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Abstract: Potato (Solanum tuberosum L.) is sensitive to drought, which severely impacts tuber yield
and quality. In this study, we characterized a XERICO gene, encoding a RING-H2 type E3 ubiquitin
ligase, StXERICO1, from a diploid potato, investigated its role in enhancing drought resistance and
ABA accumulation, and identified its interaction with the miRNA novel-miR1730-3p, as well as
its protein interactions with StUBC and StTLP. StXERICO1, with a complete Open Reading Frame
(ORF) of 459 bp encoding 152 amino acids, was highly responsive to drought, ABA treatment, and
abiotic stresses in potato plants. Overexpression of the StXERICO1 significantly enhanced drought
resistance and ABA accumulation in transgenic potato and tobacco plants and exhibited greater
sensitivity to ABA treatment, which was associated with the upregulation of expression of ABA
biosynthetic genes NCED and CYP707A. Furthermore, our results revealed that StXERICO1 and its
encoding protein interacted with miRNAs and other proteins. 5′ RLM-RACE (cDNA terminal rapid
amplification) experiment showed that the miRNA novel-miR1730-3p targets 5′ UTR region of the
StXERICO1 gene. Dual luciferase assay and virus-based miRNA silencing experiment showed that
the novel-miR1730-3p negatively regulates StXERICO1 expression. Moreover, yeast two-hybrid assay
indicated that StXERICO1 interacts with StUBC (an E2 ubiquitin ligase) and StTLP (a Tubby-like
protein), suggesting that StXERICO1 might function on ABA homeostasis at the post-translational
level. These findings elucidate the molecular mechanisms by which StXERICO1, a RING-H2 type
E3 ubiquitin ligase, enhances drought resistance through increased ABA accumulation, how its
expression is regulated by miRNA, and how it exerts its function through interactions with other
proteins. The results also provide a potential candidate gene for subsequent precision molecular
breeding aimed at improving crop drought resistance.

Keywords: potato (Solanum tuberosum L.); StXERICO1; drought tolerance; abscisic acid; miRNA

1. Introduction

Extreme weather is one of the primary factors limiting global crop yields. Between
1964 and 2007, global droughts and high-temperature events led to a 9–10% reduction in
cereal production [1]. Due to extreme drought conditions, which have now changed to
a compound of dry-hot conditions, there is a possibility that maize yield reductions may
increase from 7% to 31% in the future [2]. Potato (Solanum tuberosum L.), ranking as the third
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most consumed crop globally following rice and wheat, is considered drought-sensitive
and susceptible to yield loss due to drought stress. Assessing the future climate change
impacts on potato production in Prince Edward Island, Canada, reveals that by the 2070s,
potato yields are expected to decline by 48% to 60%, with even more significant drops of
63% to 80% projected by the 2090s [3].

Protein ubiquitination, a post-translational modification, plays a crucial role in regu-
lating protein function and stability in eukaryotic cellular activities [4,5]. This modification
also plays key roles in plant growth, development, and both biotic and abiotic stress re-
sponses and adaptation by regulating the abundance, activity, or subcellular localizations
of various regulatory polypeptides and enzymes. The process of protein ubiquitination
involves the sequential actions of ubiquitin-activating (E1), ubiquitin-conjugating (E2),
and ubiquitin ligase (E3) enzymes. Importantly, diverse E3 ligases are involved in these
regulatory pathways, mediating phytohormone and light signaling or other pathways [6,7].
In particular, RING (Really Interesting New Gene) E3 ligases are considered key regulatory
components involved in plant responses to abiotic stresses [8]. The distinction between
the two canonical RING domain proteins, RING-HC (C3HC4) and RING-H2 (C3H2C3),
is based on the presence of His and Cys at the fifth metal ligand position, respectively [9].
The RING-H2 gene family is the most abundant type of RING-type E3 ubiquitin ligases,
with a total of 241 members reported in Arabidopsis, 249 in Populus, and 292 in flax [10–12].

MicroRNAs (miRNAs) are non-coding RNAs that are widespread in eukaryotes, typi-
cally 20 to 24 nucleotides in length. In plants, miRNAs primarily regulate gene expression
negatively by cleaving mRNA or inhibiting translation, participating in the regulation
of various biological processes such as plant morphogenesis, cell differentiation, tissue
formation, metabolism, growth and development, hormones, signal transduction, and
response to various stresses [13–15]. Research has shown that drought stress can stimulate
the production of multiple miRNAs in plants and alter their expression. These miRNAs par-
ticipate in forming a complex gene regulatory network to cope with and adapt to drought
stress by interacting with specific target genes. Therefore, miRNAs play a crucial role in the
plant’s response to drought stress [16,17].

XERICO (Greek for ‘drought tolerant’), a RING-type E3 ubiquitin ligase gene, en-
codes a small protein with 162 amino acids that can regulate abscisic acid (ABA) levels
and promote drought tolerance when overexpressed in Arabidopsis thaliana [18]. There
were two RING-H2 genes, ZmXERICO1 and ZmXERICO2, in maize (Zea mays), and the
overexpression of these genes conferred improved drought tolerance in both Arabidopsis
and maize [19]. A RING-H2 zinc finger from P. trichocarpa is identified as the closest ho-
molog of Arabidopsis XERICO, and overexpression of PtXERICO confers an enhanced
drought stress tolerance in Arabidopsis and poplars [20]. CBF4/DREB1D represses XERICO
to attenuate ABA, osmotic, and drought stress responses in Arabidopsis [21]. However, there
is no evidence yet regarding whether and which miRNAs are involved in the regulation of
XERICO gene expression.

