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Abstract: Soil structure, a critical indicator of soil quality, significantly influences agricul-
tural productivity by impacting on the soil’s capacity to retain and deliver water, nutrients,
and salts. Quantitative study of soil structure has always been a challenge because it
involves complex spatial-temporal variability. This study employs multifractal analysis
to assess the temporal variation in soil pore distribution, a pivotal factor in soil structure.
Field observation data were collected in a sandy loam area of the People’s Victory Canal
Irrigation scheme in Henan Province, China. A 200 m × 200 m test plot with five sam-
pling points was used to collect soil samples at three depth layers (10–30 cm, 30–50 cm,
and 50–70 cm) for soil water retention curve and particle size composition analysis, with
a total of seven sampling events throughout the growing season. The results revealed
that while soil particle-size distribution (Particle-SD) showed minor temporal changes,
soil pore-size distribution (Pore-SD) experienced significant temporal fluctuations over a
cropping season, both following a generalized power law, indicative of multifractal traits.
Multifractal parameters of Pore-SD were significantly correlated with soil bulk density, with
the strongest correlation in the topsoil layer (10–30 cm). The dynamic changes in soil pore
structure suggest potential variations during saturation–unsaturation cycles, which could
be crucial for soil water movement simulations using the Richards equation. The study
concludes that incorporating time-varying parameters in simulating soil water transport
can enhance the accuracy of predictions.

Keywords: soil structural variability; soil porosity; multifractal characteristics; soil
water movement

1. Introduction
Soil provides a nurturing environment for crops, and a suitable edaphic condition can

effectively promote crop growth, thereby achieving high yields [1,2]. The structure of soil,
as one of the key indicators of soil quality, holds significant importance. The quality of soil
structure is directly related to its physical, chemical, and biological properties, which collec-
tively determine the soil’s ability to retain and supply water, nutrients, and gases [3]. The
stability and suitability of soil structure have a profound impact on crop root development,
water and nutrient absorption, and soil microbial activity [4]. Changes in the natural condi-
tions, such as extreme rainfall and freeze–thaw, can affect soil structure [5]. Additionally,
various human activities, including tillage, fertilization, irrigation, and changes in land use,
can also have direct or indirect impacts on soil structure [6]. These impacts may lead to the
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degradation of soil structure, such as compaction, erosion, and a decline in organic matter
content, thereby affecting the soil’s basic properties, including water retention, supply, and
permeability [7].

Moreover, soil structure plays a decisive role in the dynamic changes and distribution
of soil water movement. Understanding the impact of soil structure on water movement is
of great significance for the management of soil moisture in farmlands and the guidance
of crop irrigation [5]. At the same time, the transport of salt and solute in the soil is also
closely related to soil structure [8]. The pore characteristics of soil structure determine the
diffusion and migration rates of solutes in the soil, which in turn affect soil fertility and
the growth environment for crops [9]. Therefore, quantitative research on soil structure
is not only conducive to an in-depth understanding of the mechanisms of soil water and
solute transport, but also has important practical significance for optimizing farmland
management, improving crop yield and quality, and protecting the soil environment [10].

The complexity and variability of soil structure are among its most notable charac-
teristics. Numerous studies have shown that soil structure exhibits significant spatial
variability [11], and this variability changes over time [12]. Agricultural activities such as
tillage, irrigation, and crop growth all impact soil structure, causing it to display different
characteristics at different points in time. This temporal variability makes the study of soil
structure more complex and challenging.

In the study of soil structure, direct observation and indirect methods are the two
main approaches. Direct observation methods allow for the visual inspection of soil
pore structures, including the use of computed tomography (CT) scanning technology,
optical microscopy, and electron microscopy to observe thin soil sections and soil fracture
surfaces [13]. These methods provide intuitive images of soil pores, helping researchers
understand the shape, size, and distribution of soil pores. In particular, CT scanning
technology, as a non-destructive testing method, allows for observation without damaging
the soil sample. However, despite the potential of CT scanning technology in soil structure
research, its measurement accuracy still needs improvement, especially in detecting tiny
pores in the soil, which limits its effectiveness in practical applications [14].

