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Abstract: Insulated gate bipolar transistors (IGBTs) are widely used in power electronic devices,
and their health prediction problems have attracted much attention in the field of power electronic
equipment health management. The performance degradation of IGBT gate oxide is one of the most
important failure modes. In order to analyze this failure mechanism and the ease of implementation
of a monitoring circuit, the gate leakage current of IGBTs was selected as the fault precursor parameter
for the degradation of their gate oxide performance, and feature selection and fusion were carried out
by using time domain characteristic analysis, grayscale correlation, Mahalanobis distance, Kalman
filter, and other methods. Thus, a health indicator was obtained to characterize the degradation of
IGBT performance, which was used to indicate the degree of aging of the IGBT gate oxide layer.
In this paper, we propose an improved degradation prediction model called MultiScaleFormer,
inspired by advanced design ideas of the iTransformer network architecture, combined with the
health parameters of IGBTs to construct a degradation prediction model for the IGBT gate oxide layer.
MultiScaleFormer showed the highest fitting accuracy compared with the Long Short-Term Memory
(LSTM), Convolutional Neural Network (CNN), Support Vector Regression (SVR), Gaussian Process
Regression (GPR), CNN-LSTM, and Transformer models in our experiment. The mean absolute error
(MAE) of the MultiScaleFormer prediction was as low as 0.0087. Extraction of the health indicator
and the construction and verification of the degradation prediction model were carried out on the
dataset released by the NASA-Ames Laboratory. These results demonstrate the feasibility of the gate
leakage current as a fault precursor parameter for IGBT gate oxide failure, and the feasibility and
accuracy of the MultiScaleFormer prediction model for IGBT performance degradation.

Keywords: IGBT; gate oxide layer degradation; feature fusion; performance prediction;
MultiScaleFormer network

1. Introduction

The function of insulated gate bipolar transistors (IGBTs) is to realize energy conver-
sion output, and they are key power semiconductor components in power conversion
equipment. IGBTs combine the advantages of MOSFET and bipolar transistors, and have
the advantages of a high input impedance, fast switching speed, low switching loss, high
current density, saturation voltage reduction, and strong current control ability. In recent
years, IGBTs have been widely used in military and economic fields such as aerospace,
maritime transportation, rail transit, and new energy power generation, and are expected
to maintain a stable growth trend in the future, with an irreplaceable status and role [1–3].
Due to the rapid development of power semiconductor manufacturing technology, the
size of IGBT modules is becoming smaller, but their external load conditions are growing
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heavier. With their high failure rate, the contradiction between improving the reliability
of power conversion devices and the fatigue failure of IGBTs is becoming increasingly
prominent. As a key aspect, the aging failure of a power conversion device will affect the
normal operation of the whole system, and even cause huge economic losses or catastrophic
consequences in serious cases. How to predict the failure of IGBTs in advance is the key,
and a reliable fault prediction system can predict the degradation trend of IGBTs in their
whole life cycle and provide alarm information to assist the system to sense in advance and
take maintenance measures to avoid serious consequences.

Both reliability-based life prediction and data-driven methods based on fault precursor
parameters have been applied in IGBT fault prediction [4,5]. Reliability-based life predic-
tion methods [6–8] include physical analysis models and experimental statistical models.
Experimental statistical models rely on equivalent conversion from actual working condi-
tions to aging test conditions, and their accuracy is generally low. Physical analysis models
are based on the IGBT failure mechanism, predicting faults through multiple physical field
stress distribution, material parameters, damage, and other parameters. It is necessary to es-
tablish accurate mechanism models and parameters, and there are also great difficulties and
uncertainties in the engineering application of time. Data-driven methods based on fault
precursor parameters refer to predicting faults based on the trends of changes in variables
that can measure the IGBT performance and state, as well as fault symptoms. At present,
in engineering applications and research on fault prediction, the most used method needs
to select the fault-sensitive parameters of IGBTs or the performance and state variables
directly or indirectly affected by the fault for monitoring. The parameters that characterize
IGBT degradation and even failure include dynamic parameters and static parameters,
where static parameters include the gate threshold voltage (VGE.th) and gate-emitter peak
voltage (VGES), etc., and dynamic parameters include the gate-emitter leakage current
(IGES), turn-off time (TOFF), collector-emitter saturation voltage (VCE.sat), thermal resistance,
etc. Without the need to grasp the accurate mechanism of IGBT internal faults, the historical
data collected by sensors can be used to characterize the degree of chip and bond aging
failure of IGBTs, so as to carry out more accurate predictions. Data-driven methods include
statistics-based failure prediction methods and artificial-intelligence-type algorithms.