Based on our previous RNA-seq results in potato plants during drought-rehydration
cycles [22], we found that a potato XERICO gene was highly responsive to drought stress
and exhibited differential expression under drought and re-drought treatments compared
to the control and rehydration treatments. In this study, we cloned and characterized
StXERICO1 from a diploid potato and analyzed its expression pattern using RNA-seq and
qRT-PCR. We also investigated the effects of overexpression and CRISPR/Cas9-induced
mutation on drought resistance, ABA accumulation, and the potential underlying mech-
anisms in both potato and tobacco plants. Through 5′ RLM-RACE, dual luciferase assay,
and virus-based microRNA silencing experiments, we verified that StXERICO1 is a tar-
get molecule of novel-miR1730-3p. In addition, a yeast two-hybrid assay revealed that
StXERICO1 protein interacts with StUBC (an E2 ubiquitin ligase) and StTLP (a Tubby-like
protein). These findings provide insights into the molecular mechanisms of StXERICO1 in
enhancing drought resistance and ABA accumulation, as well as its regulation by miRNAs
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and protein interactions. The results also identify StXERICO1 as a potential candidate gene
for future molecular breeding aimed at improving crop drought resistance.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

The diploid clones CIP 703541 of Solanum tuberosum group Phureja and CIP706205
(Solanum ajanhuiri Juz. & Bukasov, Jancko Sisu Yari) of Solanum tuberosum group Ajanhuiri
from the International Potato Center (CIP), along with Nicotiana benthamiana and Nicotiana
tabacum cv. Xanthi from the Research Section of Stress Biology of Plants, Yunnan Normal
University, were used in this study. The plants were grown on soil in a growth chamber or
on solid Murashige and Skoog (MS) medium (pH 5.8) containing 3% (w/v) sucrose in a
growth room at 24 ± 1 ◦C under 16-h light/8-h dark cycles.

2.2. Cloning and Sequence Analysis of StXERICO1 Gene

The full-length StXERICO1 cDNA was cloned from the cDNA of Solanum tuberosum
CIP706205. The amplified fragment was ligated into a cloning vector using the pBM16A Topos-
mart Cloning Kit (Biomed, Beijing, China) and sequenced at Sangon Biotech to ensure accuracy.
The StXERICO1 gene was translated into an amino acid sequence using DNAMAN version
9.0 software. Using online tools Protparam (https://web.expasy.org/protparam/, accessed on
31 March 2022), we analyzed the physical and chemical properties of the StXERICO1 protein.
The homology of the StXERICO1 protein was analyzed using BLASTP in the National Center
for Biotechnology Information (NCBI) database (https://blast.ncbi.nlm.nih.gov/Blast.cgi,
accessed on 31 March 2022). Multiple sequence alignment and phylogenetic analysis were
performed using both DNAMAN version 9.0 software and MEGA version 7.0 software. The
neighbor-joining (NJ) method was used to construct the phylogenetic tree with 1000 bootstrap
replicates, and default parameters were applied for the remaining settings. All primers used
in this assay were listed in Supplementary Table S1.

2.3. RNA Extraction and Gene Expression Patterns Analysis

The potato variety CIP706205 (Solanum ajanhuiri Juz. & Bukasov, Jancko Sisu Yari)
was used as the experimental material. After rooting in tissue culture, the plantlets were
transplanted into pots containing a mixed substrate and grown for one month. Drought
stress was induced by withholding irrigation, following the method described by Chen
et al. [22]. When the leaves began to curl after a week of restricted watering, they were
collected as samples for mild drought. Once the leaves became fully curled and wilted,
they were collected as samples for severe drought. The potato plants were then re-watered.
After one day of recovery, the curled leaves fully unfolded and were collected as samples
for rehydration. The potato plants were subsequently subjected to a second dehydration
treatment. When the same phenotypes reappeared, the leaves were collected as samples
for mild re-drought and severe re-drought, respectively. The leaves from normally watered
plants were collected as the control.

Total miRNA and RNA were extracted from samples under different treatments using the
DP504 miRcute miRNA extraction kit (Tiangen, Beijing, China) and the DP441 RNAprep Pure
Plant Kit (Tiangen, Beijing, China), respectively. First-strand cDNA was synthesized using
the KR221 miRcute miRNA cDNA First-Strand Synthesis Kit (Tiangen, Beijing, China) and
the RR407A Prime Script RT reagent Kit (TaKaRa, Beijing, China). Three biological replicates
were used for each treatment. Real-time quantitative reverse transcription polymerase chain
reaction (qRT-PCR) analysis was conducted using TB Green® Premix Ex Taq TM Π (TaKaRa,
Beijing, China) on a LightCycler 960 (Roche Diagnostics, Basel, Switzerland). Three technical
replicates were performed for each biological replicate. U6 and StEF1a were used as internal
controls to normalize the expression of miRNA and mRNA, respectively. The relative gene
expression level was determined using the 2−∆∆Ct method.

The transcriptome dataset of StXERICO1 from our research was downloaded from Spud
DB (https://spuddb.uga.edu/, accessed on 1 August 2022) and from the National Center
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for Biotechnology Information Sequence Read Archive (SRA) database (accession numbers:
PRJNA661171). The expression patterns of StXERICO1 were analyzed across different tissues,
various abiotic stresses, and different hormone treatments. Data processing was conducted
using Excel. FPKM was used to analyze expression pattern data from different tissues,
while Log2

FoldChange was applied to expression profile data under abiotic stress and hormone
treatments. The processed data were visualized using TBtools software (v1.120).

2.4. Vector Construction for Overexpression and Knockout of StXERICO1 in Transgenic Plants

The coding sequence of the StXERICO1 gene was amplified using a high-fidelity
polymerase and then inserted downstream of the 35S promoter in the PEZR_(K)-LN plant
expression vector using In-Fusion cloning techniques. Agrobacterium strain EHA105 was
used to transform both potato (CIP 703541) and tobacco (Nicotiana tabacum cv. Xanthi).
Potato was transformed using the stem transformation-regeneration method [23]. The
regenerated plants were initially screened for growth on a selective medium supplemented
with 50 mg·L−1 kanamycin. Due to the phenomenon of chromosome doubling in the potato
stem transformation-regeneration method, the chromosome ploidy of the regenerated
positive lines was detected using flow cytometry. Genomic DNA was extracted from each
regenerated diploid plant for PCR amplification to confirm the presence of StXERICO1,
while total RNA was isolated for expression analysis of StXERICO1 using qRT-PCR. After
verification, the lines were used in all subsequent experiments. Tobacco was transformed
using the leaf disk transformation-regeneration method. Following regeneration and
DNA/RNA validation, the T0 transgenic tobacco plants were self-crossed, and the resulting
T1 seeds were used for all subsequent experiments.