On the other hand, indirect methods infer the soil structure through physical or
chemical means. Common indirect methods include the penetration curve method and
the soil water retention curve method. The penetration curve method indirectly infers
the size and distribution of soil pores by measuring the soil’s transmission capacity for
particles of different sizes [15]. This method is simple and easy to perform but may be
affected by the soil’s moisture state and the surface properties of the particles. The soil
water retention curve method, on the other hand, measures the water release characteristics
of the soil at different water contents, indirectly reflecting the water retention capacity
of the soil pores [16]. This method can reveal the mechanisms of soil water movement
and help understand the retention and release characteristics of soil moisture. Although
indirect methods cannot provide direct images of soil pores, they can provide useful soil
structure information in certain situations and are an important supplementary means for
studying soil pore structures.

Quantitative study of soil structure has always been a challenge because it involves
complex spatial scales and multidimensional variability. However, with the introduction
of advanced theories such as fractal theory, stochastic theory, and geo-statistics, the field
of soil science has made significant progress in the quantitative research of soil structure.
Fractal theory is particularly suitable for studying the spatial variability of soil structure
at different scales, providing a tool that can quantitatively characterize complexities from
micro to macro scales [17].



Agronomy 2025, 15, 37 3 of 14

The essence of fractal methods lies in their ability to describe complex geometric shapes
with self-similar properties [18]. In soil science, this approach has been extended to describe
the multi-fractal dimensions of soil particles and pore structures, rather than a single
fractal dimension [19,20]. This extended method is known as the multi-fractal spectrum,
which allows researchers to analyze the complexity of soil structure in greater detail. The
variability characterization method based on the multi-fractal spectrum, namely multi-
fractal analysis, has been applied to soil research and has shown its great potential [21–23].

Multifractal analysis, by employing multifractal methods to study soil, reveals the
complexity of soil particle and pore structures. Research indicates that the distribution of
soil particles and pores does not follow a single power-law distribution but exhibits charac-
teristics of a generalized power law, implying that they possess multifractal properties [24].
This discovery is significant for understanding the spatial heterogeneity of soil structure
and its impact on soil physical, chemical, and biological processes. Through this analysis,
researchers are able to more accurately predict and simulate the transport processes of soil
water, nutrients, and gases, thereby providing a scientific basis for soil management and
agricultural practices.

Under the influence of tillage, irrigation, rainfall, and evaporation, soil continuously
undergoes alternating wet and dry cycles: it shrinks when losing water, leading to the
formation of cracks on the soil surface due to volume reduction; and expands when
absorbing water, causing soil cracks to close as the volume increases. This process of
shrinkage and swelling significantly alters the soil pore structure and distribution, thereby
changing the patterns of soil water movement. The wet and dry cycling promotes the
formation of soil aggregates and changes the soil pore structure, resulting in distinct
spatiotemporal variability in the soil’s hydrological and thermal properties. It is, then,
crucial to study the temporal variation patterns of soil physical properties for enhancing
the accuracy of simulation results and predictive outcomes.

Therefore, the objective of this paper is (1) to analyze the composition of soil particles
by applying multifractal analysis and (2) to quantitatively describe the temporal variability
of soil pore distribution inferred from soil water retention curves. This study can provide
theoretical support for the simulation of soil water movement.

2. Materials and Methods
2.1. The Study Area and Experimental Design

The field observation data were collected in the People’s Victory Canal Irrigation
scheme, which is located in Henan Province, China (35◦08′ N, 113◦45′ E). The study area
has a temperate continental monsoon climate, with an average annual temperature of 14 ◦C,
an average annual rainfall of 656.3 mm, and an average annual evaporation of 1748.4 mm.
The precipitation pattern is concentrated mostly from June to September, accounting for
72% of the total annual rainfall. The study area encompasses approximately 4 hm2 of land,
with a predominant soil type of sandy loam. The soil bulk density is 1.52 g/cm3 with an
average porosity of 45.57%. The field capacity is 31.52% (volumetric water content), and
the organic matter content is about 1.2% on average. The crop pattern throughout the study
area is dominated by summer maize (mid-June to late September) and winter wheat (early
October to mid-June of the following year).