In recent years, with the rapid development of artificial intelligence algorithms and
computer computing power, many new and complex methods such as neural networks
(NNs) [9–11], support vector machines (SVMs) [12], and deep learning (DL) have been
used to construct prediction methods. The current research mainly extracts characteristic
parameters from collector-emitter voltage data and predicts the degradation trend of IGBTs,
and the research on IGBT health assessment and prediction mainly focuses on failure
modes such as the latch-up effect and bond line failure of IGBT chips. A series of modeling
analyses were carried out mainly for the collector-emitter voltage. Ge et al. used the
peak-to-peak voltage of the transient collector-emitter voltage as an indicator of the IGBT
performance degradation and published a DeepAR prediction model in [13] to predict the
lifetime of IGBTs. Lu and Christou also extracted performance degradation metrics from
collector-emitter voltages and used a long short-term memory (LSTM) prediction model
to predict the performance degradation trend of IGBTs, where the mean absolute error
was predicted to be as low as 0.0322 [14]. Zhang et al. [15,16] extracted parameters such as
the saturation voltage drop and tailing current for fusion, and introduced comprehensive
health indicators to obtain the results of an IGBT health status assessment. Liu et al. [17]
introduced the CNN1D-LSTM hybrid model to construct an IGBT lifetime prediction
model for collector-emitter voltage, which characterizes the solder layer failure and latch-
up failure modes of IGBTs. Wang et al. presented the CNN1D-LSTM model to predict the
gate leakage current of IGBTs and achieved leading accuracy results [18].

Gate oxide degradation is one of the main failure mechanisms of IGBTs. This failure
mechanism can lead to IGBT gate turn-on-off faults, which can be characterized at the
signal level by the IGES and VGE.th parameters of the IGBT. Due to the fact that the collection
of IGBT collector-emitter voltage involves high-voltage testing in engineering practice, the



Micromachines 2024, 15, 985 3 of 14

measurement circuit is relatively complex, and the on and off times are in the microsecond
range, requiring the use of high-speed data acquisition devices to capture them. The
IGES acquisition circuit for monitoring IGBT is relatively simple and small in size, which
provides engineering application advantages. Moreover, this parameter can directly reflect
the gate control performance of IGBTs. Therefore, this article selects IGES as the precursor
parameter of IGBT gate oxide degradation for feature extraction and degradation trend
modeling. This article uses the dataset released by NASA’s Ames Laboratory, which is
always used for competions of the aging prediction in public. Firstly, a time domain analysis
of IGES is carried out and combined with the grey correlation degree, Mahalanobis distance,
and Kalman filtering method. Multi-dimensional features are fused into a unique health
indicator to characterize the degree of degradation of the IGBT gate oxide. Secondly, this
article introduces advanced network models such as transformers to achieve the real-time
prediction of performance degradation, and based on this, we propose a model with a
better performance through network optimization, which we call MultiScaleFormer. It
shows an excellent fitting ability in predicting IGBT degradation. Finally, this article verifies
the effectiveness of the MultiScaleFormer network and discusses the prediction errors using
several different prediction models.

