis of LS in patients considered to have sporadic
CRC. The inclusion criteria for NGS testing were MSI positivity, BRAF V600E, and MHL1
methylation negativity [105].

Other computational methods developed to accurately predict the pathogenicity
of a VUS, such as Multivariate Analysis of Protein Polymorphism (MAPP, http://ww
w.ngrl.org.uk, version 3.0, [106]) and Rare Exome Variant Ensemble Learner (Revel,
https://sites.google.com/site/revelgenomics, release 3 May 2021, accessed on 23
July 2024 [107]), use algorithms based on statistically multivariate analysis [106]. MAPP
is a software based on the analysis of physicochemical variation in sequence alignment
columns, while REVEL is an ensemble method designed to predict the pathogenicity of
missense variants based on a combination of scores from 13 individual tools [107,108].

Karabachev and colleagues evaluated the accuracy of these and other computational
tools (Align-GVGD, SIFT, PolyPhen2, MAPP, and REVEL) in predicting the pathogenicity
of 1800 APC VUS reported in the NCBI ClinVar database using multiple protein sequence
alignments (PMSA) of 1924 APC missense variants. When used individually, prediction
accuracies for pathogenic/likely pathogenic (range 17.5–75.0%) and benign/likely benign
(range 25.0–82.5%) responses differed significantly for APC missense variants in ClinVar.
Instead, creating a curated APC PMSA containing >3 substitutions/site, large enough for
statistically significant in silico analysis, yielded predictions of 76.2–100% accuracy with the
five methods integrated into the APC PMSA [106]. Computational approaches based on
PMSA have the potential to serve as highly effective classifiers for different variations of
hereditary cancer genes. Nevertheless, several attributes of the APC gene and protein might
complicate the outcomes of in silico techniques. An organized examination of these charac-
teristics could significantly enhance the mechanization of alignment-based methodologies
and the application of prognostic algorithms in genes related to hereditary cancer [106].

http://www.ngrl.org.uk
http://www.ngrl.org.uk
https://sites.google.com/site/revelgenomics
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4. In Silico Prediction of VUS Impact on Protein Structure in CRC Hereditary Syndromes

In the last decade, great efforts have been made by researchers and bioinformaticians
to develop algorithms and data sources that could help predict the effects of germline
and somatic mutations on the structural stability of cancer-associated proteins. Current
methodologies are primarily based on in silico structural modeling software allowing to
statically or dynamically study the identified variants [83]. During a biological process,
proteins can assume different conformations thanks to their intrinsic flexibility, which is
crucial for acquiring their native structure. The conformation of a mutant protein differs
from the native one in terms of structure and stability, altering the fine balance that regulates
the functional activity of the protein [109].

Molecular dynamics simulation (MDS) is a widely used method for investigating the
conformational dynamics of biomolecules, particularly proteins [110]. It was shown to
be especially valuable for modeling alterations in the three-dimensional (3D) structures
of proteins resulting from mutations such as amino acid substitutions, which modify the
bonds and locations of the atoms in the wild-type protein [111,112]. MDS computes the
potential energy related to the spatial coordinates of each atom in the system. The system’s
potential energy is determined by evaluating a range of chemical and physical properties
associated with the protein. This approach allows researchers to accurately assess the effects
of a missense mutation by measuring changes in atomic or residue distances, alterations in
secondary and tertiary protein structures, and modifications to hydrogen, disulfide, and
ionic bonds [109]. The precision of MDS is heavily reliant on the 3D configurations of
biomolecules. The use of MDS software and the analysis of established force fields have
effectively uncovered the structural modifications caused by mutations, which can lead
to changes in the stability of a protein, thereby affecting its biological function. The five
software packages most commonly used in this area are NAMD [111], MSCALE [113],
CHARMM [114], GROMACS [115], and Amber [116].

