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Abstract: Deposition at oblique vapor incidence angles can lead to the growth of thin films with
dramatically changed morphological features. Herein, thin-film titanium nanocolumnar arrays were
grown on a graphene monolayer/copper foil substrate (TiNCs/Gm-Cufoil) by applying a physical
vapor deposition method, through magnetron sputtering at an oblique angle. Ti-nanocolumnar
arrays with ca. 200 nm length were developed throughout the substrate with different morpholo-
gies depending on the substrate topography. It was found that over the as-fabricated electrocat-
alyst, the electrooxidation reaction of dopamine is facilitated, allowing quasi-reversible electroox-
idation of protonated dopamine to dopamine quinone. Additionally, contrary to works that ap-
peared in the literature, TiNCs/Gm-Cufoil also promotes further quasi-reversible oxidation of leu-
codopaminechrome to dopaminechrome. The electrode exhibited two linear ranges of dopamine
detection (10–90 µM with a sensitivity value of 0.14 µAµM−1cm−2 and 100–400 µM with a sensitivity
value of 0.095 µAµM−1cm−2), a good stability over time of about 30 days, and a good selectivity for
dopamine detection.

Keywords: dopamine electrochemical sensor; thin-film electrode; titanium nanocolumnar arrays;
graphene monolayer; magnetron sputtering; oblique angle deposition

1. Introduction

Neurotransmitters are chemical substances that transfer chemical messages between
the brain cells. Dopamine (DA) is a nitrogen-containing organic compound and a vital
neurotransmitter that regulates multiple functions of the mammalian hormonal, circulatory,
and central nervous systems, playing key functions in human health and cognition [1].
Disturbances in dopamine levels are linked to neurological diseases; for instance, Parkin-
son’s, Alzheimer’s, depression, and more [1]. Therefore, achieving accurate, real-time, and
efficient detection of dopamine levels in the human body is vital.

Noble metal electrocatalysts have been extensively studied for electrochemical oxi-
dation [2,3], and sensing applications at high [4–6] and low temperature [7–9], including
neurotransmitter detection. Although noble metals exhibit great performance in detecting
biomolecules, they are expensive and present restricted selectivity. Thus, non-enzymatic
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detection employing non-noble metal nanoparticles and carbonaceous substances as elec-
trocatalysts is currently dominating the research field of biomolecule electrochemical
sensing [10,11].

Graphene is one of the most attractive carbon nanomaterials with a 2D honeycomb-like
hexagonal lattice composed of sp2-hybridized carbons [12]. Due to its structure, graphene
has one of the larger surface areas to volume ratios among novel 2D crystalline-layered
materials and possesses also excellent electrical conductivity. However, the conductivity of
graphene decreases with increasing thickness (number of layers from 2–13) [13]. Compared
with the few-layer graphene, a graphene monolayer exhibits better properties in many
technological applications due to its high crystallinity and the lack of layers stacking. It has
been shown experimentally that the mechanical properties of graphene are more sensitive
to temperature changes when the number of layers increases [14].

Graphene can be grown or deposited on metallic surfaces with different methods.
Chemical vapor deposition has proven to be one of the most promising methods for
depositing monolayer graphene on metallic substrates [15]. The primary use of graphene
grown on thin-metal films is electrochemical device fabrication, in which conductivity and
electron and hole mobility are critical. As reported in the literature [16], a multilayer “thick”
graphene is formed when nickel is the chosen substrate, while a monolayer “thin” graphene
is obtained when copper is the substrate of choice. Therefore, copper substrates, such as
copper foil, are used to grow a single and bi-layer graphene. Electrochemical biomolecule
detection sensors demand substrates with great electrical conductivity [17]. Transition
metals as substrate materials exhibit suitable properties for electrochemical applications,
such as the ability to form stable complexes, often with profound catalytic activity. Thus,
copper foil seems an ideal choice as a substrate mainly due to its high electrical conductivity
and low cost [18].