Compared with the previous work, this paper has several innovations, which are as
follows: a new method was presented with a cross-attention mechanism to simultaneously
focus on information from different time scales for the prediction of the IGBT gate-emitter
leakage current. The architecture of the model was optimized to improve its ability to
handle complex time series data. A better prediction accuracy was achieved by capturing
both multidimensional and temporal correlations.

2. Analysis of IGBT Failure Modes and Their Precursor Parameters

The degradation of IGBT health state is related to the stress of its working profile, show-
ing a gradual degradation process. Changes in IGBT precursor parameters are monitored in
real time through condition-monitoring technology, and potential failure sharing is detected
in advance when the IGBT health state is close to failure. The key is to clarify the failure
mechanism of the IGBT and the correspondence between related sensitive parameters.

2.1. Failure Mode of IGBTs in Application

The failure modes of IGBTs include random failure and fatigue failure. Random failure
is a transient failure type, mainly caused by over-electric stress or electrostatic discharge
(ESD), etc., while fatigue failure belongs to degenerative failure, which is subdivided into
chip internal fatigue failure and device package fatigue failure. The internal fatigue failure
modes of the chip include ion diffusion due to interface fatigue, increases in charge surface
density, increases in leakage current at the emission interface, and decreases in carrier
mobility due to the fatigue of silicon materials. Package-related failures are mainly due to
the different thermal expansion coefficients of the different materials such as silicon and
metal in IGBT packages, and the structure of the connectors is constantly affected under
the action of thermal stress, which even leads to failure phenomena such as bond wire
detachment, solder layer aging, and aluminum metal reconstruction.

2.2. Selection of Precursor Parameters for Gate Oxide Layer Degradation

Precursor parameters can directly or indirectly reflect the health statuses of IGBTs [7–10],
and their types are described in Section 1 of this article.

Junction temperature and thermal resistance are mainly used to characterize package-
related failure modes such as the degradation of IGBT solder layers, bond wires, etc., in
order to not interfere with the normal operation of IGBTs. Non-invasive measurement
methods are often required to calculate the junction temperature and power loss by building
accurate power consumption and heat transfer models.
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The turn-on and turn-off times are mainly used to characterize the fatigue degradation
of the chip, and an increase in the threshold voltage caused by a change in the interface
state of the IGBT is reflected in increases in the turn-on and turn-off time.

The saturation voltage drop can be used to characterize and warn about the fatigue
degrees of key wires, solder joints, and other parts. The continuous impact of thermoelectric
stress will lead to an increase in the equivalent resistance and the loss of the energizing sit-
uation will increase, thereby causing an increase in the collector-emitter saturation voltage.

The part of the shutdown current IC in the IGBT slow drop phase is called the tail
current, and the shutdown current duration can be used as a performance parameter to
characterize the IGBT latch-up effect, so the tailing current can also be used as an electrical
parameter to characterize the IGBT latch-up effect.

The gate leakage current (IGES) and gate-emitter threshold voltages (VGE.th) can be
used to characterize the gate oxide degradation in IGBT devices [11,12]. With a change in
the aging process of the device, the degradation of the IGBT performance will affect the
internal structure of the gate oxide layer of the device, and a change in the oxide layer will
also lead to a change in the gate capacitance parameters. Although VGE.th can be monitored
under laboratory conditions by certain techniques, VGE.th is a static parameter that needs
to be measured by a step-by-step approximation test method, so it is not suitable for
implementation in the field of practical application. In contrast, the sensing measurement
and conditioning circuit of IGES can be realized as the main precursor parameters to evaluate
the degradation of the gate oxide performance of IGBT devices in engineering.