A test plot of 200 m wide and 200 m long was selected in the field, with 5 sampling
points established. Soil samples were taken in a 1.5 m × 1.5 m grid. After removing the
top 10 cm of soil, sampling was conducted at 10–30 cm as Layer 1, 30–50 cm as Layer 2,
and 50–70 cm as Layer 3. Soil samples for determining the soil water retention curve were
taken using a 60 cm3 ring knife (inner diameter 61.8 mm, height 2 cm), and soil particle size
composition samples were collected in sealed bags. Five sampling points were set up in
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the direction from north to south (as shown in Figure 1), with five samples taken from each
layer at each sampling point, resulting in a total of 15 soil samples per layer and 75 soil
samples from all five sampling points per sampling event. Sampling times were before
tillage on 10 October 2021, after sowing on 23 November 2021, after the first irrigation on
24 December 2021, after the second irrigation on 11 February 2022, after the third irrigation
on 4 March 2022, after the fourth irrigation on 8 April 2022, and before harvest on 13 May
2022, with a total of seven soil sampling events.
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Figure 1. The location of the study area and the experimental layout.

(1) Determination of Soil Bulk Density. Soil bulk density during the wheat season was
measured using the ring knife method, where soil samples were dried in an oven at
105 ◦C until constant mass was achieved (drying for over 12 h). The dry soil mass was
then divided by the volume of the ring knife to obtain the initial soil bulk density.

(2) Determination of Soil Particle Size. Large particles in the original soil samples were
dispersed and crushed, air-dried, and passed through a 0.9 mm sieve. The soil samples
were then measured in a BT-9300H(T)type laser particle size analyzer (Bettersize
Instruments LTD., Dandong, Liaoning, China) with a measurement range of 0.1 to
1000 µm. To reduce experimental error, each soil sample was measured five times,
and the average value was taken. According to the U.S. standard classification, clay
particles are less than 2 µm in size, silt particles range from 2 to 50 µm, and sand
particles range from 50 to 1000 µm.

(3) Soil water retention curve. The pressure plate extractor (Soilmoisture Equipment
Corp., Santa Barbara, CA, USA) was used for the measurement. The pressure system
of the membrane apparatus applied different pressures to the soil samples, ranging
from 0 to 15 bar. When the drainage stopped for more than 24 h, it indicated that
the soil moisture was completely drained at that pressure value, and the sample was
weighed before proceeding to the next pressure value. After all pressure values were
measured, the soil samples were dried in an oven, and the dry bulk density of each
sample was determined.

2.2. Young–Laplace Equation

The matric suction of unsaturated soil is defined as [25]:

ϕ = ua − uw (1)
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where ua is the pore air pressure, and uw is the pore water pressure.
The Young–Laplace equation for unsaturated soil can be written as [16]

ϕ =
2σawcos θ

r
(2)

where σaw is the air–water interfacial tension, ϕ is the contact angle between the water and
the capillary surface, and r is the radius of the capillary.

When the matric suction is expressed by water head, Formula (2) can be written as

ϕh =
2σawcos θ

ρwgr
(3)

where ρw is density of water, and g is gravitational acceleration.

2.3. Multifractal Analysis

To implement the scaling analysis of a general mass distribution and measure µ

supported on the interval I = [a, b], a set of different meshes with cells or subintervals of I
with equal length is required. A common choice is to consider dyadic scaling down, that is,
successive partitions of the interval I of size ε = 2−kL, where L is the length of I, and k = 0,
1, 2. . . At each size scale ε, a number N(ε) = 2k of cells is considered and their respective
measures µ(ε) are found from the data.

The number log µi/log ε is the singularity strength of the ith cell. This exponent can
be interpreted as a crowding index or a degree of concentration of µ: the greater this value
is, the smaller is the concentration of the measure, and vice versa.

Multifractal analysis aims to find scaling parameters or dimensions for characterizing
measures displaying high irregularity or variation of singularity strength values. The
Shannon entropy (H) of the measure is defined by

H(ε) = −∑N(ε)

i=1 µi(ε)log µi(ε) (4)

H is a measure of heterogeneity or unevenness of the measure. When the limit

DE = lim
ε→0

∑
N(ε)
i=1 µi(ε)log µi(ε)

log ε
(5)

exists, its value is called the entropy dimension or information dimension of the distribu-
tion [26], quantifying the growth rate of the entropy with respect to ε. This expression can
be seen as the l-weighted average of the singularity strength values. It is also related to the
size level (dimension) of the minimal set where the whole measure is concentrated [27].