In the last few years, titanium and its alloys have been among the most widely explored
and promising materials concerning medical applications [19,20]. In their recent review
study, García-Martín et al. [21] highlighted the extended use of TiO2 in electrochemical
sensing applications due to its electrocatalytic activity. The authors also concluded that Ti
can form coordination bonds with the carboxyl and amino groups. As the DA molecule has
an amino group, it is possible to be selectively detected from Ti-electrocatalysts. Titanium,
despite its proven biocompatibility [22], has not been explored as a basic electrode material
for dopamine electrochemical sensors, as much as might have been expected. The thickness
of the working electrode (i.e., the catalytic layer thickness) as a key factor for the sensor
performance should be methodically studied. Too thin electrodes may lead to the sensor
collapse, while too thick increases the sensor resistance.

Wang et al. [23] explored DA electrochemical detection over a carbon-titanium nitride-
modified glassy carbon electrode (C-TiN/GCE). The as-fabricated electrode achieved a great
limit of detection and excellent sensitivity. The DA electrooxidation was probably catalyzed
synergistically by the carbon and titanium nitride, which enhanced interfacial electron
transfer. Feng et al. [24] modified a glassy carbon electrode (GCE) with a nanocomposite of
titanium nitride (TiN) on reduced graphene oxide (rGO) (TiN-rGO/GCE). The as-prepared
electrode was employed for the co-detection of DA and uric acid in the presence and
absence of ascorbic acid. TiN-rGO/GCE showed a wide linear detection range for both
dopamine (DA) and uric acid (UA). The good selectivity and sensitivity against DA were
attributed to the formation of positive charges on the electrode and hence the electrostatic
attractions between the DA molecules and electrode surface. Recently, Paul et al. [25]
prepared a nanocomposite of metal-organic-framework (MOF) and titanium carbide (Ti3C2)
for DA electrochemical detection. The MOF’s crystalline structure offered electrostatic and
π-π interactions between the DA and the pyromellitic acid, while Ti3C2 performed as the
charge transporter, giving and receiving electrons.

Titanium and its alloys present high biocompatibility, which enables their usage in
(bio)medical applications. As recently shown [26–28], different morphologies of Ti change
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the surface free energy, thus permitting the determination of the optimal surface topography
for each application.

Taking advantage of previous works [29,30] in combination with the importance of
surface chemistry [31] in the performance of electrochemical sensors led us to the fabrication
of nanostructured thin films made of titanium nanocolumns which were grown by oblique
angle deposition with magnetron sputtering on a graphene monolayer Cu foil substrate
(TiNCs/Gm-Cufoil). The development of the Ti-nanocolumnar film is the outcome of the
atomic shadowing mechanism and diffusion processes associated with the quite high
kinetic energy of the sputtered atoms [29]. To our knowledge, similar electrodes have not
yet been examined in international literature. The adopted substrate is expected to impart
to our electrode the expected interfacial electron transfer ability.

2. Results and Discussion
2.1. Morphology and Surface Characterization

The surface of the substrate exhibits two different morphologies: regions with ridges
(the most frequent scenario) and some flat regions (Figure S1a). The AFM characterization
(Figure S1b) reveals the variety in the morphology of the substrate. This variety had
consequences on the morphology of the titanium nanocolumnar film growth which is
also easily discernible by eye (Figure S1c,d). SEM images, Figure 1a,b, show the different
morphologies of the substrate, indicating flat areas and areas of ridges. This difference
might be ascribed to the Cu material topography making graphene wrinkle up in some
areas (Figure 1b).

Figure 1c,d shows top-view SEM micrographs of Ti nanopillars formed on the ridges
of the Gm-Cufoil substrate parallel to the atomic flux during deposition and of those grown
in a region of the substrate with ridges nearly perpendicular to the atomic flux, respectively.
Moreover, some small areas with grown Ti nanocolumns on flat substrate areas were also
observed (Figure 1e). The atomic flux direction during Ti deposition is indicated with a
white arrow in Figure 1c.

The SEM observations are confirmed by the AFM results according to which the
average height of the nanopillars is ca. 200 nm. As can be seen in Figure 2a,b, when the
ridges of the substrate are almost aligned with the direction of the atomic flux during the
deposition of Ti, a well-distributed and homogeneous Ti-nanocolumnar array is developed,
quite similar to arrays obtained on flat Si substrates [29].