Changes in the gate leakage current characteristics of IGBTs are mainly due to the
degradation of gate oxide performance, the inherent pinhole defect of the gate dioxide
film insulation layer, or the later fatigue aging. This will lead to ion diffusion at the gate
Al-SiO2 interface and increase the surface charge density of Si-SiO2 in IGBTs. This is due
to the presence of an electron, hole, and neutral traps in the gate oxide layer, which trap
carriers and accumulate positive or negative charges when an oxide tunnel has an electric
current passing through its well. The accumulated ionic charge, interface trap charge, oxide
trap charge, etc., will enhance the local electric field of the oxide layer, further increase the
leakage current, and finally, the gate oxide layer will break down, resulting in gate control
failure. In summary, the precursor parameters of IGBT gate oxide attenuation failure are
the gate-emitter threshold voltage and gate leakage current. Since it is easy to achieve
the on-line detection required to collect the gate leakage current in engineering, the gate
leakage current is used as a precursor parameter to evaluate and predict IGBT degradation.

In summary, IGES is suitable for use as the precursor parameter of the performance
degradation failure of the IGBT gate oxide layer. The performance degradation indicator of
IGBTs is obtained by time domain analysis, feature selection, fusion, and noise reduction.

3. Indicator of IGBT Gate Oxide Layer Performance Degradation

According to the degradation mechanism of the IGBT chip interface material, for the
performance degradation of the IGBT gate oxide layer, the performance degradation i
indicator of the gate leakage current can intuitively characterize the aging degree of the
IGBT gate oxide layer, and we will use this as the input for the prediction model, When the
model prediction results show the failure threshold, this means that the IGBT is about to
fail, and the IGBT needs to be replaced or other corresponding maintenance measures need
to be taken.

In this article, we use the IGBT aging experimental data published by NASA, select
the last 700 cycles at the end of the experiment for empirical analysis, and exclude the
last 10 cycles after IGBT failure. A set of turn-on and turn-off actions is equivalent to a
single cycle. When the IGBT gate is turned on, the current flowing through the gate is the
operating current, and when the IGBT is turned off, the small current flowing through the
gate is the leakage current.

Before IGES information acquisition, considering the effect of signal noise, we pre-
process the original signal to improve the SN ratio by the NLM (non-local mean) filtering
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algorithm. This removes noise in a non-local mean by chunking the signal and calculating
the similarity between each block and the others, with the advantage of removing noise
while still preserving the edge and detail features of the signal. The signal of IGES before
and after filtering is shown as Figure 1.
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Figure 1. Signal pre-processing of IGES.

Subsequently, time domain features, such as the maximum, minimum, variance, and
skewness, are extracted through the time domain analysis of IGES, and then the IGBT
performance degradation indicator MD is obtained by feature selection, fusion, and noise
reduction. The subsequent performance prediction is carried out based on the degradation
indicator MD. The reason for the selection of multiple features is that not all the extracted
time domain features contain the degradation information of the IGBT gate oxide layer, and
the similarity of the change trends of different features of the IGBT gate oxide degradation
is characterized, so we have to sift. On the basis of clarifying the time domain feature group
associated with the degradation characteristics of IGES signals, it is necessary to form a
unified indicator to characterize the performance degradation of IGBTs, and at the same
time, due to the large amount of noise introduced in the data acquisition process, the trend
fitting of the signal is adversely affected and the data need to be reprocessed and filtered.
In this article, a feature matrix is constructed based on the Mahalanobis distance (MD), and
the Kalman filter is used to denoise the noise. Reducing the signal noise in the acquired
data has a higher accuracy and better interpretability in the field of signal processing, and
the greater the Mahalanobis distance (MD) after data processing, the greater the deviation
between sample sets, which is consistent with the degradation process trend of IGBTs.

The construction flow chart of the performance degradation indicator of IGBTs is
shown in Figure 2. The final indicator for the IGBT gate oxide degradation is shown
in Figure 3.
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4. Improved Transformer for Gate Oxide Performance Degradation Prediction

In the previous sections, we discussed the critical issue of IGBT performance degrada-
tion and conducted a time domain analysis of IGES to predict the degradation of the IGBT
gate oxide layer. By using methods such as grey correlation, Mahalanobis distance, and
Kalman filtering, we extracted and fused multi-dimensional features to obtain a unique
health indicator that characterizes the degree of this degradation. This section will discuss
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the improved Transformer-based prediction model for IGBT gate oxide layer performance
degradation, using the previously obtained health indicator as the input for the predic-
tion model.