The knockout of StXERICO1 in potato was achieved using CRISPR/Cas9-mediated
genome editing technology, as described in our recent publication [24]. In brief, the
knockout vector targeting StXERICO1 was constructed. The coding sequence of StXERICO1
was analyzed using the CRISPR-P tool 2.0 online website (http://cbi.hzau.edu.cn/cgi-bin/
CRISPR2/CRISPR, accessed on 2 March 2023), and a 20 nt single-guide RNA sequence was
selected. The primer was annealed, diluted 10-fold, and then ligated onto the CRISPR/Cas9
knockout vector using the Bsa I restriction enzyme. Subsequently, the constructed vector
was introduced into Agrobacterium strain EHA105 for the transformation of potato via
the stem transformation-regeneration method [23]. Following this, the diploid lines were
identified using flow cytometry. Genomic DNA was extracted from each regenerated
diploid plant for PCR amplification. PCR amplicons were then cloned into the pBM16A
vector (Biomed, Beijing, China), and 10 clones were sequenced to confirm the types of
mutations at the target sites.

2.5. Assessment of Drought Resistance and ABA Content in Soil-Grown Transgenic Tobacco and
Potato Plants under Drought Stress

Transgenic and wild-type (WT) potato plants were planted into pots containing a
mixed substrate and grown for at least a month. Drought stress was applied by withholding
irrigation. When the leaves of the plants were fully curled and wilted after approximately
16–17 days of drought treatment, the plants were re-watered.

Approximately 150 mg of each tissue sample was collected, flash-frozen in liquid
nitrogen, finely ground to a powder, and stored at −80 ◦C until analysis. The extrac-
tion, purification, and quantification of ABA were performed following the method [25].
The supernatants were transferred to glass vials and were analyzed by HPLC-MS/MS
(LCMS-8040, Shimadzu). Measurements were conducted using an LC-20AD liquid chro-
matography system (Shimadzu). Three replicated leaf samples were analyzed for each
plant type.

2.6. Assessment of Growth in Transgenic Potato Plants under ABA Treatment and Normal Conditions

Thirty-day-old transgenic and wild-type (WT) potato plants grown in tissue culture
were used for ABA treatment. Apical buds of similar length were placed on solid Murashige
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and Skoog (MS) medium (pH 5.8) containing 15 µM and 20 µM ABA, respectively. After
two weeks, the longest root of each of the three plants from each line was measured and
photographed. In addition, we measured and photographed the shoot height and root
length of transgenic lines and wild-type potato plantlets.

2.7. Prediction and Experimental Verification of Cleavage Site of StXERICO1 by miRNAs

The miRNA cleavage site of the StXERICO1 gene was predicted using the bioin-
formatics website psRNATarget (https://www.zhaolab.org/psRNATarget/, accessed on
31 March 2023). The predicted miRNA cleavage site was experimentally confirmed through
a 5′ RLM-RACE assay using the FirstChoice® RLM-RACE Kit (Thermo Scientific, Waltham,
MA, USA). Specific primer sequences for the 5′ RLM-RACE were designed using Geneious
software (version 9.02) as Supplementary Table S1. After nested PCR amplification, the
PCR product was gel-purified, ligated with the pBM16A vector, and 10 clones were se-
quenced. Geneious V9.02 software was used to verify the availability of sequencing peak
map results, followed by sequence alignment to determine the cleavage site and efficiency
on the StXERICO1 transcript by novel-miR1730-3p.

2.8. Dual Luciferase Assay in N. benthamiana Leaves

In this study, the sequence pairing StXERICO1 with novel-miR1730-3p was integrated
into the pGreenII0800-LUC (LUC) vector to obtain the StXERICO1-LUC recombinant plas-
mid. Subsequently, mutations were introduced to the target gene sequence sites while
maintaining the amino acid sequence unchanged, forming multiple mismatch bases. This
modified construct was fused with the LUC vector and named mXERICO1-LUC. A novel-
miR1730-3p precursor sequence was cloned from the CIP706205 genome using a Plant
Genomic DNA Extraction Kit (Tiangen, Beijing, China). The novel-miR1730-3p precursor
sequence was then constructed into the PEZR_(K)-LC vector and named LC-Pre-miR1730-
3p. The constructed plasmid was transformed into A. tumefaciens (GV3101, pSoup-P19).
Positive clones were selected and cultured overnight at 28 ◦C with shaking at 200 rpm. The
bacteria were then suspended in MMA solution (10 mM MES, 10 mM MgCl2, 0.2 mM ace-
tosyringone, pH 5.8) until the OD600 concentration reached approximately 0.7–0.8 and were
co-transformed into N. benthamiana leaves. Samples were taken from the N. benthamiana
leaves infected with A. tumefaciens, and the activity of LUC (Firefly luciferases) and REN
(Renilla luciferases) was determined using the Dual Luciferase Reporter Gene Assay Kit
(Beyotime Biotechnology, Shanghai, China). Each experiment included three independent
biological replicates.

2.9. Construction Virus-Induced Silencing Vector and Virus-Based MicroRNA Silencing

STTM_novel-miR1730-3p was amplified with three primers. After PCR amplification,
the PCR product was gel-purified and ligated into the pTRV2 vector using the In-Fusion
technique. This ligation was performed with the ClonExpress II One Step Cloning Kit
(Vazyme, Nanjing, China).

TRV2-GFP, TRV2-PDS, TRV2-STTM_novel-miR1730-3p, and TRV1 vectors were trans-
formed into A. tumefaciens (GV3101, pSoup-P19). Positive clones were selected and incubated
overnight at 28 ◦C with shaking at 200 rpm. The bacteria were suspended in MMA solution
(10 mM MES, 10 mM MgCl2, 0.2 mM acetosyringone, pH 5.8) until the OD600 concentration
reached approximately 0.7–0.8. Co-cultivation of TRV2-GFP, TRV2-PDS, TRV2-STTM_novel-
miR1730-3p, and TRV1 was performed separately. The stem sections of S. phureja tissue
culture plantlets (CIP 703541), cultured for 3 weeks, were soaked in the resuspension of
the corresponding combination after the roots were trimmed with sterile scissors and then
transplanted into the soil 15 min later. Ten stem sections per combination were planted in a
temperature-controlled and moisture-controlled incubator. After 3 weeks, the newly sprouted
leaves were harvested for RNA and miRNA extraction, which were then converted into cDNA
for qRT-PCR to assess the silencing efficiency of silenced plants. Three biological replicates
and three corresponding technical replicates were used for each qRT-PCR.

https://www.zhaolab.org/psRNATarget/
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2.10. Yeast Two-Hybrid (Y2H) Assay