However, in the regions where the substrate ridges are nearly vertical to the direction
of the incoming atomic flux, the Ti nanocolumns form only at the tallest features (for
example, at the edges of the ridges), as illustrated in Figure 2c,d, because the step structure
of the ridges causes shadowing effects that prevent the formation of nanocolumns [10]. The
atomic flux direction during Ti deposition is indicated with a white arrow in Figure 2a,c.

The electrode composition is given in Table 1. Cu is at the highest concentration
(66.7 at. %), then C is the second element in abundance (15.6 at. %), and the Ti atomic
percentage was found to be 6.3 at. %. N, O, and part of the C can be ascribed to the exposure
of the electrode at ambient conditions. In fact, in previous work [32], it was shown that
crystalline TiO2 rutile was formed on the first outer atomic monolayers of the columns,
but such a layer did not significantly affect the performance of the Ti nanocolumns as
bioelectrodes in PBS [30].

Generally, Ti nanocolumns have been grown throughout the substrate, with different
morphologies and distributions depending on the characteristics of each substrate area. As
illustrated in Figure 3, depending on the orientation of the steps to the atomic flux during
the deposition, a shadow can be created, that might prevent the formation of nanocolumns
or can have a negligible effect. That depends on whether the ridges are perpendicular or
parallel to the in-plane projection of the atomic flux, respectively.
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Table 1. Elemental analysis of the TiNCs/Gm-Cufoil.

Element Weight % Atomic %

C 3.8 15.6
N 2.8 9.7
O 0.3 1.7
Ti 6.2 6.3
Cu 86.9 66.7
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2.2. Electrochemical Performance of the TiNCs/Gm-Cufoil

The dopamine (DA) electrochemical reaction mechanism was initially investigated
on the surface of the TiNCs/Gm-Cufoil electrode with CV measurements at various scan
rates. Then, using the DPV technique, the electrochemical detection characteristics of
the as-fabricated electrode for the dopamine molecule were evaluated. Additionally, the
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long-term stability, storage ability, and selectivity of the electrode were estimated, using
the CA technique.

2.2.1. Dopamine Electrooxidation Reaction Mechanism

The CV behavior of the as-fabricated electrode in PBS (CV blind) and then in the
0.1 mM dopamine in PBS solution is shown in Figure 4a. All voltages are relative to
Ag/AgCl reference electrode. In the case of pure PBS, one well-defined redox pair of peaks
appears. The one during the direction of positive scanning is observed at around 0.03 V,
and the other during the negative potential scanning, at ca. −0.30 V. According to the
literature [33], the observed anodic peak could be assigned to TiO2 formation, while the
cathodic peak might be attributed: (1) to the formation of lower valence states, specifically
Ti3+ formed in the TiO2 anodic oxidation film, (2) the titanium hydroxide, and (3) the H+

adsorbed on the reduction of the oxide, formed previously in the anodic scan.
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Figure 4. Cyclic voltammograms of the TiNCs/Gm-Cufoil electrode in the absence and presence of
0.5 mM DA, in 0.1 M PBS electrolyte of pH = 7.0, at T = 36.6 ◦C, and 20 mV/s scan rate (a), CV curves
of the TiNCs/Gm-Cufoil electrode at different scan rates—in 0.5 mM DA, in 0.1 M PBS electrolyte (b),
CVs of the TiNCs/Gm-Cufoil electrode at 5 and 10 mV/s in 0.5 mM DA, in 0.1 M PBS electrolyte (c),
Corresponding oxidation peak current (at +0.35 V) vs. square root of scan rate (d).

However, according to Azumi et al. [34], the second option is more likely to occur
at potential values above 3 V, while taking into consideration the type of electrolyte used
herein which does not contain compounds that can give H+, the third option is not very
likely. Thus, for the synthesized electrode, the appearance of the cathodic peak is at-
tributed to the first option. The cathodic peak potential depends on the anodic potential
threshold. Usually, it appears at around −0.36 V [33], whereas, in this work, it appears at
approximately −0.30 V.