A time series is a discrete representation of a stationary process with dynamics or
system characteristics. The dataset used in this paper is NASA’s IGBT aging experiment
data, which show aging experiments throughout the IGBT life cycle, using sensors to
monitor the performance parameters in real time. The interval time of the data points
that we used is changed from the interval time when the original data are collected by the
sensor to the cycle time of the IGBT. During a cycle, the IGBT undergoes a set of turn-on
and turn-off times. The effective length of the dataset is 700 consecutive cycles, which is
close to covering the entire aging test time. On this basis, it means that it does not destroy
the time series of the dataset, so the health indicator we obtained in the previous sections is
a one-dimensional feature matrix of the input prediction model and can still be regarded as
a time series.

The Transformer is an excellent model which is used for time series prediction. Since
its introduction in 2017, the Transformer model [19] has become increasingly popular for
time series analysis due to its unique architecture and capabilities. The core application of
the Transformer in time series analysis lies in its self-attention mechanism, which effectively
captures the long-term dependencies in time series data. However, due to the strict and
fixed nature of time correlations, the flexibility of the attention mechanism can lead to
disruptive effects when dealing with strictly ordered data. To address this, we propose an
improved algorithm called MultiScaleFormer, inspired by iTransformer [20]. This algorithm
processes input channels to capture variable dimensional correlations using attention
mechanisms and temporal correlations with feedforward neural networks. To effectively
integrate multi-scale information, we adopt a cross-attention mechanism [21] that allows
for information exchange between different time steps, layers, or scales, providing a greater
flexibility and adaptability, thus ensuring prediction accuracy.

4.1. Transformer Model

For predicting IGBT performance degradation, traditional models like Recurrent Neural
Networks (RNNs) and their improved versions, such as Long Short-Term Memory (LSTM)
and Gated Recurrent Units (GRU), process data sequentially. Each time step depends on the
previous one, leading to two significant issues: (i). Slow Training and Inference: they cannot
fully leverage parallel processing capabilities, resulting in longer training and inference times,
which pose challenges for real-time IGBT monitoring. (ii). Poor Scalability: handling very long
sequences or large datasets incurs high computational costs and time. Additionally, gradient
vanishing issues make it difficult for the model to learn long-term dependencies, which are
critical in capturing the gradual degradation of IGBTs.

To overcome these challenges, we adopt the Transformer model, a significant ad-
vancement in time series analysis due to its innovative self-attention mechanism and
parallelizable architecture. Unlike RNNs, the Transformer model efficiently handles long-
range dependencies and supports parallel processing, thereby significantly enhancing
training efficiency.

The Transformer model architecture, as shown in Figure 4, mainly consists of four
parts: an input module, encoder module, decoder module, and output module, with the
core being the encoder-decoder part. The encoder consists of six encoder blocks, and the
decoder consists of six decoder blocks, with the encoder’s output serving as the decoder’s
input. Each encoder and decoder contain two main sub-layers: a multi-head self-attention
mechanism and a fully connected feed-forward network.
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The self-attention mechanism within the Transformer model allows it to dynamically
weigh the importance of different time steps in the sequence of IGBT gate current data.
This mechanism enables the model to capture the complex dependencies and interactions
between different time steps and features, leading to more precise predictions of the
IGBT performance degradation. In self-attention, each word has three different vectors:
a query vector (Q), key vector (K), and value vector (V). These vectors are obtained by
multiplying the embedding vector X with three different weight matrices WQ, WK, and WV .
After passing through the self-attention module, a weighted feature vector Z is obtained,
calculated as follows:

Z = Attention(Q, K, V) = softmax(
QKT
√

dk
)V (1)

where dk is the dimension of the keys and the softmax function is used to normalize the
attention weights. Figure 5 briefly describes the process of using the Transformer for
predicting the gate current, particularly the calculation of Q, K, and V in the self-attention
mechanism and the derivation of the output vector Z.

