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Abstract: Timely and accurate predictions of winter wheat yields are key to ensuring food security.
In this research, winter wheat yield prediction models for six provinces were established using a
random forest (RF) model. Two methods were employed to analyze feature variables. RF partial
dependence plots were generated to demonstrate the nonlinear relationships between the feature
variables and yield, and bivariate Moran’s I was considered to identify the spatial associations
between variables. Results showed that when environmental data from key growth periods were
used for prediction model establishment, the root mean square error (RMSE) varied between 200 and
700 kg/ha, and the coefficient of determination (R2) exceeded 0.5. Feature variable analysis results
indicated that the longitude, latitude, topography and normalized difference vegetation index (NDVI)
were important variables. Below the threshold, the yield gradually increased with increasing NDVI.
Bivariate Moran’s I results showed that there was zonal distribution of meteorological elements.
Within a large spatial range, the change in environmental variables due to the latitude and longitude
should be accounted for in modeling, but the influence of collinearity between the feature variables
should be eliminated via variable importance analysis.

Keywords: machine learning; yield prediction; environmental variables

1. Introduction

Establishing an accurate yield prediction model that integrates multisource environ-
mental variables on a large spatial scale can provide systematic decision-making guidance
for the government. Commonly adopted regional crop yield simulation methods include
the following: first, the crop model can be used to simulate dry matter accumulation in
crops based on meteorological and soil data, variety parameters, management measures
and other data, and the grain yield can then be estimated by calculating the dry matter
distribution index during the harvest period. This method exhibits a complex mechanism,
but there are process parameters for resolving difficulties. More field and site-specific
experimental data are needed for model calibration, and regional yield simulations can
hardly meet the data requirements [1,2]. Second, mathematical statistical models and ma-
chine learning models can be used to establish relationships among natural environmental
variables, remote sensing vegetation indices and yield. This method can effectively sim-
plify the internal mechanism of crop growth, improve the modeling time sensitivity, and
reduce the modeling complexity. The most commonly used models include multivariate
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linear regression models, neural networks, support vector machine regression models, and
random forest classifiers [3–6]. In addition, comprehensive remote sensing monitoring
is a nondestructive and fast technique. Based on the coupling of the crop growth model
and remote sensing monitoring, the remote sensing observation variables during different
periods can be used to calculate the leaf area index (LAI) in the crop growth model; thus,
the original LAI calculation method can be replaced, which can effectively improve the
yield prediction accuracy of crop growth models [6,7].

As a black-box system, machine learning methods can be used to model the nonlinear
relationship between yield and environmental variables very well, but there are differences
among machine learning methods. Due to the seasonality of crop growth, the use of annual,
monthly or daily time series data and time series models such as long short-term memory
(LSTM) networks for yield prediction can reflect the relationships between the changes in
environmental factors during the crop growth phenology period and yield [6,8,9]. The RF
model is a machine learning method with a satisfactory crop yield prediction ability, and
multiple decision trees are trained through bootstrap aggregation, after which predictions
are generated by averaging the outputs of all decision trees, which can effectively mitigate
high-dimensional data information noise, sample imbalance and model degradation. The
overfitting problem can be solved, and multiple decision trees can realize distributed model
environment calculation, which can effectively improve the model calculation efficiency,
while the RF model has been widely verified as an algorithm with high accuracy [10,11].
In comparison, various neural network parameters must be set such as the number of
hidden layers, number of neurons in the hidden layers, type of activation function, and
learning rate, and the neural network algorithm is a black-box model with high sample
size requirements [12,13].