In the presence of dopamine (Figure 4a), during the forward scanning, a broad
oxidation peak appears with a peak potential at around +0.35 V. According to the
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literature [35–39], when the pH value of the dopamine solution falls in the interval between
5.8–7.0, protonated dopamine (PDA) is the predominant species in the diffusion layer.

According to the generally accepted mechanism [35–39], the oxidation peak at +0.35 V
could be ascribed to the 2e− transfer due to the electrochemical oxidation reaction of the
PDA to dopamine quinone (DAQ) (Figure 4a). However, for further examination of the
dopamine oxidation reaction (DOR) mechanism over our electrode, CV measurements at
different scan rates were performed, as shown in Figure 4b,c. The CV curves are similar
from 20 to 100 mV/s, indicating an oxidation peak (PDA→DAQ) at ca. +0.35 V. The
increment of the scan rate results in peak currents increment and shift of peak potentials to
more positive values, thus suggesting a diffusion-controlled process. This is validated by
Figure 4d, where the anodic peak currents are quite linearly proportional to the square root
of the scan rate [40–42].

However, this is not the case for the lower scan rates (Figure 4c). The voltammograms
at 5 and 10 mV/s during the forward scanning also present the oxidation peak at ca. +0.35 V
(PDA→DAQ) but is followed by a smaller wide reduction peak at ca. +0.17 V, which is
associated with DAQ to PDA reduction [21]. The peak separation is

∣∣Ep,a − Ep,c
∣∣ = 180 mV,

suggesting a quasi-reversible redox behavior. DAQ must remain adsorbed to the electrode
surface to reduce back to dopamine during the backward scanning [40]. However, the
reduction peak current is much smaller than the oxidation, indicating that PDA oxidation
is quasi-reversible and DAQ desorbs before the cathodic scan. The PDA→DAQ redox
reaction is a 2e− transfer, according to which DAQ is formed and is partly reduced back
to PDA [35–38]. The second oxidation peak appears at ca. −0.25 V and the reduction
peak at ca. −0.14 V, during the backward scanning, yielding a 110 mV peak separation
(∆Ep) (Figure 4c). The lower peak separation of the second redox couple indicates that the
affiliated redox reaction is faster than the PDA→DAQ but still retains a quasi-reversible
behavior. When amine form is deprotonated, then an autochemical ring closure reaction
follows, forming leucodopaminechrome (LDAC) (Figure 5) [35–38].
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Figure 5. Suggested dopamine electrooxidation mechanism over the TiNCs/Gm-Cufoil electrode.
A dopamine molecule in the form of protonated dopamine (PDA) is oxidized to dopamine
quinone (DAQ), which is auto-converted to leucodopaminechrome (LDAC), which is oxidized
to dopaminechrome (DAC).

According to the literature [35], the oxidation peak at −0.25 V is ascribed to LDAC
oxidation to dopaminechrome (DAC) (LDAC→DAC), and the reduction peak at −0.14 V
to the reduction of DAC back to LDAC. It is generally accepted [35–39] that LDAC is easier
to oxidize than PDA, undergoing a 2e− oxidation process that leads to DAC formation.
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As the bibliography confirms [43], during anodic oxidation, different types of titanium
oxides may be formed on the titanium surface (e.g., TiO, TiO2, Ti2O3, and Ti3O5). Among
them, TiO2 is the most stable and frequently found oxide, as observed in the oxidation peak
at −0.03 V of the 0.1 M PBS curve, in Figure 4a. Thus, it can be assumed that the PDA to
DAQ and the LDAC to DAC anodic oxidations at ca. +0.35 V and −0.25 V (Figure 4c) can
be catalyzed from the different intermediate oxide formations.

As depicted in Figure 5, the suggested mechanism agrees with the literature [35–37]
following the electron transfer-chemical transfer-electron transfer route. In the literature,
most materials explored for the dopamine electrooxidation reaction favor the first redox
couple [41,44–48], i.e., the electrochemical oxidation reaction of PDA to DAQ.