The model input consists of gate current data from the training set, including 560 se-
quences. The input data undergo preprocessing to form a 560 × 8 matrix X. This matrix is
then passed through an embedding layer, resulting in a 560 × 64 matrix X’. The embedding
matrix X’ is used to generate the query (Q), key (K), and value (V) matrices by multiplying
X with their respective weight matrices WQ, WK, and WV , each resulting in a 560 × 64 ma-
trix. The self-attention mechanism computes the dot product of Q and the transpose of K,
scales them by the square root of the key dimensionality, and applies a softmax function to
obtain attention scores. These scores are then used to weigh V, resulting in the final output
matrix Z with the shape 560 × 64. This mechanism enables the model to effectively capture
dependencies within the input sequences for subsequent prediction tasks.

To enhance the model’s ability to focus on different positions, the Transformer uses
a multi-head attention mechanism, allowing the model to jointly attend to information
from different representation subspaces. This is achieved by concatenating the outputs
of h self-attention heads and projecting them back to the original space. The output of
multi-head attention is divided into three steps: (i). The input data X are linearly projected
into multiple subspaces, each corresponding to an independent self-attention head, with a
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total of h heads. (ii). Self-attention is calculated independently in each subspace, resulting
in h weighted feature matrices Zi. (iii). These h feature matrices are concatenated together
to form a new feature matrix, which is then passed through a linear transformation to
obtain the final output Z.
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Layer normalization is a key component in the Transformer model. By normalizing the
output of each layer to have a zero mean and unit variance, this improves the stability of
model training. Unlike batch normalization, layer normalization does not depend on batch
data, making it suitable for sequence modeling tasks. In the Transformer, layer normalization
is typically applied after the self-attention mechanism and feed-forward network. Each layer’s
output is normalized and then added to the input via residual connections, forming the final
layer output. Assuming that the input is x, it can be expressed as:

LayerNorm(x) =γ
x − µ√
σ2 + ε

+ β (2)

where µ and σ2 are the mean and variance, ϵ is a small constant to prevent division by zero,
and γ and β are trainable parameters for scaling and shifting.

Each encoder and decoder contain a fully connected feed-forward network (FFN)
applied independently and identically to each position. These consist of two linear trans-
formations with a ReLU activation function in between, formally expressed as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3)

where Wi and bi represent the weights and biases of the i-th linear layer, respectively.
The Transformer model innovatively uses the self-attention mechanism and its paral-

lelizable architecture to reduce computational complexity, achieving a better performance
than RNNs in handling temporal data and sequence modeling. Despite these strengths, the
standard Transformer model has limitations when applied to time series data, especially
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in capturing the strict temporal correlations inherent in IGBT degradation processes. To
address these issues and further improve performance, we propose an enhanced model
called MultiScaleFormer.

4.2. MultiScaleFormer Architecture

Building upon the foundation of the Transformer model, we introduce the MultiScale-
Former to overcome its limitations and enhance its applicability to time series data. The
MultiScaleFormer is designed to better capture variable dimensional correlations and strict
temporal dependencies, ensuring more accurate and reliable predictions. It is employed to
construct a robust prediction model for IGBT performance degradation. The model input
is a one-dimensional IGBT performance degradation indicator matrix X ∈ RT×V , where
T represents the time steps and V represents the variables. The output targets is an IGBT
real-time degradation metric Y ∈ RN×V for N future time steps.