The entropy dimension DE is a special case of the Rényi dimensions defined by

Dq =
1

q − 1
lim
ε→0

log ∑
N(ε)
i=1 µi(ε)

q

log ε
(6)

3. Results
3.1. Soil Particle-Size Distribution (Particle-SD)

It can be observed from Figure 2 that the soil particle contents in various size intervals
obtained multiple times were generally consistent, with the coefficient of variation (CV)
of the soil particle content in most intervals being less than 20%. Only in intervals with
low soil particle contents, the CV is relatively high. Notably, Layer 1 exhibits lower
variability compared to Layer 2 and Layer 3. These observations suggest that the soil
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particle composition in the plot has undergone minor changes, indicating a relatively
uniform soil texture.
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((a) refers to the soil layer 1 at 10–30 cm, (b) refers to the soil layer 2 at 30–50 cm and (c) refers to the
soil layer 3 at 50–70 cm).

The statistical results of soil particle size composition at various sampling points
indicate that processes such as tillage, sowing, and irrigation have a minimal overall impact
on the soil particle size of the test samples. The CV for clay and silt particles generally
shows weak variability, with some data exhibiting larger variations in the CV, which are
attributed to measurement errors. The CV for sand particles generally indicates moderate
variability, suggesting that soil water movement has caused some transport and loss of
sand particles.

3.2. Multifractal Analysis of Soil Particle-SD

The q-D(q) generalized dimension spectra exhibit a curvilinear shape (Figure 3).
Within the range of −10 ≤ q ≤ 10, the curve monotonically decreases as the value of
q increases, i.e., D(0) > D(1) > D(2), indicating that the soil particle composition conforms
to multifractal characteristics. A greater degree of curvature in the curve corresponds
to a stronger heterogeneity in the distribution of soil particles. When q is positive, the
dimensional analysis quantifies the behavior of dense regions; conversely, when q is
negative, it quantifies the behavior of sparse regions. The curve of D(q) changes rapidly
and exhibits a greater degree of curvature when q is negative, whereas the curve is relatively
flat when q is positive. This observation suggests that the distribution of soil particles in
sparse regions is more sensitive than that in dense regions.
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Based on the range of D(q) distribution, σ, and CV values shown in the graph, it can
be observed that the multifractal D(q) values of each soil sample vary slightly, with CV
values less than 2.5%, indicating low variability. In addition, Layer 1 has lower D(q) values
compared to Layer 2 and Layer 3, which is consistent with the soil particle-size distribution
results mentioned in Section 3.1.

The multifractal spectrum α-f(α) can provide more information on the characteristics
of soil particle composition. The multifractal spectra of soil particle composition in different
layers are shown in Figure 4. It can be observed that the multifractal singularity spectra α-
f(α) of the soil particle composition distribution are continuous and convex, and all curves
show asymmetry, indicating that the soil particle composition distribution at each layer of
all sampling points is uneven, with some particle sizes having higher contents while others
having lower contents. The shape of the α-f(α) curve is left-skewed, indicating that the soil
particle distribution is more concentrated. The error bars, σ, and CV of the α-f(α) curves
indicate that the particle composition of each soil sample is relatively consistent.
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As is shown in Figure 5, D1 is the information entropy dimension, which is related to
the entropy value of the system and can be used to characterize the heterogeneity of soil
particle distribution. A higher D1 value indicates a wider distribution range and stronger
heterogeneity of soil particles. The D1 values of each soil sample are around 0.9, with
little difference.
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Agronomy 2025, 15, 37 8 of 14

∆D = D(−10) − D(10), which represents the curvature degree of the generalized
dimension spectrum curve, and ∆D value reflects the degree of variation of local features
of soil particle distribution. The larger the ∆D value, the stronger the variation degree of
soil particles. The ∆D values of each soil sample are around 1.45, with little variance.

∆α = αmax − αmin, which represents the width of the multifractal spectrum. ∆α

characterizes the features of different hierarchical structures of the research object and
reflects the degree of non-uniformity of the probability measure of multifractal physical
quantities in the research range. A larger ∆α value indicates a more complex diameter
distribution of soil particles and a higher non-uniformity.