The wheat yield is the result of complex interactions among many factors during the
growing season. Meteorological conditions, phenological information, and soil conditions
should all be considered in yield prediction [12]. Meteorological elements are important
factors influencing crop growth and yield in the region. The winter wheat yield at the
jointing stage generally increases with increasing temperature and precipitation. However,
growth at the mature stage is easily affected by hot, dry winds, which can restrict the grain-
filling stage. In severe cases, high-temperature-forced ripening in wheat occurs, leading to a
notable reduction in the production area [14]. However, the spatial distribution of regional
natural environment data is affected by terrain, so large-area crop yield simulation digital
elevation models (DEMs) have become important auxiliary data [15]. At the site scale, the
soil water content, bulk density, organic matter, and total nitrogen content significantly
impact crop growth. The determination of parameters requires sampling and assays, so
location experiments are mainly performed to achieve yield modeling [11]. In addition, due
to the long growth period of crops, the selection of environmental variables during different
periods notably influences the model results, thus causing uncertainty in determining the
best yield forecast time [4]. Previous research has indicated that the introduction of the
NDVI at the jointing stage of wheat in late March and the heading/flowering stage in
late April could significantly improve the accuracy of wheat yield prediction, with the
heading/flowering stage more notably impacting yield prediction than the other growth
stages. However, the effect of the NDVI during the postgrowth period is not obvious
because the index value reaches saturation [4].

In this research, based on multisource environmental variables and auxiliary data
and with the county as the basic spatial unit, a machine learning algorithm was used
to establish a wheat yield simulation model for each province in the research area (the
winter wheat region in China), focusing on whether easy-to-obtain regional environmental
variables could be selected for construction. The use of a machine learning model could
reduce the difficulty of obtaining input data in regional yield simulation, improve the
efficiency of regional simulation, and identify the key variables in the modeling process.
The specific research purposes were as follows: (1) to verify the feasibility of modeling the
regional production potential of wheat in China’s winter wheat region based on a machine
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learning algorithm; (2) to identify the key feature variables in the modeling process in
each province using RF partial dependence plots, thus demonstrating their effects on the
yield; and (3) to employ bivariate Moran’s I to investigate the spatial correlation between
the feature variables and yield in the region. This research could provide a method and
technological reference data for the study and application of machine learning methods in
crop yield prediction.

2. Materials and Methods
2.1. Research Area

The main winter wheat production areas in China (110◦36′–122◦11′ E, 29◦4′–41◦10′ N)
include six provinces: Hebei, Shandong, Henan, Anhui, Jiangsu, and Hubei (Figure 1a) [16].
The climate is diverse and includes temperate continental monsoon climate, warm temper-
ate monsoon climate, East Asian monsoon climate, warm temperate semihumid monsoon
climate and subtropical humid monsoon climate zones, with rain and heat occurring during
the same season [17]. In regard to the annual precipitation, except for Hebei Province that
occurs within the 500 mm range, the other provinces occur within the 1000 mm range.
The landforms include plains, hills, and mountains, with significant differences in altitude
between east and west, with the highest elevation reaching 2309 m and the lowest elevation
reaching −27 m (Figure 1b). The regional yield exhibits agglomeration characteristics. The
areas with higher yields are concentrated in southern Hebei Province, western Shandong
Province, eastern Henan Province, and northern Anhui Province, i.e., the central part of
the Huanghuai Plain, while the areas with lower yields occur in the southern and western
parts of the research area at higher elevations.
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Figure 1. Research area: (a) geographical location, (b) DEM, and (c) spatial distribution of the
mean statistical yield values (2014–2019) in the six provinces; for each color, the basic spatial unit is
the county.

2.2. Data Description

To improve the modeling efficiency and reduce the difficulty of obtaining regional
modeling data, meteorological data, soil data, terrain data and vegetation index data were
selected for model construction in this research (Table 1). According to the spatial and
temporal scopes (2014–2019), the data description and processing steps are as follows:
(1) to ensure that the satellite images better reflect crop growth, Sentinel-2 satellite image
data were screened in the Google Earth Engine by using a cloud coverage of 10% as the
threshold. The NDVI was calculated by the monthly median synthesis method to obtain
high-quality images for each month, that is, the median of each pixel time series NDVI
value represents the month value; (2) the time-series daily soil moisture dataset was based
on the soil moisture observed provided by China Meteorological Administration, and the
accuracy was verified [18]. We calculated the mean data for March, April, and May each
year; (3) mask extraction was performed based on the spatial production allocation model’s
wheat planting area to ensure that the raster data needed for modeling all originated from
wheat planting regions [19]. (4) With the use of the zonal statistics tool in ArcGIS, the
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county-level administrative unit was employed as the basic spatial unit. The raster data
were subjected to mean statistical analysis, and the UpdateCursor tool in ArcGIS was used
to assign yield data as attribute data to the corresponding spatial units. (5) Finally, the
attribute table of the vector data was exported, with the environmental data as feature
variables and the statistical yield as the target variable, to build the training data needed
for the RF model.