Recently, a computational approach combining in silico structural analysis and MDS
was used to investigate the relationship between PHTS-associated cancer and autism
spectrum disorder (ASD) by analyzing 17 selected PTEN mutations detected in a cohort of
138 PHTS patients. Six mutations (p.L23F, p.Y65C, p.Y68H, p.I101T, p.I122S, and p.L220V)
were found exclusively in patients with ASD, six mutations were found exclusively in
patients with PHTS-associated cancer (p.D24G, p.D92A, p.R130G, p.M134R, p.M205V, and
p.L345V), four mutations (p.R130Q, p.C136R, p.Y155C, and p.R173C) were found in both
phenotypes in different patients, and one mutation was detected in a patient with both ASD
and cancer (p.S170I). The MDS analysis performed using GROMACS v4.6.3 showed that
the six PTEN mutations detected in PHTS-associated cancer patients strongly reduce the
structural stability of the protein and increase the dynamics across the domain interfaces,
causing a marked tendency to protein unfolding and the closure of the active site pocket.
This ultimately results in the inactivation of the enzyme [117].

Another important example of the application of MDS in the analysis of the struc-
tural impact of VUSs is a novel protein structure-based algorithm called deep learning-
Ramachandran plot-molecular dynamics simulation (DL-RP-MDS), which was recently
used to assess the structural impact of MLH1 missense VUSs [118]. In this study, Tam
and colleagues combined DL techniques with the RP-MDS method to analyze 447 MLH1
missense VUSs. Of these, 126 were predicted to have a deleterious effect on MLH1 structure
and stability [118]. The RP-MDS method combines two in silico approaches to investigate
the structural changes caused by a VUS [119]. RP captures the atomic angle distortion
caused by amino acid substitution, while MDS simulates the physical movement of atoms
and molecules after interacting for a fixed period, and the resulting trajectories are used
to determine the macroscopic thermodynamic properties of the mutated protein [119]. In
addition, these data were analyzed with an unsupervised learning model consisting of an
auto-encoder and neural network classifier to identify the variants resulting in significant
alterations in protein structure [119].
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Ongoing advances in the methodologies used for studying 3D protein structures,
such as NMR, X-ray crystallography, and cryoEM, have significantly increased the number
of known protein structures archived in the Protein Data Bank (PDB) database (https:
//www.rcsb.org/, latest version updated in July 2024 [120]), which currently features
218,853 recorded structures and 1,068,577 computed structure models (accessed on 7 April
2024). The consistent growth of the PDB promoted the development of various in silico
prediction tools to study the structural impact of a variant based on the structure of the
wild-type protein recorded in this database. Algorithms that estimate the structural impact
of a single amino acid substitution can be classified into two types based on whether or not
they rely on free energy calculation [83]. Energy-based methods employ experimentally
determined disparities in free energy (∆∆G) between wild-type and variant structures
to develop prediction models, while non-energy-based methods directly use structural
features such as variation of hydrophobicity and surface accessibility [83]. These methods
can then be used to predict the resulting functional implications. In Table 3, we provided a
list of in silico software commonly used to analyze the 3D structures of protein variants
and their potential effects on protein stability.

Table 3. List of useful in silico prediction algorithms for predicting the impact of variations on protein
structure and stability. The resources are listed in alphabetical order.

Resource Description Link References Number of Tool
Citations *

AUTO-MUTE
version 2.0

Software using ∆∆G calculations and
knowledge-based potentials

http://proteins.gmu.edu/aut
omute
(accessed on 20 April 2024)

[121] 5

Cosmic-3D
Release v99

Tool that analyzes cancer mutations
within the framework of
three-dimensional protein structures

https://cancer.sanger.ac.uk/
cosmic3d/
(accessed on 20 April 2024)

[122] 4

CUPSAT
Software using ∆∆G calculations with
mean force atom pair and torsion
angle potentials

https://cupsat.brenda-enzy
mes.org/ (accessed on 20 April
2024)

[123] 34

DynaMut
Software using ∆∆G calculations to
predict the effects of variants on
protein flexibility

http://biosig.unimelb.edu.a
u/dynamut/ (accessed on 20
April 2024)

[124] 47

DUET
Software that predicts the effects of
mutations on protein stability by
calculating changes in ∆∆G

https:
//biosig.lab.uq.edu.au/duet
(accessed on 20 April 2024)