∆f = f(αmin) − f(αmax), which reflects the shape characteristics of the multifractal
spectrum. When ∆f > 0, the major subsets are dominant, and the multifractal singularity
spectrum function exhibits a left hook shape. When ∆f < 0, the minor subsets are dominant,
and the multifractal singularity spectrum function exhibits a right hook shape.

In general, both the values of ∆α and ∆f for the soil particle diameter distribution
among the three soil layers and the seven sampling times show little variation, indicat-
ing that the soil particle composition does not change significantly over time, and the
distribution non-uniformity is comparable among the different layers.

3.3. Soil Porosity Distribution

Figure 6 shows the evolving distribution of soil porosity (averaged over five points)
in each soil layer over time. Figure 6a represents Layer 1, showing a sharp peak in pore
volume content around 20 µm, indicating a high prevalence of pores in this size range,
with minimal variability across different dates. Figure 6b depicts Layer 2, where the peak is
less pronounced and occurs at a slightly larger pore radius, suggesting some variability
in pore-size distribution over time. Figure 6c corresponds to Layer 3, exhibiting a broader
peak at an even larger pore radius, with significant variability in pore-size distribution
across the dates.
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The variation trends across the three layers exhibit a degree of consistency. Specifically,
the contents of both small- and medium-sized pores demonstrate a shift from high values
prior to tillage (10 October 2021) to lower values post-tillage (23 November 2021), and
progressively increased with greater irrigation frequency and crop growth. Conversely, the
contents of large pores increased after tillage, followed by a gradual decrease. Notably, the
extent of these changes diminishes as the sampling depth increases.

The data points for pore radius are consistent across all layers, providing a standard-
ized basis for comparison. The analysis reveals that soil pore-size distribution is relatively
stable in the top layer but shows more temporal variability in the middle and bottom layers,
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which could be influenced by water movement, compaction, or biological activity. This in-
formation is essential for understanding soil physical properties that affect water retention,
aeration, and root growth, thereby impacting soil health and agricultural productivity.

3.4. Multifractal Analysis of Soil Porosity

The q-D(q) generalized dimension spectrum exhibits a curvilinear shape (Figure 7).
Within the range of −10 ≤ q ≤ 10, the curve monotonically decreases as the value of
q increases, i.e., D(0) > D(1) > D(2), indicating that the soil porosity composition conforms
to multifractal characteristics. The curve of D(q) changes rapidly and exhibits a greater
degree of curvature when q is negative, whereas the curve is relatively flat when q is
positive. This observation suggests that the distribution of soil particles in sparse regions is
more sensitive than that in dense regions.
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Figure 7. The generalized fractal dimension spectrum D(q) curves for the soil pore distribution of
various soil samples ((a) refers to the soil layer 1 at 10–30 cm, (b) refers to the soil layer 2 at 30–50 cm
and (c) refers to the soil layer 3 at 50–70 cm).

By assessing the curvature of D(q) distribution curves, a consistent trend is observed
in the generalized dimension spectra of soil porosity across three distinct layers. These
spectra exhibit a transition from a substantial degree of curvature before the tillage event
(on 10 October 2021) to a less pronounced curvature after tillage (on 23 November 2021).
Subsequently, they gradually reverted to a more pronounced curvature with increased
irrigation frequency and crop growth. Notably, as the sampling depth increases, the
magnitude of these variations gradually diminishes.

The multifractal spectrum α-f(α) provides a deeper understanding of the composi-
tional features of soil porosity. The multifractal spectrum functions α-f(α) for different soil
layers at various sampling times are depicted in Figure 8. From this graph, it is evident
that the multifractal spectra of soil porosity composition exhibit continuous convex curves,
with each set of curves displaying asymmetry. This observation suggests that the soil
porosity composition at all sampling points and layers is non-uniform, with certain pore
size contents being higher while others are lower. The α-f(α) graphs show a left-skewed
shape, indicating a relatively concentrated distribution of soil porosity.