Table 1. Description of the data needed in this research.

Data Type Element Format Source Time Resolution Spatial Resolution

Meteorological
data

Highest temperature
(Tmax), minimum

temperature (Tmin),
sunshine hours (SSD),

and precipitation (PRE)

tiff

Meteorological Information Center of
China Meteorological Administration
(https://data.cma.cn/, accessed on 19

December 2023)

Monthly 1 km

Soil data Ten-cm soil surface
moisture tiff

A Big Earth Data Platform for
Three Poles

(https://poles.tpdc.ac.cn/zh-hans/,
accessed on 1 April 2023)

Daily 1 km

Yield data Statistical wheat yield csv China Economic and Social Big Data
Research Platform (data.cnki.net) Yearly County area

Remote
sensing data

Visible light band and
near-infrared band tiff Sentinel-2, Google Earth Engine Monthly, median

composite 10 m

Terrain data Digital elevation model
(DEM) tiff

SRTMGL1_003 DEM (https://lpdaac.
usgs.gov/products/srtmgl1v003/,

accessed on 19 December 2023)
/ 30 m

Other data Wheat planting area tiff Spatial production allocation model
(SPAM) / 10 km

2.3. Analysis Workflow

Technical workflow as shown in Figure 2 mainly included the following steps: (1) The
meteorological data, soil moisture data and vegetation index data during the critical growth
periods of wheat (March, April, and May) were selected, and the year was used to represent
the yield change due to the implementation of production management measures, variety
updating and climate change as a feature variable [9,10], and the statistical yield was used
as the target variable. (2) The data for 2018 and 2019 were used as validation data, and the
data for the other years were used as training data [15]. An RF model for yield prediction
was established for each province within the research area, and the model accuracy was
evaluated using the coefficient of determination (R2) and root mean square error (RMSE).
(3) These two feature analysis methods were used to explain the influence of key variables
on the yield. First, RF partial dependence plots were conducted to obtain the nonlinear
curve between the key variables and the output. Second, bivariate Moran’s I was employed
to verify the spatial correlation between the key variables and the statistical yield.
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The RF algorithm is an ensemble learning method developed by Breiman based on
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variable set and random samples from the training dataset. In each tree, approximately
one-third of the cases, referred to as the out-of-bag (OOB) data, can be used to estimate
the generalization error. The RF model can be used for both classification and regression
purposes. If predictions are made by a classification algorithm, the final class will be the
class with the most votes from all the decision trees. If a regression algorithm is used, the
arithmetic mean of the regression results obtained by all the decision trees will be the final
model output. The use of the RF model can improve the prediction accuracy with low
computational complexity, and it is insensitive to multicollinearity of variables; moreover,
the prediction results are robust to both missing and unbalanced data, and this model can
be used to effectively predict the roles of up to thousands of explanatory variables [21].
In addition, the RF model contains a built-in variable importance measure and partial
dependence, which can be used to visualize the functional form between the predictor
variables and target variables, allowing users to investigate linear and nonlinear responses.
The year was adopted as a numerical variable in this research, but in machine learning,
the value of the year should not be a continuous variable but rather a categorical variable.
Therefore, one-hot encoding was applied to convert the year variable [1,22].