[125] 11

FOLD-X
Version 3.0

Software using empirical force fields
to calculate ∆∆G

https://software.embl-em.de/
software/6
(accessed on 20 April 2024)

[126] 39

i-Mutant 3.0 Software using support vector
machines (SVMs) to calculate ∆∆G

http://gpcr2.biocomp.unibo.
it/cgi/predictors/I-Mutant3.
0/I-Mutant3.0.cgi (accessed on
20 April 2024)

[127] 27

iStable
Version 2.0

Software using SVMs to analyze
protein stability and calculate ∆∆G

http://predictor.nchu.edu.tw/
iStable
(accessed on 20 April 2024)

[128] 37

MAESTRO
Version 1.2.35

Software using ∆∆G calculations and
multi-agent stability prediction

http://biwww.che.sbg.ac.at/
MAESTRO (accessed on 20
April 2024)

[129] 62

mCSM Software using graph-based
signatures to calculate ∆∆G

https:
//biosig.lab.uq.edu.au/mcsm
(accessed on 20 April 2024)

[130] 137

https://www.rcsb.org/
https://www.rcsb.org/
http://proteins.gmu.edu/automute
http://proteins.gmu.edu/automute
https://cancer.sanger.ac.uk/cosmic3d/
https://cancer.sanger.ac.uk/cosmic3d/
https://cupsat.brenda-enzymes.org/
https://cupsat.brenda-enzymes.org/
http://biosig.unimelb.edu.au/dynamut/
http://biosig.unimelb.edu.au/dynamut/
https://biosig.lab.uq.edu.au/duet
https://biosig.lab.uq.edu.au/duet
https://software.embl-em.de/software/6
https://software.embl-em.de/software/6
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://predictor.nchu.edu.tw/iStable
http://predictor.nchu.edu.tw/iStable
http://biwww.che.sbg.ac.at/MAESTRO
http://biwww.che.sbg.ac.at/MAESTRO
https://biosig.lab.uq.edu.au/mcsm
https://biosig.lab.uq.edu.au/mcsm
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Table 3. Cont.

Resource Description Link References Number of Tool
Citations *

Missense3D
(Release June 2019)

Tool that predicts structural
alterations resulting from amino acid
substitutions. Analysis of
experimental coordinates and
expected structures is also possible

http://missense3d.bc.ic.ac.uk
/missense3d/ (accessed on 20
April 2024)

[131] 21

MUpro
(Release 6.0, 2021)

Software using SVMs to predict
variation in protein stability

http://mupro.proteomics.ics
.uci.edu/
(accessed on 20 April 2024)

[132] 86

Mutfunc
Version 2.0

Web resource reporting mutations that
are either expected to cause instability
in protein structure or that occur in
functionally significant regions

www.mutfunc.com
(accessed on 20 April 2024) [133] 2

NeEMO
Software using amino acids involved
in protein-to-protein interaction
networks to calculate ∆∆G

https://biocomputingup.it/
(accessed on 20 April 2024) [134] 18

Phyre 2
version 2.0

Tool that predicts protein sequence
structure and function using
automatic fold recognition

http:
//www.sbg.bio.ic.ac.uk/~ph
yre2/html/page.cgi?id=index
(accessed on 20 April 2024)

[135] 191

PhyreRisk
Version 1.0.1

Open-access program that maps
human variations onto protein
structure, integrating genomic,
proteomic, and structural data

http://phyrerisk.bc.ic.ac.uk/
(accessed on 20 April 2024) [136] 3

PMut
Version 2017

Software designed to identify and
predict pathological mutations. It
labels mutations by processing several
types of sequence information using
neural networks

https://mmb.irbbarcelona.org
/PMut
(accessed on 20 April 2024)

[137] 183

ProMaya Software using random forests
regression for ∆∆G calculations

http:
//bental.tau.ac.il/ProMaya/
(accessed on 20 April 2024)

[138] 3

SAAFEC-SEQ
Version 1.0

Software using multiple linear
regression to calculate ∆∆G

http:
//compbio.clemson.edu/lab/
(accessed on 20 April 2024)

[139] 7

SRide Server allowing for detection of
stabilizing residues within proteins

http://sride.enzim.hu
(accessed on 20 April 2024) [140] 7

STRUM
Version
STRUM.tar.bz2

Software that predicts alterations
caused by single-point
nonsynonymous SNPs in protein
folding stability by calculating
changes in ∆∆G

https:
//zhanggroup.org/STRUM/
(accessed on 20 April 2024)

[141] 3

* Based on a PubMed search performed using the name or URL link of the tools as keywords (accessed July 2024).