Most Transformer-based prediction models typically treat multiple variables at the
same time as a single token. To better capture the correlations among variable dimensions,
we treat each variable at different time steps as a separate token and use a multi-layer
perceptron (MLP) for embedding. Specifically,

hv
(1) = σ(W1xv + b1)

hv
(i) = σ(Wihv

(i−1) + bi) i = 2, . . . , L − 1
ev = WLhv

(L−1) + bL

(4)

where xv = [xv(1), . . . , xv(T)]
T represents the time series data of the v-th variable, the MLP

has L layers with weights and biases for each layer denoted by Wi and bi respectively, hv
(i)

is the output of the i-th layer, and ev represents the embedding vector of xv. Additionally,
the ReLu function is used as the activation function σ in this experiment.

Positional encoding adds positional information to the input data, enabling the model
to distinguish inputs from different time steps, which is crucial for time series prediction.
By understanding the relationships between the inputs at current and previous time steps,
the model can better learn patterns and trends in the time series, improving its prediction
performance. Positional encoding is particularly useful for understanding the relationships
between distant time steps in long sequence data.

The input first passes through a time attention mechanism layer, independently en-
coding each sequence temporally and processing the encoded information through layer
normalization and MLP. The fused data are then input into a dimension attention mecha-
nism layer to align the encodings of different variables across all time steps, returning the
final output and attention weights.

Time_Enc, Attn= TimeAttention(X)

Time_Emb= Norm2(MLP1(Norm 1(Time_Enc)))

Dim_Enc= DimAttention(Time_Emb)

Output= Norm4(MLP2(Norm 3(Dim_Enc)))

(5)

4.3. Training Process of MultiScaleFormer Performance Degradation Predictor

The experimental process and MultiScaleFormer structure for IGBT gate oxide perfor-
mance degradation prediction are shown in Figure 6.

The left part of Figure 5 illustrates the feature engineering of IGBT gate aging data.
Approximately 400,000 sampled matrices collected by sensors are preprocessed, resulting
in 700 cycles of performance degradation metrics. Since IGBT performance degradation
prediction is highly related to historical state data rather than the direct correspondence
between time and state, the input sequence length is set to six and the prediction sequence
length to one, meaning that the performance degradation metrics of six cycles are input into
the prediction network each time, and the network provides the prediction for the next cycle.
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The training process and detailed structure of the MultiScaleFormer are shown in
the right part of Figure 5. The 700-cycle performance degradation metrics are divided
into training, testing, and validation sets at a 7:2:1 ratio. The training set is used to fit the
predictor, the validation set is used to check for overfitting or underfitting, and the testing
set is used to test the accuracy of the predictor.

In this article, the mean squared error (MSE) loss function is used to calculate the
loss between the predicted and true values, and the adaptive moment estimation (Adam)
optimizer is used for model optimization. The initial learning rate is set to 8 × 10−5,
and the model converges within 20 epochs. After training, the model and corresponding
parameters are saved for testing set prediction.

4.4. IGBT Gate Oxide Performance Degradation Prediction Experiment

Using IGES as the precursor parameter for gate oxide degradation, we construct per-
formance degradation metrics for IGBT gate oxide and establish an IGBT performance
degradation prediction model based on the MultiScaleFormer network. The data from the
training set are used for training, and real-time predictions for the IGBT over 140 cycles are
made. To verify the effectiveness of the MultiScaleFormer network, we conduct compara-
tive experiments using Gaussian Prediction Regression (GPR), Support Vector Regression
(SVR), LSTM, CNN, CNN_LSTM, and the Transformer network.