Over TiNCs/Gm-Cufoil electrode, dopamine electrooxidation reaction is facilitated,
allowing the second redox couple’s reaction (LDAC⇌DAC). The electrode’s distinctive
nanocolumnar arrays being fabricated at θ = 75◦ oblique angle could offer a morphology
with abundant active sites near the interface. Thin-film Ti nanostructures seem to operate
synergistically with the graphene monolayer facilitating charge transfer, thus permitting
the LDAC⇌DAC redox reaction.

2.2.2. Dopamine Calibration Curve and Sensitivity

Figure 6a depicts a series of DPV curves recorded at various DA concentrations
in 0.1 M (mol L−1) PBS, for the TiNCs/Gm-Cufoil electrode. A linear increase trend is
observed at DA concentrations from 10 µM to 90 µM DA, while a second linear range is
observed for higher concentrations from 100 µM to 400 µM DA (Figure 6b). The respectively
obtained regression equations are: Ip (µA) = 4.97 + 0.14 × C (µM) with R2 = 0.995, and
Ip (µA) = 11.065 + 0.095 × C (µM) with R2 = 0.987.
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The sensitivity for the first linear range (10–90 µM) was calculated at 0.14 µAµM−1cm−2,
and for the second (100–400 µM) at 0.095 µAµM−1cm−2, using Equation (1) below:

Sensitivity =
S
A

(1)

where S1 = 0.14 (µAµM−1) and S2 = 0.095 (µAµM−1) are the slopes of the first and the
second calibration curve (Figure 6b), respectively, and A = 1 (cm2) is the geometric area of
the working electrode.

The limit of detection (LOD) was calculated using the following equation (Equation (2)):

LOD = 3 ×
(σ

S

)
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where ~3 is the signal-to-noise ratio (S/N) [49,50], σ = 0.31 is the standard deviation of
the y-intercept [51], and S1 = 0.14 is the slope of the lower concentration values, both
graphically calculated of the calibration curve.

2.2.3. Selectivity, Long-Term Stability, and Repeatability

Selectivity is also considered a significant parameter for the operation of electrochem-
ical sensors. Some of the most common interfering compounds co-existing with DA in
the human body, such as ascorbic acid (AA), uric acid (UA), and glucose (Glu) [52], were
chosen to investigate the selectivity of the TiNCs/Gm-Cufoil electrode. The representative
amperometric current response, at a potential close to DA’s oxidation (0.175 V), upon
successive addition of 1 mM DA, Glu, UA, AA, and DA is shown in Figure 7a. The current
response reaches an almost stable value after 75 s. Thus, this time interval (75 s) was chosen
between the interferences’ additions. The DA addition causes an increment of 85% in the
current response, while the addition of Glu and UA only slightly alters the current. Here, it
should be noted, that a small initial current response originates from the addition/drop
of the different interference and does not correspond to an actual current from the inter-
ference detection. Later, AA is added, and a weak current response is observed. Then, at
the 2nd drop of the DA, the respective current is much higher from its 1st drop. This is
explained by the fact that AA can promote DA oxidation and polymerization [24]. In a
neutral environment, PDA is positively charged. In contrast, as the literature confirms, at
neutral pH, 99.9% of AA is in the form of ascorbate (AH−). Additionally, some studies have
shown that excess AA is prone to autoxidation producing dehydroascorbic acid anions
(DHA−) [53]. The positively charged PDA will be electrostatically attracted by the ascorbate
(AH−) and dehydroascorbic acid anions (DHA−), which will inhibit the reduction of DA
on the electrode surface, leading to the formation of polydopamine. The polydopamine
near the electrode surface can adsorb small molecules from the solution and thus promote
the progress of DA electrochemical reactions onto the electrode surface. Other Ti-based
sensors also present negligible responses for various interferences [23,25,54]. Thus, from
the above results, it can be deduced that the tested electrode has good selectivity for the
DA molecule, producing a clearer current response.

The feature of long-term stability was also examined, especially for cost-effective
electrochemical sensors and point-of-care devices [55]. This concerns the capacity of the
sensor to provide continuous and reliable monitoring of the biomolecule of interest.