Further analysis of the α-f(α) graphs for soil porosity in the three layers demonstrates
a consistent temporal trend. The spectra transition from prominent spans and curvatures
before tillage (on 10 October 2021) to more modest spans and curvatures after tillage (on
23 November 2021). As irrigation frequency increases and crop growth progresses, the
spectra gradually shift towards larger spans and more pronounced curvatures. It is worth
noting that the magnitude of these changes gradually decreases with the deepening of the
sampling depth.
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In Figure 9, D(1) represents the information entropy dimension, and the D(1) values
for all soil samples fall within the range of 0.9 to 1.0, exhibiting minimal variation. However,
with varying sampling times, D(1) generally demonstrates an increasing trend followed
by a decrease. This suggests that tillage practices expanded the soil distribution range. As
the soil depth increases, this trend becomes less pronounced, indicating that the impact of
tillage on the heterogeneity of pore distribution diminishes with increasing soil depth.
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Figure 9. The bar chart of D1, ∆D, ∆α, and ∆f for the soil pore distribution of various soil samples
(error bar represents the standard deviation; (a) refers to the soil layer 1 at 10–30 cm, (b) refers to the
soil layer 2 at 30–50 cm and (c) refers to the soil layer 3 at 50–70 cm).

∆D = D(−10) − D(10), which represents the curvature of the generalized dimension
curve. From the graph, ∆D primarily exhibits a decreasing trend followed by an increase.
This indicates that tillage reduced the complexity and non-uniformity of pore distribution.
With increasing soil depth, this trend becomes less apparent, signifying that the impact of
tillage on the variability of local pore distribution characteristics decreases with soil depth.

∆α = αmax − αmin, representing the width of the multifractal spectrum. Overall, the
∆α values for soil particle distribution from seven sampling events across three soil layers
generally show a trend of decreasing followed by an increase. This suggests that, over
time, the complexity of soil particle composition shifts from high complexity before tillage
to low complexity after tillage, and then gradually returns to a state of high complexity
with following irrigation and root growth. As the soil depth increases, this trend becomes
less pronounced.

∆f = f(αmin) − f(αmax). It is evident from Figure 9 that when ∆f > 0, the soil particle
distribution is concentrated (non-uniform). Overall, the ∆f values for soil particle distribu-
tion across the three soil layers from seven sampling events display a trend of decreasing
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followed by an increase. This indicates that, over time, the concentration of soil particle
distribution shifts from high before tillage to low after tillage, and then gradually returns to
a state of high concentration with following irrigation and root growth. As the soil depth
increases, this trend becomes less pronounced.

Based on the aforementioned analysis, it is evident that multifractal parameters such
as D(1), ∆D, ∆α, and ∆f can effectively characterize the distribution features of soil porosity
at various levels, thus reflecting the uniformity of soil porosity distribution. To explore
the relationships among these multifractal parameters, pairwise correlation analyses were
conducted, and the results are presented in Table 1. The multifractal parameters exhibit sub-
stantial correlations, with correlation coefficients (|r|) ranging from 0.204 to 1.000. These
parameters provide diverse perspectives on the heterogeneity of soil porosity distribution
at different levels. In addition, |rLayer1| > |rLayer2| > |rLayer3|, indicating that the
multifractal parameters exhibit more pronounced patterns of variation concerning bulk
density (γ).

Table 1. Pearson’s correlation analysis between multifractal parameters and soil bulk density.

Layer D(1) ∆D ∆α ∆f (α) γ

1

D(1) 1.000 ** −0.972 ** −0.972 ** −0.829 ** −0.748 **
∆D −0.972 ** 1.000 ** 0.999 ** 0.812 ** 0.806 **
∆α −0.972 ** 0.999 ** 1.000 ** 0.830 ** 0.809 **

∆f(α) −0.829 ** 0.812 ** 0.830 ** 1.000 ** 0.841 **
γ −0.748 ** 0.806 ** 0.809 ** 0.841 ** 1.000 **

2

D(1) 1.000 ** −0.966 ** −0.966 ** −0.810 ** −0.508 **
∆D −0.966 ** 1.000 ** 0.999 ** 0.843 ** 0.539 **
∆α −0.966 ** 0.999 ** 1.000 ** 0.864 ** 0.549 **

∆f(α) −0.810 ** 0.843 ** 0.864 ** 1.000 ** 0.651 **
γ −0.508 ** 0.539 ** 0.549 ** 0.651 ** 1.000 **

3

D(1) 1.000 ** −0.831 ** −0.825 ** −0.695 ** −0.204
∆D −0.831 ** 1.000 ** 0.999 ** 0.940 ** 0.302 *
∆α −0.825 ** 0.999 ** 1.000 ** 0.950 ** 0.346 *

∆f(α) −0.695 ** 0.940 ** 0.950 ** 1.000 ** 0.581 **
γ −0.204 0.302 * 0.346 * 0.581 ** 1.000 **

Note: * indicates significance at the p < 0.05 level, and ** indicates significance at the p < 0.01 level.