The protein translated by StXERICO1 was submitted to the STRING online software
(Version: 11.0) for predicting interacting proteins, selecting Arabidopsis thaliana as the
reference organism. High-scoring interactions were identified with StUBC and StTLP
proteins. To verify whether StXERICO1 interacts with StUBC and StTLP, we constructed the
pGBKT7-StXERICO1 decoy vector, as well as the StUBC-AD and StTLP-AD prey vectors.
The pGBKT7-StXERICO1 plasmid was transferred into Y2H Competent cells, while the
StUBC-AD and StTLP-AD plasmids were transferred into Y187 Competent cells. The
toxicity and self-activation activity of the pGBKT7-StXERICO1 decoy vector were verified
on SD/-Trp and SD/-Trp-His-Ade-X-α-gal solid yeast medium. Subsequently, pGBKT7-
StXERICO1, StUBC-AD, and StTLP-AD were co-cultured to produce hybrid offspring. They
were inoculated on SD/-Trp-Leu double-dropout solid medium and SD/-Trp-Leu-Ade-
His-X-α-gal quadruple-dropout solid yeast medium, respectively, and their growth was
observed at 29 ◦C.

2.11. Statistical Analysis

Statistical analyses were performed using SPSS Statistics 20 (SPSS Inc., Chicago, IL,
USA). The data were subjected to one-way analysis of variance (ANOVA) and are presented
as means ± standard deviation, based on a minimum of three replicates. Mean comparisons
were conducted using Duncan’s test, with statistical significance defined as a p-value less
than 0.05.

3. Results
3.1. Characterization and Spatial-Temporal Expression Analysis of StXERICO1 in Potato Plants

After carefully analyzing transcriptome data of diploid potato plants during drought–
rehydration cycles [22], we found that a potato XERICO gene was highly responsive
to drought stress. Based on the publicly available potato genome models [26] and our
transcriptome data, this gene was cloned and named StXERICO1.

StXERICO1 contained a complete Open Reading Frame (ORF) 459 bp encoding 152 amino
acids, which includes an N-terminal transmembrane (TM) domain and a RING finger domain
located at the C-terminus (Figure 1A). Blast analysis revealed that the protein encoded by
the StXERICO1 gene shares 100% amino acid sequence identity with KAH0706774.1 in the
NCBI database. Physicochemical properties and phosphorylation site analysis showed that
the relative molecular weight of the StXERICO1 protein is 17.232 kDa, with a theoretical
isoelectric pI of 5.03. The protein contains eleven Ser sites, three Thr sites, and one Tyr site,
which may significantly impact its function. Phylogenetic analysis of the eight XERICO
homologs demonstrated that monocotyledonous and dicotyledonous plants cluster into
distinct branches, reflecting evolutionary conservation and clear divergence between these
groups (Figure 1B). StXERICO1 is highly homologous within the Solanaceae family, showing
95.39% similarity to the XERICO protein in pepper. In contrast, the similarity between the
potato XERICO protein and maize XERICO protein is only 34.60% (Figure 1C).

The StXERICO1 gene exhibited varied expression across different organs of the potato
plant, with higher expression levels observed in mature whole fruits, sepals, carpels, and
stolons and the lowest levels in leaves (Figure 2A). StXERICO1 expression was strongly
induced by abiotic stresses and hormone treatments (Figure 2B). Specifically, after 24 h of
mannitol treatment, StXERICO1 expression increased by 30.88% compared to the control. In
contrast, after 24 h at 35 ◦C, expression decreased to 1.46 times that of the control. Following
24 h of treatment with 50 µM GA3 and 50 µM ABA, StXERICO1 expression increased by
0.46 times and 1.08 times, respectively (Figure 2B).
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cording to the qRT-PCR results, mild drought and re-drought induced significant in-
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Figure 1. StXERICO1, a RING-H2 type E3 ubiquitin ligase, from Solanum tuberosum L. (A) Structure of
the StXERICO1 protein showing the transmembrane domain (TM) and RING domain. (B) Phylogenetic
tree of StXERICO1 from different plant species. The unrooted neighbor-joining phylogenetic tree based
on StXERICO1 homologs was created using MEGA7.0. (C) The amino acid sequences of StXERICO1
and different plant species were aligned using ClustalW. The RING finger domain is highlighted by a
black box, with the positions of cysteine (C) and histidine (H) indicated by black arrowheads. Identical
amino acids are represented in red, while similar amino acids are shown in blue.

Notably, StXERICO1 expression was highly responsive to drought stress, as demon-
strated by our RNA-seq and qRT-PCR results. As shown in Figure 2C, StXERICO1 ex-
pression exhibited rhythmic changes during cycles of drought, hydration, and re-drought.
According to the qRT-PCR results, mild drought and re-drought induced significant in-
creases in StXERICO1 expression levels, with a 3.6-fold and 2.9-fold increase, respectively,
compared to the corresponding control and the rehydration treatment. In contrast, rehy-
dration after drought treatment significantly decreased the expression level, and severe
drought and re-drought also led to a slight decline in StXERICO1 expression. This suggests
that StXERICO1 can rapidly respond to drought stress. The RNA-seq and qRT-PCR results
exhibited a similar trend, with a correlation coefficient of 0.821 (Figure 2C).
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3.2. Effects of Overexpression and Knockout of StXERICO1 on Growth, Drought Resistance, and
ABA Content in Potato Plants

To elucidate the function of the StXERICO1 gene, overexpression and knockout ex-
periments were conducted in diploid potato. In the overexpression experiment, a total of
138 regenerated plantlets were obtained, from which 28 diploid plantlets exhibiting overex-
pression were identified through flow cytometry analysis and PCR verification (Figure 3A).
Subsequently, the StXERICO1 overexpression levels in 10 of these diploid lines were ana-
lyzed by qRT-PCR. As shown in Figure 3B, StXERICO1 expression levels in the 10 transgenic
lines were overall significantly higher than those in the WT (wild type) and empty vector
controls, indicating that overexpression of StXERICO1 greatly enhanced its expression level in
transgenic potato plants. From these lines, we selected three that represented relatively high,
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medium, and low expression levels, labeled 5#, 34#, and 87#, respectively. The StXERICO1
expression levels in these lines were 90-, 40-, and 20-fold higher than those in the WT and
empty vector controls, respectively, for further experimentation.

 
Figure 3. PCR verification (A) and qRT-PCR analyses (B) of StXERICO1 between WT, empty vector,
and transgenic potato lines. Each bar indicates the mean ± SD from three biological replicates.
Different letters indicate statistically significant differences (p ≤ 0.05). CK+: template is positive
plasmid, CK−: template is WT, Water: template is water. The numbers represent different transgenic
potato lines.