The I-t curve displayed in Figure 7b represents the continuous response of the
TiNCs/Gm-Cufoil electrode to 0.5 mM DA under a stable potential of 0.175 V, in a 0.1 M
PBS electrolyte solution for 2000 s. As seen, the tested electrode exhibits long-sensing
durability, after reaching its plateau current. To check repeatability and storage stability,
the TiNCs/Gm-Cufoil electrode was conserved for 30 days at 8 ◦C in a 0.1 M PBS solution,
and its current response for 0.5 mM DA was recorded every 6 days (n = 6) under the
same experimental conditions (36.6 ◦C, pH = 7.0, 0.1 M PBS electrolyte) [56]. The resulting
differential pulse voltammograms are depicted in Figure 7c. The examined electrode
delivered an RSD% value of 4.8% between six different measurements, proving its ability to
obtain repeatable current responses when stored in the conditions referred to above, as seen
in Figure 7d. Moreover, the electrode maintained about 68% of its initial current response
after 30 days of storing and periodic use, proving its storage stability. Table 2 lists analytical
data for Ti-based electrodes fabricated for enzyme-free dopamine electrochemical detection,
taken from similar works that appeared in international literature.

As seen in Table 2, we measured a value for the limit of detection (LOD), for 10–90 µM,
higher than others reported in the literature for Ti-based electrodes. The high LOD of
the as-fabricated electrode could be attributed to the Ti-nanocolumnar arrays that grew
non-parallel with the atomic flux, reducing the available active sites for the reagents. The
calibration curve showed two linear ranges, and the latter range had a slightly lower sensi-
tivity. Compared to other works, TiNCs/Gm-Cufoil presents wider linear ranges that permit
operating under considerable dopamine level variations. Moreover, the sensitivities range
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in good levels. The TiNCs/Gm-Cufoil electrode also showed repeatability and acceptable
storage stability. Its good performance toward dopamine oxidation is caused by its internal
structure and active sites, while the relatively high limit of detection could be attributed
to the arrays deposited on the upper parts of the substrate. For future improvements, we
consider eliminating wrinkles from the substrate, which will facilitate uniform coverage
and growth of Ti NCs on the graphene monolayer. This will increase the number of exposed
active sites, reducing thus the LOD.
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Table 2. Comparison of electrochemical activity between the current electrode and others reported
for electrochemical detection of dopamine.

Electrode LOD (µM) Linear Range (µM) Sensitivity
(µAµM−1cm−2) Refs

TiO2/SS (stainless steel) 0.023 50.0–450.0 0.0219 [57]
C-TiN/GCE (glassy carbon electrode) 0.03 0.1–5.0 and 5.0–250.0 9.6 [23]

TiN-rGO/GCE 0.159 5.0–175.0 - [24]
MOF-Ti3C2/GCE 0.11 0.09–0.3 - [25]
TiO2 /GO/GCE 0.027 0.2–10.0 1.55 [54]
TiNCs /Gm-Cufoil 6.63 10.0–90.0 and 100.0–400.0 0.14 and 0.095 This work
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3. Experimental Part
3.1. Materials and Reagents

Disodium hydrogen phosphate anhydrous (Na2HPO4, ≥99%), sodium dihydrogen
phosphate anhydrous (NaH2PO4, >99%), D-glucose monohydrate (99.89%), L-ascorbic acid
(99%), uric acid (≥99%), and dopamine hydrochloride were purchased from the Sigma-
Aldrich Company (Saint Louis, MO, USA). The chemicals used in this investigation were
only for research and development (R&D) use and were used without further purification.
Deionized water was used for all the experimental work. The 25-micron thick Gm-Cufoil
substrate (1 × 1 cm) was bought from the CheapTubes Company (Grafton, VT, USA).