4. Discussion
The soil particle-size distribution (Particle-SD) exhibits a spatial variability, with rela-

tively insignificant temporal variations over a cropping season. In contrast, the distribution
of soil pores demonstrates notable temporal fluctuations. Both the soil particle-size dis-
tribution (Particle-SD) and soil pore-size distribution (Pore-SD) adhere to a generalized
power-law behavior, indicative of multifractal characteristics. The multifractal parame-
ters of soil pore-size distribution are correlated with soil bulk density, and the order of
correlation strength is |rLayer1| > |rLayer2| > |rLayer3|.

In terms of spatial variation, our findings align with prior research: Both soil Particle-
SD [28–30] and soil Pore-SD [11,19,31] exhibit spatial variability. However, with regard to
temporal variation, the results of previous studies are divergent. Some researchers [2,12,32]
posited that temporal variations exist in soil pore structure and soil moisture characteristic
parameters. In particular, Bamberg [12] contended that soil properties are subject to varia-
tion, even over short time intervals, especially in managed soils. Nonetheless, Vogel [33]
suggested that the pore structure is relatively static. It’s important to note that Vogel’s
observations were primarily focused on soils with low organic matter content and low
clay content, while the soils examined in this study were derived from the alluvial plains
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of the Yellow River in the mid-lower reaches. Furthermore, Harold [34] proposed that
soil structure changes periodically with field management. This study indicates that soil
pore structure undergoes dynamic changes over a growing season. This prompts further
speculation: could it be inferred that soil pores also exhibit variations during a single
saturation–unsaturation process? If this hypothesis is substantiated, it suggests that the
relationships within the soil water movement simulation, which employs the Richards
equation, inherently encompass these changes via soil water retention curves. However,
when employing a network model for soil water movement simulations, it is essential to
note that soil pore networks are not static.

In the experiments, the particle size composition of the soil samples remained generally
stable, with no significant temporal variability. However, changes in soil pore structure
were observed, with a reduction in larger pores and a more pronounced decrease in
smaller pores, indicating that the contraction of larger pores was less severe than that of
smaller pores.

The experiment regarding the temporal variability of soil hydraulic parameters was
conducted for a single growing season and was confined to a relatively limited spatial area
of 200 m × 200 m. Both the temporal and spatial scopes were rather constrained. Subse-
quent investigations are planned to encompass a broader range of experiments focusing on
the temporal variability of various soil parameters, accompanied by theoretical exploration.

In the context of simulating soil water movement during the crop season, it is proposed
that introducing time-varying parameters for the soil water retention curve function Φ(θ),
particularly θs, α, and n, instead of the conventional fixed values, would provide a more
accurate representation of real-world conditions, thus enhancing simulation precision.
Furthermore, when employing data assimilation methods such as EnKF, incorporating
time-varying parameters for Φ(θ), including θs, α, and n, can accelerate model convergence
and produce higher-precision assimilation results.

In this study, however, factors such as organic matter and mineral indicators were not
considered in their impact on soil water movement parameters; the focus was solely on the
physical parameters. Future research on the variability of soil water movement parameters
should include considerations of organic matter, mineral indicators, and similar factors.

5. Conclusions
The soil particle-size distribution (Particle-SD) and soil pore-size distribution (Pore-

SD) both adhere to a generalized power law, exhibiting multifractal characteristics. An
analysis of soil pore distribution and the multifractal parameters of soil pore sizes indicates
that soil pore distribution varies with factors such as tillage, irrigation, evaporation, and
crop growth cycle. Additionally, multifractal parameters of soil pore-size distribution
show correlations with soil bulk density, with the strength of these correlations ranked as
|rLayer1| > |rLayer2| > |rLayer3|.

Based on the findings presented in this study, when conducting soil moisture trans-
port simulations or data assimilation calculations under similar soil conditions in the
region of the middle and lower reaches of the Yellow River, the utilization of time-varying
soil moisture transport parameters can significantly enhance the precision of simulation
outcomes.
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