To further explore the function of StXERICO1, we attempted to produce null mutants
by targeting an editing site on the exon of StXERICO1 using CRISPR-Cas9-mediated
genome editing. A single-target knockout vector was constructed as shown in Figure 4A,
using our previously described method [24]. After co-culture with Agrobacterium tumefaciens
containing the knockout vector, 22 regenerated plantlets were obtained. Flow cytometry
analysis revealed that only three diploid genome-editing lines, KO-48#, KO-29#, and
KO-6#, were successfully created. Sequencing of the target gene fragment indicated that
one homozygous diploid mutant line, KO-48#, was finally obtained with a 1-nucleotide
insertion (Figure 4B), which was used for subsequent experiments.
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StXERICO1 with target sites. gRNA sequences and PAM are marked. (B) The mutation pattern of
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letter T.

Phenotypic observations of these transgenically modified potato plants showed that
StXERICO1 overexpression inhibited shoot and root growth to some extent, which generally
correlated with the overexpression levels of StXERICO1. For example, lines 5# and 34#,
which exhibited higher overexpression levels (Figure 3), also showed greater growth
inhibition in shoots and roots. Conversely, line 87#, which had lower overexpression levels,
demonstrated no significant growth inhibition (Figure 5). On the other hand, the mutant
line, KO-48#, which contains a 1-nucleotide insertion (Figure 4), promoted shoot and root
growth in the mutant plantlets to some extent compared to the WT control (Figure 5).
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Figure 5. Effects of overexpression and knockout of StXERICO1 on shoot and root growth in
potato plantlets. (A) Phenotypic observation of transgenic lines and wild-type potato plantlets.
(B) Measurement of shoot height and root length in potato plantlets. Representative pictures were
taken after 2 weeks of tissue culture. Scale bar, 1 cm. Different letters indicate statistically significant
differences (p ≤ 0.05).

To test the responses of these transgenically modified potato lines to ABA sensitivity,
terminal shoots from potato plants of the same age were cut to equal lengths and transplanted
into MS medium without ABA and with 15 or 20 µM ABA, respectively. After two weeks
of culture, the growth phenotype was observed, and the length of regenerated roots was
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measured. As shown in Figure 6, after two weeks of treatment with 15 µM ABA, both the
transgenic lines and WT exhibited decreased root growth; notably, the OE-5# line showed
almost no rooting. Following two weeks of 20 µM ABA treatment, it was evident that the WT
could still root to some extent, while the three overexpression lines showed almost no root
development (Figure 6, the WT control shows a root length of 0.99 cm). On the other hand,
the rooting performance of the knockout line KO-48# was similar to those of the wild type
(WT) when grown in an MS medium supplemented with 15 or 20 µM ABA (Figure 6).
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Figure 6. Overexpression of StXERICO1 confers hypersensitivity to ABA treatment in transgenic lines
of potato. (A) Effects of ABA treatment on the root growth of WT and transgenic lines. Representative
pictures were taken two weeks after terminal shoots were grown in MS medium supplemented with
15 µM ABA, and 20 µM ABA, respectively. Scale bar, 1 cm. (B) Measurement of root length in potato
plantlets. Each bar indicates the mean ± SD from three biological replicates. Different letters indicate
statistically significant differences (p ≤ 0.05).

To evaluate the drought resistance of these genetically modified potato lines, the plants
cultured on solid MS medium were transplanted in nutrient soil and grown in an incubator
for 34 days with regular watering. Watering was then discontinued to observe the drought
resistance phenotypes. As shown in Figure 7A, after 17 days of drought treatment, the
plants of both WT and the knockout line KO-48# exhibited severe wilt, and some even died.
In contrast, the three StXERICO1 overexpression lines showed less wilt and demonstrated
significantly better drought resistance. After uniformly rehydrating the drought-treated
plants, the surviving plants returned to normal growth to some extent. However, the
lower leaves of both the wild type and the knockout line could not fully recover, and
some exhibited necrosis. The results clearly showed that overexpression of StXERICO1 in
potato plants significantly enhanced their drought resistance. In addition, the knockout
line KO-48#, with a 1-nucleotide insertion, did not significantly alter its drought resistance
compared to the WT control in this experiment (Figure 7A).

Given that StXERICO1 overexpression can promote drought tolerance by regulating
abscisic acid (ABA) levels in plants [27], we measured the endogenous ABA content of the
overexpressed and wild-type lines. The results indicated that, following drought treatment,
the endogenous ABA contents in the three overexpression lines were significantly higher
than in the wild-type line (Figure 7B). In fact, ABA content was positively correlated with the
levels of StXERICO1 overexpression in the selected lines 5#, 34#, and 87#, which represented
relatively high, medium, and low overexpression levels, respectively (Figures 3 and 7B).
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Figure 7. Overexpression of StXERICO1 enhances drought resistance and endogenous ABA level in
transgenic potato plants. (A) Wild-type and transgenic potato lines planted for 34 days in nutrient
soil were subjected to drought stress for 17 days followed by rehydration. Representative pictures
were taken at 17 days without watering, as well as 2 days after re-watering. (B) Accumulation of
ABA between WT and three transgenic lines. Each bar indicates the mean ± SD from three biological
replicates. Different letters indicate statistically significant differences (p ≤ 0.05).