2.5. Bivariate Moran’s I

Bivariate spatial autocorrelation analysis based on spatial statistics theory can provide
measures of the spatial distribution pattern of two variables, namely, similarity and correla-
tion, among geographic locations. Spatial correlation exists when two variables exhibit the
same intensity and direction of change with the change in spatial location. If the spatial
structures of the two variables significantly differ, they are spatially uncorrelated or exhibit
a weak spatial correlation. In this research, Moran’s I was chosen as the bivariate spatial
autocorrelation indicator. The calculation result depends on the difference between the
variables and the relationship between the spatial locations. The value ranges from −1 to 1,
and a positive value indicates a positive correlation. Conversely, a negative value indicates
a negative correlation, while a value close to 0 indicates no correlation [23,24]. Bivariate
Moran’s I can be calculated as follows:

Ikl = Zi
k

n

∑
j=1

WijZ
j
l (1)

Zi
k =

Xi
k − Xk

σk
(2)

Zi
l =

Xi
l − Xl

σl
(3)

where Xi
k is the value of variable k at position i, Xi

l is the value of variable l at position i, Xk
and Xl are the mean values of variables k and l, respectively, σk and σl are the variances in
variables k and l, respectively, and Wij is the spatial adjacency weight matrix.

3. Results and Discussion
3.1. Descriptive Statistics

A box plot was created to show the distributions of the extreme and mean values
of the county-level statistical yield in each province in a specific year (Figure 3). Results
showed that there were gaps in the distributions of the county-level statistical yields in
the different provinces, and the yield gap was consistent among the different years. The
yield variation at the county level in Anhui Province was relatively high. Notably, the
variation ranges from 2014 to 2019 were 5964, 5919, 5739, 6949, 5322, and 5665 kg/ha. The
county-level yield variation in Jiangsu Province was relatively low, with ranges from 2014
to 2019 of 4004, 3831, 3782, 3312, 3450 and 3952 kg/ha, respectively. The two provinces with
the highest mean values were Henan Province and Shandong Province, with a stable value
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of approximately 6200 kg/ha. Moreover, the value in Jiangsu Province was approximately
5600 kg/ha, while Hubei Province exhibited the lowest value, at approximately 3600 kg/ha.
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3.2. Model Performance Evaluation

The RF model has been demonstrated to provide a high modeling accuracy in relevant
studies, so in this research, horizontal comparisons of different modeling methods were
not conducted [1,25,26]. According to the division of the wheat growth period based on
the BBCH scale, the time ranges of the feature variables selected in this research included
key growth periods, such as tillering, booting, and flowering, which are closely related to
the yield [7,27]. Then, we used the county-level administrative region of each province as
the basic spatial unit in modeling and established an RF yield prediction model for each
province. Then, the key environmental variables in each province were analyzed, and
bivariate Moran’s I was adopted from a geospatial distribution perspective. The spatial
correlations between the yield and environmental variables and between the environmental
variables and the latitude and longitude were analyzed to determine the commonalities
and differences in the relationships between the yield and environmental elements among
the various provinces.

Results between statistical yield and predicted yield showed that the RF models
exhibited a suitable fitting effect in 2018 and 2019 (Figure 4). The RMSE values of previous
winter wheat yield models ranged from 600 to 900 kg/ha, but the R2 values were all
approximately 0.9 [11,28]. In this research, the RMSE values of the various province-
specific models varied between 200 and 650 kg/ha, remaining at a moderate level, while R2

was also maintained above 0.5. Among them, the RMSEs of the models for Henan, Hebei,
and Jiangsu were smaller, which may be attributed to their larger winter wheat planting
area and flatter terrain. The RMSE reached a minimum of 230 kg/ha in Jiangsu Province
and a maximum of 640 kg/ha in Shandong Province (Figure 4e,l).
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Compared with the RMSE of the RF-simulated yield at the county level, the accuracy of
the provincial mean simulation results was greater, and the variation trend of the absolute
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difference in the regional mean between the different years remained consistent (Table 2).
This may occur because the yields in some counties within the provincial area increased,
while the yields decreased in other counties. These two effects offset each other, resulting
in slight changes in the regional mean. Most absolute differences were below 300 kg/ha.
The absolute difference in Jiangsu Province was the smallest in 2018, at 36.9 kg/ha, while
the absolute difference in Anhui Province in 2018 was 270.4 kg/ha.

Table 2. Absolute difference between the regional mean simulated by the RF model and the statistical
yield mean in 2018 and 2019.