In Figure 7, the horizontal axis represents the IGBT cycles and the vertical axis repre-
sents the IGBT performance degradation metrics (MD). A comparison between the various
models’ predictions and true values (black solid line) is illustrated. The prediction curve
of MultiScaleFormer (red dashed line) closely matches the true values, indicating a high
prediction accuracy. Although the Transformer model (light blue dashed line) also performs
well, it is slightly inferior to MultiScaleFormer. The CNN-LSTM model (brown dashed line)
is stable, but deviates in some regions (e.g., cycles between 670 and 700). The CNN model
(green dashed line) shows fluctuations, particularly with larger deviations in some regions.
The LSTM model (orange solid line) performs well in some areas, but has a smoother
overall prediction curve, failing to capture some detailed changes. The SVR (blue solid line)
and GPR (purple solid line) prediction curves significantly deviate from the true values,
performing poorly.
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We quantitatively compare the prediction accuracies of different models using the
mean absolute error (MAE) and record each model’s training time, as shown in Table 1.

Table 1. Training times and MAEs of different prediction models.

Models Time (s) MAE

MultiScaleFormer 53 0.0087
Transformer 11 0.0827
CNN_LSTM 294 0.0370

LSTM 48 0.0409
CNN 16 0.0556
SVR 0.005 0.4561
GPR 0.14 0.5935

From Table 1, it is evident that MultiScaleFormer exhibits the best prediction accuracy
(lowest MAE of 0.0087). Despite its longer computation time, it is the optimal choice for
tasks requiring a high precision. In contrast, the Transformer and CNN, despite having
shorter computation times, offer a moderate prediction accuracy, making them suitable for
tasks with lower precision requirements.

In summary, MultiScaleFormer is an efficient and high-precision prediction model. Its
superior predictive performance can primarily be attributed to the following points: (i).
Treating different time steps as separate tokens enhances the model’s ability to capture the
relationships between time steps. (ii). The introduction of the cross-attention mechanism
improves the feature representation richness and accuracy by integrating multi-source
information. (iii). Multi-level information capture enhances the model’s generalization
ability by capturing complex temporal and spatial relationships at different levels. These
technical improvements enable MultiScaleFormer to excel in handling complex time series
data, with a significantly better prediction accuracy and stability than other models.

5. Conclusions

In view of the degradation of IGBT gate oxide, this article takes the gate leakage current
as a failure precursor parameter, analyzes it in the time domain, and obtains a performance
degradation indicator (MD) that can characterize the IGBT gate oxide layer through feature
selection, feature fusion, and noise reduction processing. In terms of the performance
degradation prediction of the IGBT gate oxide layer, a prediction model based on the



Micromachines 2024, 15, 985 13 of 14

MultiScaleFormer network is constructed, and the effectiveness of the model is verified by
using NASA’s public dataset. The main contributions of this paper are as follows.

1. The failure modes and precursor parameters of IGBTs were systematically sorted out,
and the mechanism of gate oxide performance degradation and the engineering appli-
cation method of using the gate leakage current to predict reliability were clarified
and realized, including data preprocessing, feature selection, fusion, and filtering.

2. For the first time, the transformer network model was introduced for the analysis
and prediction of the gate oxide performance degradation and failure precursors of
IGBTs, and the usability of the transformer model in IGBT degradation prediction
was verified.

3. A new prediction model which we call “MultiScaleFormer” was creatively proposed,
which cleverly combined the links of cross-attention, showed an excellent prediction
performance, and improved the error by an order of magnitude compared with the
early CNN_LTSM, Transformer, and other models.

In summary, a MultiScaleFormer prediction model for the degradation of IGBT gate
oxide performance was constructed in this article, the gate leakage current was selected
as the failure precursor parameter, and the unified indicator MD for IGBT aging was
obtained through correlation analysis and screening, the Mahalanobis distance fusion,
and Kalman filtering. A variety of prediction models, including CNN, CNN-LSTM, SVR,
GP, transformer, and Multiscaleformer, were used to test and compare. The performance
of Multiscaleformer degradation prediction was the best, with a final average absolute
error was as low as 0.0087, which indicated the feasibility of gate leakage current as a
precursor parameter and the accuracy, reliability, and advancement of the Multiscaleformer
prediction model.
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