Several of these software tools have been taken advantage of to improve our knowl-
edge about the structural impact of VUSs in CRC hereditary syndromes.

A few years ago, Doss et al. used I-Mutant 3.0, MUpro, SIFT, PolyPhen, PANTHER,
and other tools to analyze the structural and functional effects of nonsynonymous SNPs
in genes of the SMAD family. In this report, the primary mutations of SMAD native
proteins, together with their amino acid locations (R358W, K306S, R310G, S433R, and
R361C), were considered for structure analysis. To analyze the stability of the natural and
mutant-modeled proteins, the authors used the SRide server [71]. SRide identified the
stabilizing residues by calculating parameters like conservation score, stabilization center,

http://missense3d.bc.ic.ac.uk/missense3d/
http://missense3d.bc.ic.ac.uk/missense3d/
http://mupro.proteomics.ics.uci.edu/
http://mupro.proteomics.ics.uci.edu/
www.mutfunc.com
https://biocomputingup.it/
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
http://phyrerisk.bc.ic.ac.uk/
https://mmb.irbbarcelona.org/PMut
https://mmb.irbbarcelona.org/PMut
http://bental.tau.ac.il/ProMaya/
http://bental.tau.ac.il/ProMaya/
http://compbio.clemson.edu/lab/
http://compbio.clemson.edu/lab/
http://sride.enzim.hu
https://zhanggroup.org/STRUM/
https://zhanggroup.org/STRUM/
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long-range order, and surrounding hydrophobicity. The variation of potential energy and
root mean square deviation values were calculated to compare the resulting native and
modeled structures.

In 2022, DynaMut, DUET, and mCSM were used to predict the structural effect and the
impact on gastric cancer hereditary susceptibility of a VUS (c.728G>A p.R243Q) identified
in the MSH2 gene in a Tunisian family suspected of having both hereditary diffuse gastric
cancer (HDGC) and LS. Structural prediction analysis of the variant revealed that it seems to
disrupt the stability of the MSH2-MLH1 complex and its binding to the DNA [142]. Further
molecular modeling investigation indicated that these effects may be due to changes in the
electrostatic potential of the MSH2 interaction surface. Overall, this evidence suggested
that the status of the variant should be revised from VUS to likely pathogenic [142].

In another study, I-Mutant3 and MUpro were used to identify MSH2 SNPs that could
lead to structural and functional alterations resulting in CRC carcinogenesis. In particular,
the authors performed a computational analysis of protein stability by integrating I-Mutant3
and MUpro support vector machine (SVM)-based algorithms. I-Mutant predicts alterations
in protein stability caused by single amino acid substitutions based on the protein structure
or sequence recorded in the ProTherm database. The ProTherm database comprises the
most extensive and complete collection of experimental thermodynamic data. It specifically
focuses on the changes in free energy resulting from mutations under various conditions
and their effect on protein stability. MUpro is a machine learning-based tool that uses
SVM and neural network algorithms to predict alterations in protein stability caused
by individual amino acid substitutions [143]. In addition, four distinct computational
tools (SIFT, PROVEAN, PANTHER, and PolyPhen) were used to predict the functional
deleterious effects of MSH2 SNPs [143]. MDS techniques revealed that six SNPs located
in the MSH2/MSH6 interaction domain have a significant impact on MSH2 stability and
interactions [143].