Year
Absolute Difference of the Regional Mean (kg/ha)

Anhui Hebei Henan Hubei Jiangsu Shandong

2018 270.4 176.7 209.9 68.2 36.9 86.5
2019 85.6 225.5 129 73.2 142.9 108.7

3.3. Variable Importance

Through variable importance analysis of the yield forecast model, the contribution of
each variable to the model prediction results can be quantified, and the threshold range
within which the variable significantly impacts the model results can be determined to select
key variables for modeling, thus helping to improve the model calculation performance,
reduce overfitting and enhance the model interpretability [5]. In this research, the feature
variables with a yield influence degree greater than 200 kg/ha were mapped. The results
showed that there was an obvious nonlinear relationship between the feature variables and
yield, and all the feature variables exhibited threshold values. Beyond the threshold value,
the yield variation remained stable.

The descriptive statistics of the yield showed that the yield in each province did not
significantly change in the six years (Figure 3). Therefore, compared to the time range in
previous studies, namely, more than 50 years, the yield gradually increased over time [5].
The year variable did not generate a significant effect in this research. Because light
and temperature conditions are greatly affected by the spatial location and topographic
characteristics on large scales, the latitude, longitude and DEM more notably impacted
the yield prediction results for most provinces (Figure 5), and the DEM were already
reported to have influence on long-term yield effects, that can be explored in determining
yield classes and delineating yield stability zones [1]. While there was no significant
relationship between soil water and yield, which may occur because the agricultural
infrastructure is relatively complete, and the irrigation conditions are very mature affected
by human activities. However, previous studies on farm-scale crop yield prediction and
soil indices including brightness index and redness index have a certain correlation with
yield [1,9]. Because the soil samples were expensive and also because the values do not
vary substantially over relatively short periods of time, it is usually difficult to use temporal
soil data for analysis in research [9].

The yield at the county level was not randomly distributed spatially but demonstrated
spatial heterogeneity and agglomeration characteristics. For example, in the western Shan-
dong Province, the yield in the east was low. Therefore, with increasing longitude, the yield
in Shandong Province decreased from 6500 to 5500 kg/ha (Figure 5y). The yield in the
northern part of Anhui Province was greater than that in the southern part. Therefore, with
increasing latitude, the yield increased from 4000 to approximately 6100 kg/ha (Figure 5a).
First, the slope, aspect, and altitude characteristics of the terrain affect the spatial distri-
bution of illumination and temperature conditions. Second, hilly and mountainous areas
are generally fragmented, the spatial resolution of the input data is low, and the mixed-
pixel phenomenon is severe. The RMSE of the provincial yield forecast model was large
(Figure 4a,d,f) [29]. In related studies, the topography was also used as a key variable in
the analysis of scale and zonal effects and in simulation correction of the light-temperature
potential yield and yield difference in crop yield prediction [30]. The topography affects
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the transfer of soil water and nutrients under gravity, especially on small scales such as
field parcels, which is a factor that must be considered in field management zoning [31,32].
However, the spatial scale in this research was relatively large, and soil water imposed
almost no effect on the yield.
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Since crop dry matter accumulation results from photosynthetically active radiation,
there is a significant correlation between the sunshine hours and yield [33]. Crops are
affected to varying degrees by the temperature during different growth periods. An increase
in the temperature at the early stage of the growth period could help wheat growth. For
example, in Shandong Province, when the sunshine duration was more than 2 h in March,
the yield gradually increased (Figure 5a,b), but very high temperatures could lead to
vigorous growth. In April, the temperature at the peak growth stage was very high,
accompanied by extreme climatic phenomena such as hot and dry winds, which reduced
the growth period of wheat, affected grain filling, and eventually led to a decrease in the
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yield (Figure 5x) [26,34,35]. In addition, wind speed and relative humidity were also proved
to have better relative importance for wheat yield prediction [26].