3.3. Effects of Overexpression of StXERICO1 on Drought Resistance and ABA Content in Tobacco Plants

To further understand the function of the potato StXERICO1 gene in cross-species,
a StXERICO1 overexpression experiment was conducted in tobacco by leaf disk genetic
transformation mediated by Agrobacterium. A total of four regenerated plantlets and T0
seeds were screened and obtained. Subsequently, we selected three StXERICO1 overexpres-
sion lines labeled X1, X2, and X3, respectively. The StXERICO1 expression levels in these
lines were 569-, 169-, and 261-fold higher than those in the WT controls, respectively, for
further experimentation (Figure 8C). Their growth phenotypes are shown in Figure 8B.
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mRNA levels (C) in WT and three independent T1 transgenic tobacco lines. Each bar indicates
the mean ± SD from three biological replicates. Different letters indicate statistically significant
differences (p ≤ 0.05).
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To further evaluate the effect of StXERICO1 on drought resistance in transgenic tobacco
lines, the wild type (WT) and T1 tobacco seeds overexpressing StXERICO1 were sown in
soil and grown in an incubator for one month with regular watering. Watering was then
discontinued to observe the drought resistance phenotypes. As shown in Figure 9, after
16 days of drought treatment, the plants of both WT and transgenic lines exhibited severe
leaf wilting. After uniformly rehydrating the drought-treated plants, most transgenic lines
showed leaf recovery, whereas the wild-type tobacco did not recover significantly. Upon
seven days of rehydration, the leaf growth of transgenic lines was notably superior to that
observed after 2 days of rehydration, while the leaves of wild-type tobacco still exhibited
limited recovery. The data indicate that the overexpression of the StXERICO1 gene confers
higher drought resistance compared to WT (Figure 9).
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Figure 9. Phenotypic analysis of drought resistance in tobacco plants overexpressing StXERICO1.
Wild-type and transgenic tobacco plants were subjected to drought stress for 16 days, followed by a
7-day rehydration period. Representative photographs were taken at the start of the drought stress
(day 0, control), at the end of the stress period (day 16), and then 2 and 7 days after re-watering.

In this study, three transgenic tobacco lines with high expression of StXERICO1 were
identified (Figure 8C). NCED, a key gene in the ABA synthesis pathway, and CYP707A, a
key gene in ABA metabolism, were analyzed using qRT-PCR. The results showed that the
expressions of NtNCED and NtCYP707A increased in these three transgenic lines, overex-
pressing StXERICO1 to some extent (Figure 10A,B). In addition, the content of endogenous
ABA in the transgenic lines X1 and X2 was also significantly increased (Figure 10C), indi-
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cating that the overexpression of potato StXERICO1 gene increased the endogenous ABA
content in the transgenic tobacco lines.
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To further assess the direct interaction between StXERICO1 and novel-miR1730-3p, 
two effector vectors and two reporter vectors were constructed (Figure 12). The inhibitory 

Figure 10. qRT-PCR analysis of NtNCED (A), and NtCYP707A (B) expression levels, along with
the determination of endogenous ABA content (C) in the WT and three transgenic tobacco lines
overexpressing StXERICO1. Each bar represents the mean ± SD from three biological replicates.
Different letters indicate statistically significant differences (p ≤ 0.05).

3.4. Analysis of StXERICO1 Interactions with miRNAs and Confirmation of StXERICO1 as a
Target of the Novel-miR1730-3p

Using the bioinformatics website psRNATarget and integrating our whole transcrip-
tome sequencing data (including miRNAome data), we predicted that a total of 75 miRNAs
could potentially target StXERICO1, as illustrated in Table S2.

To further verify the direct interaction between StXERICO1 and a specific miRNA,
we selected novel-miR1730-3p from our miRNAome data, which is highly responsive to
drought and abundant, to study their interaction using 5′ RLM-RACE. The results indicated
that the transcript of StXERICO1 was cleaved between the 7th and 8th bases of the 5′ UTR
by novel-miR1730-3p, and this cleavage occurred at this location in nine out of the ten
selected clones (Figure 11).

Agronomy 2024, 14, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 10. qRT-PCR analysis of NtNCED (A), and NtCYP707A (B) expression levels, along with the 
determination of endogenous ABA content (C) in the WT and three transgenic tobacco lines over-
expressing StXERICO1. Each bar represents the mean ± SD from three biological replicates. Different 
letters indicate statistically significant differences (p ≤ 0.05). 

3.4. Analysis of StXERICO1 Interactions with miRNAs and Confirmation of StXERICO1 as a 
Target of the Novel-miR1730-3p 

Using the bioinformatics website psRNATarget and integrating our whole transcrip-
tome sequencing data (including miRNAome data), we predicted that a total of 75 miR-
NAs could potentially target StXERICO1, as illustrated in Table S2. 

To further verify the direct interaction between StXERICO1 and a specific miRNA, 
we selected novel-miR1730-3p from our miRNAome data, which is highly responsive to 
drought and abundant, to study their interaction using 5′ RLM-RACE. The results indi-
cated that the transcript of StXERICO1 was cleaved between the 7th and 8th bases of the 
5′ UTR by novel-miR1730-3p, and this cleavage occurred at this location in nine out of the 
ten selected clones (Figure 11). 

 
Figure 11. Validation of StXERICO1 as a target for novel-miR1730-3p using 5′-RLM-RACE. (A) Aga-
rose gel image of 5′ RACE product. (B) Sequencing result of the PCR product. (C) The targeted 
StXERICO1 section and the miRNA sequence. The gene’s coding region is represented in black, 
while the UTR region is in yellow. The putative cleavage site is indicated by a dark pink symbol. 
The vertical arrowheads denote the 5′ ends of the cleaved product, accompanied by the number of 
clones analyzed for StXERICO1. 

To further assess the direct interaction between StXERICO1 and novel-miR1730-3p, 
two effector vectors and two reporter vectors were constructed (Figure 12). The inhibitory 

Figure 11. Validation of StXERICO1 as a target for novel-miR1730-3p using 5′-RLM-RACE.
(A) Agarose gel image of 5′ RACE product. (B) Sequencing result of the PCR product. (C) The
targeted StXERICO1 section and the miRNA sequence. The gene’s coding region is represented
in black, while the UTR region is in yellow. The putative cleavage site is indicated by a dark pink
symbol. The vertical arrowheads denote the 5′ ends of the cleaved product, accompanied by the
number of clones analyzed for StXERICO1.
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To further assess the direct interaction between StXERICO1 and novel-miR1730-3p,
two effector vectors and two reporter vectors were constructed (Figure 12). The inhibitory
effect of the novel-miR1730-3p on StXERICO1 expression was validated using a dual
luciferase assay. The results from the dual luciferase assay showed that co-expression of
StXERICO1 with novel-miR1730-3p significantly decreased the relative LUC/REN value.
However, this inhibitory effect was diminished when mStXERICO1 (mutant StXERICO1)
was co-expressed with novel-miR1730-3p (Figure 12C), indicating that novel-miR1730-3p
decreased the expression level of StXERICO1.
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To confirm that novel-miR1730-3p indeed negatively regulated the expression of 
StXERICO1 in potato, a novel-miR1730-3p gene silencing vector was constructed using 
virus-based microRNA silencing technology (Figure 13A,B). As shown in Figure 13C, the 
novel-miR1730-3p gene-silenced potato plants (TRV_STTM1730) were successfully ob-
tained. Compared with the TRV control, StXERICO1 expression was significantly up-reg-
ulated in the novel-miR1730-3p-silenced plants (TRV_STTM1730) when novel-miR1730-
3p expression was inhibited in the novel-miR1730-3p-silenced plants (Figure 13D). These 
experiments conclusively demonstrated that novel-miR1730-3p can target and cleave 
StXERICO1 transcripts, thereby inhibiting their accumulation in potato plants. 