In a more recent report, a comprehensive meta-analysis based on the use of various
computational software tools allowed the authors to identify pathogenic missense variants
in 26 genes (ABRAXAS1, ATM, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2,
EPCAM, MEN1, MLH1, MRE11, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN,
RAD50, RAD51C, RAD51D, STK11, TP53, and XRCC2) examined in numerous NGS panels
to assess the level of hereditary risk in various cancer types, including CRC. First, the
authors collected over a thousand missense variations in these genes from ClinVar and
a cohort of 355 breast cancer patients. The potential effects of missense variations on
protein stability were evaluated with five distinct predictor programs (SAAF2EC, MUpro,
MAESTRO, mCSM, and CUPSAT). Next, the authors used the protein structures predicted
by AlphaFold (AF2), an artificial intelligence (AI) system, to perform a structure-based
analysis of these hereditary cancer proteins. According to previous AF2-derived findings,
the confidence score for a particular variant in the AF2 structure may predict pathogenicity
more reliably than any stability predictor. This study confirmed that the AF2 confidence
score can be used as a valid indicator of variant pathogenicity [144]. These studies are good
examples of how in silico methods can be effectively used to locate putative pathogenic
variants eligible for large-scale investigations.

In recent years, AI has proven to be a valuable tool for integrating the different
in silico methods available for VUS analysis in order to expand the knowledge of VUS
structure-function relationships and improve their clinical interpretation [145]. The latest
advancements in AI prediction for missense variants, specifically focusing on protein
structure-based approaches, highlight the complexity and the potential of this intriguing
approach. Significantly, progress in protein structure prediction using deep learning, as
is the case with AlphaFold2 [146] and RoseTTAFold [147], has enhanced AI models for
estimating the effects of protein variants by including data on tertiary structures [83].
AlphaFold is a pioneering computational approach able to accurately predict protein
structures at the atomic level, even in cases where a comparable structure is not available.
RoseTTAFold (version 2.0, 2021) is an advanced software that employs deep learning
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techniques to rapidly and precisely predict protein structures with only a small amount
of data. While ascertaining the configuration of a single protein can take several years of
laboratory experimentation without the assistance of computational approaches, it can be
estimated in just a few minutes using such dedicated software [148]. Importantly, these
AI-based sequence and structural prediction algorithms are constantly being updated.
For instance, the most recent version of Rosetta, RoseTTAFold All-Atom (RFAA), models
complexes that contain proteins, nucleic acids, small molecules, metals, and covalent
modifications based on their sequences and chemical structures [148]. Hopefully, in the
near future, this tool will thus be integrated with an algorithm for determining the impact
of genetic alterations on protein structure and function.

5. Conclusions

Recognizing whether a VUS is pathogenic or benign can help clinicians interpret the
findings of genetic testing and provide guidance to patients and their family members
who have inherited the variant. This enables a more informed clinical assessment of their
“personalized” cancer risk and a better choice of follow-up options. According to recent
research, cancer patients who have not responded to previous treatments might benefit
from referring to multidisciplinary molecular tumor board teams [149,150]. Based on a
thorough integrated review of the results of genetic testing, in silico prediction analysis,
other laboratory results (imaging, pathology, biomarkers, etc.), the patient’s clinical and
family history, and possibly available clinical trials, these interdisciplinary teams can then
recommend tailored therapeutic solutions.

Considering that VUSs represent a high proportion of all genetic variants identified,
the development of more accurate in silico predictors of their impact to support clinical
surveillance decisions remains a riveting challenge [151]. The main advantage of these
tools is that they provide initial insights into the potential pathogenic effect of a variant
in a fast and affordable manner. Indeed, functional studies, although necessary for the
classification of VUSs, cannot be considered the first approach to evaluate VUS clinical
significance because they are expensive and time-consuming, which is unsustainable when
dealing with rare syndromes.

In our opinion, there exists no single ideal tool capable of definitively addressing the
crucial question of the possible pathogenicity of a VUS. Although different in silico tools
are designed to evaluate specific effects of a VUS, in silico meta-analyses with multivariate
approaches are needed to analyze multiple aspects of the clinical significance of a variant.
For example, sequence-based algorithms are limited in interpreting the potential clinical
significance of a VUS because they do not consider the three-dimensional structural features
that determine the protein’s function. In fact, the development of AI-based algorithms that
combined the structural and sequence features has significantly improved the performance
of variant prediction.