Previous studies have shown that better grain yield prediction results can be obtained
by choosing variables that most directly relate to yield, such as biomass [7]. In this study,
the NDVI can effectively indicate the growth and health status of crops, and higher values
indicate crops that contain a higher concentration of chlorophyll, which is closely correlated
with biomass [1,27]. However, the early and late stages of crop growth do not have a good
response toward vegetation indices due to the low reflection, and it is different from the
previous work that used the mean of the whole crop NDVI value [26]. In our study, it
is important to use data from the critical growth period for predicting crop yields before
harvesting. All provinces showed that the higher the NDVI value was, the greater the yield.
Consistent with previous results, the peak values of the wheat NDVI were approximately
0.58, 0.80 and 0.88 in March, April and May, respectively (Figure 5) [27]. However, there
was no significant relationship between the peak NDVI value and the yield. Therefore, after
the NDVI3 reached 0.2 in the Anhui and Hebei Provinces and after the NDVI4 reached 0.4
in the Shandong Province, the yield stabilized with increasing NDVI. However, due to the
saturation effect of the NDVI under the influence of a high vegetation cover, the sensitivity
to vegetation growth was reduced, and a linear increase could not be achieved [36]. So, the
vegetation index EVI should be incorporated into the modeling process in combination
with other indices, because EVI has the ability to reduce the background canopy signal and
enhance the high biomass reflection [26].

3.4. Bivariate Moran’s I

The conventional analysis methods aim to explore the statistical correlation among
variables to explain the model. However, there is spatial continuity between the environ-
mental variables and the statistical yield. Spatial continuity quantification via bivariate
Moran’s I can be used to effectively identify spatial distribution patterns and spatial depen-
dence between the yield and environmental variables and assess the strength and direction
of correlations. This approach is currently widely used in environmental science and other
fields to assess the strength and direction of correlations [23,24,37]. Since the NDVI can
reflect the status of crop growth, there was a notable high–high spatial positive correlation
between the yield and NDVI in the five provinces, i.e., areas with relatively high NDVI
values exhibited relatively high winter wheat yields, and Moran’s I values were all greater
than 0.7 (Figure 6). In provinces at higher latitudes, including Hebei, Henan, and Shandong,
there was a weaker high–high spatial correlation between the yield and temperature and
a high–low spatial negative correlation between the latitude and temperature. Notably,
the lower the latitude and the higher the temperature were, the greater the yield. In this
research, in Anhui Province located at a lower latitude, there was a significantly negative
high–low spatial correlation between the yield and precipitation, while a significant positive
spatial correlation was observed between the yield and sunshine hours.