Figure 12. Novel-miR1730-3p inhibited the accumulation of StXERICO1 transcript. (A) Schematic
representation of gene constructs: Effector vectors are Empty-LC or LC-Pre-m1730-3p, and reporter
vectors are StXERICO1-LUC or mStXERICO1-LUC. (B) Schematic representation of StXERICO1 and
mStXERICO1. Although the amino acid sequence remains unchanged; mutations were introduced
into the novel-miR1730-3p-StXERICO1 matching sequence, resulting in mStXERICO1. Two points
represent perfectly matched base pairs, while red indicates mutant bases. (C) Dual luciferase reporter
assay. Each bar indicates the mean ± SD of three biological replicates. Different letters indicate
statistically significant differences (p ≤ 0.05).

To confirm that novel-miR1730-3p indeed negatively regulated the expression of StX-
ERICO1 in potato, a novel-miR1730-3p gene silencing vector was constructed using virus-
based microRNA silencing technology (Figure 13A,B). As shown in Figure 13C, the novel-
miR1730-3p gene-silenced potato plants (TRV_STTM1730) were successfully obtained. Com-
pared with the TRV control, StXERICO1 expression was significantly up-regulated in the
novel-miR1730-3p-silenced plants (TRV_STTM1730) when novel-miR1730-3p expression was
inhibited in the novel-miR1730-3p-silenced plants (Figure 13D). These experiments conclu-
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sively demonstrated that novel-miR1730-3p can target and cleave StXERICO1 transcripts,
thereby inhibiting their accumulation in potato plants.
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grammatic representation of novel-miR1730-3p structure. (B) Diagrammatic representation of STTM
vector. (C) Diagrammatic representation of sampling timeline. The TRV PDS plants served as a
positive control, which was sampled when leaf lesions appeared. The TRV control plants served as a
negative control. The TRV_STTM1730 plants were novel-miR1730-3p-silenced plants. Representative
images were taken 20 days after planting. (D) Detection of silencing efficiency of novel-miR1730-3p
and its target StXERICO1. Each bar indicates the mean ± SD of three biological replicates. Different
letters indicate statistically significant differences (p ≤ 0.05).

3.5. Analysis of the Interaction between StXERICO1 Protein and StUBC and StTLP Proteins

Using the STRING Online software (version: 11.0), which is designed to predict pro-
tein interactions, we screened two high-scoring interactions involving StUBC and StTLP
proteins. StUBC (accession number Soltu.DM.03G022950.1) is annotated as an E2 ubiquitin
ligase, while StTLP (accession number Soltu.DM.09G022900.1) is characterized as a Tubby-
like protein [26]. The results from the yeast two-hybrid assay showed that the pGBKT7-
StXERICO1 grew colonies on SD/-Trp media, indicating that the pGBKT7-StXERICO1 prey
vector did not exhibit toxicity (Figure 14A). The pGBKT7-StXERICO1 construct did not
yield colonies on SD/-Trp/-His/-Ade triple-deficient media with X-α-gal, indicating that
pGBKT7-StXERICO1 did not exhibit self-activating activity (Figure 14B). The positive con-
trol (pGADT7-T+pGBKT7-53) and experimental groups (pGBKT7-StXERICO1+pGADT7-
StUBC, pGBKT7-StXERICO1+ pGADT7-StTLP) grew colonies on both two- and four-
deficient media with X-α-gal, and the colonies turned blue on four-deficient media coated
with X-α-gal. In contrast, the negative control (pGADT7-T+pGBKT7-lam) group formed
colonies on two-deficient media but did not grow colonies on all four-deficient media
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(Figure 14C,D), suggesting an interaction between the StXERICO1-StUBC and StXERICO1-
StTLP modules.
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4. Discussion

As a drought-sensitive crop, drought resistance in potato is a crucial trait that enables
them to survive and thrive under conditions of water scarcity. Various genetic and molecu-
lar pathways have been identified to contribute to this complex trait [27–29]. XERICO, first
identified in Arabidopsis thaliana, encodes an E3 ubiquitin ligase and has emerged as a sig-
nificant player in the regulation of drought tolerance, which plays a pivotal role in abscisic
acid (ABA) biosynthesis and signaling [18–21]. ABA is a key phytohormone involved in the
regulation of plant responses to abiotic stress, particularly drought [30]. Overexpression
of XERICO has been shown to confer drought tolerance and increase ABA accumulation
in Arabidopsis and other plant species [19,20,25]. XERICO-mediated accumulation of ABA
leads to the activation of ABA-responsive transcription factors, which in turn induce the
expression of a variety of stress-responsive genes. These genes encode proteins involved in
osmoprotection, detoxification, and cellular protection, which are crucial for plant survival
under drought conditions [18–21,25].

In this study, we cloned the StXERICO1 gene from potato, which has an open reading
frame of 459 bp encoding 152 amino acids. The protein it encodes features a structure com-
posed of α-helices and random curls, and it shows sequence similarity to XERICO proteins
from other species, all of which contain conserved TM and RING domains (Figure 1A).
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Phylogenetic analysis revealed that StXERICO1 shares a high degree of similarity with
plants from the Solanaceae family as well as monocotyledonous and dicotyledonous plants,
but they are grouped into separate branches, demonstrating evolutionary conservation
and distinct divergence between the different plant species (Figure 1B,C). This is the first
reported sequence of this gene in the potato CIP706205 (Solanum ajanhuiri Juz. & Bukasov,
Jancko Sisu Yari).

Genes induced by exogenous ABA treatment are recognized for their involvement
in ABA-dependent stress response pathways [31]. StXERICO1 was upregulated by ABA
treatment (Figure 2B), and its expression responded to the drought-rewatering cycle, sug-
gesting its role as a drought-responsive gene. This finding has not been previously reported
in earlier studies, either through analysis or experimentation. Specifically, it exhibited
an increased expression during drought and decreased expression during rehydration
(Figure 2C), a pattern not previously reported. Drought-responsive genes help plants
better adapt to drought conditions and enhance their drought resistance [25]. Therefore,
StXERICO1 may play a role in improving drought resistance in potato plants.