3.2. Synthesis of TiNCs/Gm-Cufoil Electrode

Titanium was deposited on the substrate by direct current magnetron sputtering (mag-
netron head model A320 from AJA Inc., Huntsville, AL, USA) in an ultra-high vacuum
chamber (base pressure in the 10−10 mbar) using argon (Ar) as sputter gas. The Ti target has
a circular shape, 2′′ diameter, and 0.25′′ thick, with 99.995% purity, and it is manufactured
by AJA International (Scituate, MA, USA). An initial buffer layer of continuous Ti with
4 nm thickness was first deposited using the standard parallel configuration between the
target and substrate to increase the adhesion between Gm-Cufoil and the metallic layer.
Subsequently, the substrate tilted 75◦ to fabricate the nanocolumns. A deposition time
of 70 min was selected to obtain nanocolumns with about 200 nm length. The distance
between the circular target (5 cm diameter) and the substrate was 22 cm, the Ar pres-
sure was 1.5 × 10−3 mbar, and the DC power was 300 W. Figure 8 provides a schematic
representation of the fabrication setup [5].
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3.3. Structural Characterization

The TiNCs/Gm-Cufoil electrode microstructure was analyzed by scanning electron
microscopy (SEM, Hong Kong, FEI Verios 460). The surface morphology was examined
by recording atomic force microscopy (AFM, Bruker Dimension Icon, Billerica, MA, USA)
images in non-contact mode using commercial probes (model NT-TP-HRES from NEXT-
TIP, Seattle, WA, USA) with 330 kHz resonance frequency, 40 N spring constant, and a
2 nm nominal radius. The elemental composition of the film was studied by the same
scanning electron microscope attached with an energy dispersive analysis of an X-ray
(EDAX, Pleasanton, CA, USA) analyzer.

3.4. Electrochemical Characterizations

The electrocatalytic behavior of the as-fabricated electrode was tested with cyclic
voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA)
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electrochemical techniques. The electrochemical measurements were performed with the
aid of the PalmSens4 potentiostat/galvanostat in a conventional 3-electrode electrochemical
cell (AMEL, Chem.), using Ag/AgCl (3 M KCl) as the reference electrode (RE) and a
graphite rod as the counter electrode (CE).

All voltages are relative to Ag/AgCl. All the electrochemical measurements were
conducted in a 0.1 M phosphate buffer solution (PBS) of pH = 7.0, while the temperature
was held at 36.6 ◦C with the aid of a recirculating thermostat (Wise Circu-Wisd, TechnoLab,
T’bilisi, GA, USA). For the estimation of the PBS pH, the Henderson-Hasselbalch equation
(Equation (3)) [58] was used:

pH = pKa + log

 [A−
]

[HA]

 (3)

where [A−] and [HA] refer to the base and acid concentrations. Before each measurement,
the solution was purged with N2 gas to create an inert atmosphere, and the working
electrode was electrochemically conditioned from −0.70 to 1.10 V with a scan rate of
100 mV/s until stable cycles were achieved. CV measurements were conducted from
−0.70 to 1.10 V. DPV experiments were recorded from 0.0 to 0.50 V, with step potential
2.0 mV, pulse potential 0.20 V, and pulse time 0.3 s. CA was conducted at a stable potential
of 0.175 V, close to the DA oxidation potential.

4. Conclusions

In the present work, a PVD method by magnetron sputtering at oblique angle (75◦)
was adopted, and the fabrication of a thin film of Ti-nanocolumnar arrays of 200 nm average
height was achieved. Over the as-fabricated electrode, dopamine electrooxidation reaction
is facilitated, allowing the quasi-reversible electrooxidation of protonated dopamine to
dopamine quinone, and contrary to many works reported in the literature, also favors
further quasi-reversible oxidation of leucodopaminechrome to dopaminechrome. This
performance is attributed to the development of a greatly efficient interface permitted
by Ti nanostructure special morphology arrangement. Moreover, the TiNCs/Gm-Cufoil
electrode presented two linear ranges of dopamine detection that permit operating under
considerable dopamine level variation with great stability. However, the selectivity of the
electrode should be further ameliorated.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal14080478/s1. Figure S1. Optical image of the substrate. The red cycle
indicates the flat areas (a), AFM images of the substrate (b), photos of the substrate before (c) and
after deposition (d).
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