However, bivariate spatial autocorrelation can only provide a measure of the strength
of spatial relationships but cannot reflect causal relationships, namely, it cannot explain
why yield changes are caused by changes in environmental variables; additionally, bivariate
spatial autocorrelation is sensitive to spatial scale effects [38,39]. In this research, within the
provincial spatial range, the relationships between the meteorological conditions, NDVI
and yield were high, while the relationships between the soil water content and yield were
almost nonexistent. However, in precision management zoning studies at the field parcel
scale, the spatial distribution of meteorological elements is uniform, and soil water and
nutrients are the main causes of yield differences [40,41]. Therefore, the determination
of feature variables at different spatial scales should consider the joint influence of the
above factors. It is necessary to further determine the yield-limiting factors according to
the influences of agronomic management measures and economic and social factors.
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The yield changes caused by the latitude and longitude were mainly due to the effects
of these factors on the spatial distributions of sunshine hours, temperature, and precipi-
tation. Therefore, the longitude and latitude were identified as key variables in the yield
simulation process (Figure 5). To illustrate the relationships between the environmental
variables and latitude and longitude in regional wheat yield simulations, bivariate Moran’s
I analysis was also conducted in this research. The results showed that the temperature and
longitude in Shandong Province exhibited a significant negative spatial correlation, and for
bivariate Moran’s I, the absolute values were all above 0.5, i.e., the maximum temperature
gradually increased away from the coastline, and the decadal trends remained the same.
The bivariate Moran’s I index values between the longitude and environmental variables
such as precipitation and soil moisture in the inland provinces were all approximately 0,
indicating no significant spatial correlation (Figure 7a–f).
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Previous research has indicated that the longitude mainly causes changes in environ-
mental elements by affecting the distributions of land and sea, while changes in the solar
radiation due to latitude lead to longitudinal zone changes in heat, also referred to as longi-
tudinal zonality [42,43]. In this research, the absolute values of bivariate Moran’s I between
most environmental variables, such as temperature, precipitation, and sunshine hours, and
latitude were greater than 0.5 (Figure 8). Precipitation and latitude showed a negative
spatial correlation, i.e., areas at higher latitudes exhibited less precipitation, and conversely,
the number of sunshine hours was greater. This was obvious in the Anhui Province, which
occurs in a transitional area between the warm temperate zone and the subtropical zone.
However, relying solely on spatial variability is insufficient for understanding the relation-
ship between environmental variables and spatial location, the temporal variability should
also be taken into account [1].
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To verify the effects of the longitude, latitude and environmental variables on the yield
modeling results, variable importance analysis was again conducted after the longitude
and latitude were removed. The results showed that the impact of non-critical variables
on the yield significantly increased. Choosing rainfall in the Anhui Province in April as
an example, after excluding the latitude and longitude, as rainfall increased from 100 to
120 mm, the yield decreased by approximately 1000 kg/ha (Figure 9a). However, before
the deletion of latitude and longitude, the precipitation in April imposed almost no effect
on the yield, and the other provinces showed similar phenomena. This may occur because
the spatial location generates a certain substitution effect on environmental variables, thus
masking the effects of environmental variables such as temperature, precipitation, and
sunshine on the yield in modeling. This phenomenon is more obvious in more notable
zoned regions. Therefore, previous studies have used permutation importance, lasso
regularisation, ridge regularisation, tree-based selection, boruta, and recursive feature
elimination methods to minimize the risk of missing relevant predictors [9]. Despite the
advantage of insensitivity of the RF model in complex data structures, the influence of
variable collinearity should be considered in detecting the hidden non-linear relationships
among all variables. And it is necessary to analyze the significant correlations between
individual environmental indicators and response variables to maintain the optimum range
of values, and to prevent stresses at different stages of crop growth [26].
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3.5. Limitations of This Research

In this research, the county-level administrative districts in the provinces were used
as the basic spatial units to establish a wheat yield prediction model. Through variable
importance analysis and bivariate Moran’s I, the relationships between the variables and
yield could be visualized from two perspectives: attributes and space. This research
provides important reference data for understanding the potential of light, temperature and
precipitation resources in different regions, improving the utilization rate of light energy,
as well as the need to adjust the planting layout and the selection and breeding of new
varieties. However, the following influencing factors were not considered. An extreme
climate is the main reason for drastic changes in the yield, so extreme climate indicators
and multiple future climate scenarios derived from meteorological data are important for
research on the occurrence patterns of climate extremes in time and space, the development
of key areas for climate monitoring and prevention, and the improvement in farmland
infrastructure to reduce the potential threat to yields [44,45]; however, this requires the
support of hourly meteorological monitoring data with higher temporal resolution. In
addition, due to data collection difficulties in terms of the regional chemical fertilizer
application amount, total power of agricultural machinery, and rural labor input [46], the
effect of agricultural factor inputs on the yield was not considered herein. In addition,
from a county-level application perspective, on the basis of accurate parcel identification,
meteorological stations and soil stations combined with accurate yield measurement data
of agricultural machinery were used to accurately reflect the crop planting environment,
rather than the data with errors obtained by regional interpolation methods, so as to realize
crop yield estimation and regional yield mapping at pixel scale and farm scale [1,47], which
is an important direction of future research.

4. Conclusions

In this research, the RF model was used to establish a winter wheat yield prediction
model. The model for each province exhibited favorable accuracy. The key variables in
each province were identified via RF variable importance mapping. Notably, the longitude,
latitude, and DEM were key variables in all provinces. The NDVI was a key variable in
Anhui, Henan, Jiangsu, and Shandong; rainfall in March and April was a key variable
in Hebei Province located at higher latitudes, and Hubei Province exhibited the lowest
temperature in April. The bivariate Moran’s I results showed that the NDVI and yield
exhibited high positive spatial correlations, while the temperature, precipitation, and
sunshine hours exhibited notable zonal characteristics. Thus, environmental variables
related to the spatial location should be considered in the modeling process.
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