However, in silico tools have limitations that can sometimes be confusing rather than
clarifying. For example, different predictors can provide conflicting responses even when
analyzing the same variant. This happens not only because these tools assess a variety
of structural and functional characteristics (∆∆G, conserved positions, surface or internal
mutations in the three-dimensional structure of proteins, chemical alterations in secondary
and tertiary structures, etc.) but also because their algorithms are frequently designed using
inaccurate benchmarks. Currently, bioinformaticians who develop a novel prediction tool
assess the performance of their new software by comparing it with previously published
predictors using consolidated variant databases. This frequently introduces bias because
predictor performance is evaluated with the same data used to create the tool. Thus, strong
and impartial benchmarking by independent groups is necessary to develop more accurate
tools [145].

Massive advancements have been achieved in the computational prediction of the
structural and functional impact of genetic variants in recent years. Prediction tools offer a
scalable and quick way for clinical and research laboratories to assess the potential effects of
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novel variants. However, determining to what extent clinicians can trust the findings from
in silico prediction methods is still a challenging task. According to ACMG guidelines, the
specificity of most in silico tools is rather low, which affects their reliability when it comes to
predicting missense changes with a milder effect and causes missense variants to be overpre-
dicted as deleterious [152]. While computational prediction methods alone are insufficient
to ascertain the pathogenicity of a variant, they are very useful in selecting the VUSs that
warrant experimental characterization to validate their clinical significance, especially for
VUSs detected in patients (or their relatives) with hereditary CRC syndrome phenotypes.

Furthermore, these tools are usually based on complicated algorithms that are difficult
to handle for non-experts, and their use is hindered by the difficulty of correctly interpreting
the results. A further limitation to their application in clinical routine is the so-called data
circularity [153]. Grimm and collaborators defined two types of circularities that can distort
the evaluation of predictor tools. Type 1 circularity mostly impacts techniques that are based
on machine learning. A technique is vulnerable to type 1 circularity when it reuses training
data for the model in the validation of its execution. Type 2 circularity arises when the same
datasets of protein variants are used for the training and evaluation of the tools employed
for predicting the clinical significance of a VUS. This may lead to misleading conclusions on
the predictive ability of the algorithms in the study of proteins that have an equal number
of pathogenic and benign variants, potentially resulting in inaccurate predictions [153].
In particular, predictors are frequently tested for effectiveness using extensive datasets
containing confirmed deleterious or benign genetic variations. The benchmarking data may
overlap with the data used to train certain supervised predictors, resulting in data reuse or
circularity. This, in turn, can lead to an overestimation of the performance and effectiveness
of such predictors [145]. Large-scale functional tests known as deep mutational scans
offer a possible solution to the problem of circularity by providing independent datasets
of variant effect measurements. Such functional tests appear more reliable in predicting
the clinical impact of mutations [145]. In addition, the remarkable developments made
in protein structure prediction and MDS techniques not only demonstrate the potential
benefits of AI in structural biology but also open new promising horizons in AI-assisted
structural and functional studies of genetic variants, especially VUSs. As shown by the
growing number of articles published on this topic, MDS and structural-functional predictors
are becoming crucial for the assessment of the functional and clinical impact of VUSs.
Previous reports have demonstrated that these integrated approaches are feasible and
provided hints for creating learning models with even more accurate variant effect prediction
capabilities despite also highlighting a variety of issues [83]. Predictive structural AI-
based methodologies also have the potential to overcome the main limitations of in silico
tools in VUS evaluation, allowing the development of increasingly personalized clinical
management strategies for patients (Figure 1). A broader application of AI-based structure
prediction tools for protein function analysis may accelerate the assessment of the clinical
impact of a variant by reducing the time and number of experiments needed to confirm
it. As a result, current research is focused on creating new algorithms designed to model
protein structures and predict within a single in silico pipeline the structural and functional
effects of VUSs, thereby allowing a more accurate interpretation of their clinical implications.
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