As shown in Figures 7A and 9, overexpression of the StXERICO1 gene clearly allevi-
ated drought-induced wilting and plants’ injury, allowing better recovery upon re-watering.
This indicates that overexpression of the StXERICO1 gene indeed enhanced drought re-
sistance in transgenic potato and tobacco plants (Figures 7A and 9). Furthermore, the
transgenic potato and tobacco plants overexpressed StXERICO1 demonstrated significantly
higher ABA content than their corresponding controls under both watering or drought
stress conditions (Figures 7B and 10C), indicating overexpression of the StXERICO1 gene
indeed induced ABA accumulation. In addition, the measurement of shoot and root length
in transgenic potato lines treated with different concentrations of ABA revealed that over-
expressed StXERICO1 potato lines exhibited greater sensitivity to ABA treatment. These
results suggest a significant regulatory role for StXERICO1 in modulating plant responses
to ABA. In our present experiment, however, knockout of StXERICO1 with a 1-nucleotide
insertion mutation via CRISPR-Cas9-mediated genome editing (line KO-48#) did not result
in a noticeable decline in drought resistance or reduced sensitivity to ABA treatment in
these transgenic potato plants (Figures 7A and 6), as predicted in our previous experi-
mental design. This may be due to the presence of one more XERICO gene in potato, as
occurred in maize [19], where gene redundancy provides a protective mechanism against
the malfunction of one XERICO gene. The detailed mechanism awaits further investigation.

NCED and CYP707A are the key genes in the ABA synthesis pathway [32]. Our results
showed that overexpression of StXERICO1 significantly enhanced the expression levels of
NtNCED and NtCYP707A in transgenic tobacco plants (Figure 10A,B), which may explain
the observed increase in ABA content in the transgenic potato and tobacco plants. These
findings further indicate that overexpression of the StXERICO1 gene enhances drought
resistance in potato and tobacco plants by regulating the expression of ABA biosynthetic
genes and increasing endogenous ABA content.

MicroRNAs, typically ranging from 20 to 24 nucleotides in length, carry out their
functions primarily through complementary binding to specific target sites. This interaction
can result in either the degradation of the target mRNA or the repression of translation [33].
While it is well known that miRNAs interact with numerous genes involved in plant stress
response and adaptation, little is known about the interaction between the XERICO gene
and miRNAs. The virus-based microRNA silencing (VBMS) system has been developed and
widely applied for various plant species [34,35]. Unlike other studies [36–38], we developed
a protocol employing tobacco rattle virus (TRV)-based VBMS vectors to silence endogenous
miRNAs in potato. Through 5′ RLM RACE (cDNA terminal rapid amplification), a dual
luciferase assay, and virus-based microRNA silencing experiments, we confirmed that
novel-miR1730-3p targets the 5′ UTR region of the StXERICO1 gene, resulting in negative
regulation of its expression (Figures 11–13), which means a new method for regulating the
expression of the XERICO gene.
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Ubiquitin-mediated protein degradation plays a key regulatory role in plant growth
and development and is associated with plant hormone signaling [5]. StUBC has been iden-
tified as an E2 ubiquitin ligase [26]. Our yeast two-hybrid assay results clearly demonstrated
an interaction between StXERICO1 and StUBC (Figure 14), suggesting that StXERICO1,
functioning as an E3 ubiquitin ligase, requires combination with StUBC to perform its role.

In addition, StTLP is characterized as a Tubby-like protein, with 96% sequence similar-
ity to AtTLP9 (At3g06380) [39]. The knockout mutant of AtTLP9 showed insensitivity to
ABA, while transgenic plants overexpressing AtTLP9 exhibited heightened ABA sensitivity,
indicating the involvement of AtTLP9 in ABA signaling pathways [39]. Our results demon-
strated a clear interaction between StXERICO1 and StTLP (Figure 14), suggesting that
StXERICO1 may be involved in the ABA signal transduction-dependent pathway. Potato
StXERICO1 may also play a role in ABA homeostasis at the post-translational level, possibly
through interaction with StTLP via ubiquitin/proteasome-dependent substrate-specific
degradation, as reported in Arabidopsis thaliana [27]. The present validation results indicate
the conservation of StXERICO1 function across different species, as its functionality in
Arabidopsis thaliana is also confirmed in potato. This finding is significant for understanding
the mechanistic role of this gene in plant biology and provides valuable references for
molecular studies in related species.

In brief, the role of StXERICO1 in regulating drought resistance in potato is summa-
rized in Figure 15.
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5. Conclusions

The present study characterized a XERICO gene, StXERICO1, from a diploid potato,
investigated its role in enhancing drought resistance and ABA accumulation, and identified
its interaction with the miRNA novel-miR1730-3p, as well as its protein interactions with
StUBC and StTLP. The expression of StXERICO1 was highly responsive to drought, ABA
treatment, and abiotic stresses in potato plants. Overexpression of the StXERICO1 gene
significantly enhanced drought resistance, increased ABA accumulation in transgenic
potato and tobacco plants, and exhibited greater sensitivity to ABA treatment. This was
associated with the upregulation of expression of ABA biosynthetic genes NCED and
CYP707A. Furthermore, the results revealed that StXERICO1 and its encoding protein
interacted with miRNAs and other proteins. The miRNA novel-miR1730-3p targets the
5′ UTR region of the StXERICO1 gene and negatively regulates StXERICO1 expression.
Additionally, StXERICO1 protein also interacts with StUBC and StTLP, suggesting that
StXERICO1 might function on ABA homeostasis at the post-translational level. These
findings elucidate the molecular mechanisms by which StXERICO1, a RING-H2 type E3
ubiquitin ligase, enhances drought resistance through increased ABA accumulation, how its
expression is regulated by the miRNA, and how it exerts its function through interactions
with other proteins. The results also provide a potential candidate gene for subsequent
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precision molecular breeding aimed at improving crop drought resistance. By integrating
XERICO into a molecular breeding program focused on developing resistant crop varieties,
it may be possible to enhance abscisic acid (ABA) biosynthesis and improve overall crop
stress tolerance mechanisms. This could lead to crops capable of maintaining yield stability
in water-limited environments, thereby contributing to global food security.
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