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Abstract: This study investigated the intraspecific and interspecific variability in the venom effects
of Agkistrodon viperid snake species and subspecies (eleven venoms total) on plasma clotting times,
fibrinogen levels, and fibrin clot strength. Significant delays in plasma clotting time were observed for
A. conanti, A. contortrix mokasen, A. contortrix phaeogaster, A. howardgloydi, A. piscivorus leucostoma, and
A. piscivorus piscivorus. Notably, the phylogenetically disjunct lineages A. conanti, A. contortrix mokasen,
and A. howardgloydi exhibited the most potent anticoagulant effects, indicating the independent
amplification of a basal trait. Inhibition assays with the activated clotting enzymes Factors XIa, IXa,
Xa, and IIa (thrombin) revealed that FXa inhibition is another basal trait amplified independently on
multiple occasions within the genus, but with A. howardgloydi, notably more potent than all others.
Phospholipid degradation and zymogen destruction were identified as mechanisms underlying the
variability in venom effects observed experimentally and in previous clinical reports. Thromboe-
lastography demonstrated that the venoms did not clot fibrinogen directly but affected fibrin clot
strength by damaging fibrinogen and that thrombin was subsequently only able to cleave into weak,
unstable clots. The ability to activate Protein C, an endogenous anticoagulant enzyme, varied across
species, with some venoms exceeding that of A. contortrix contortrix, which previously yielded the
protein diagnostic agent Protac®. Phylogenetic analysis suggested that both fibrinogen degradation
and Protein C activation were each amplified multiple times within the genus, albeit with negative
correlation between these two modes of action. This study highlights the evolutionary, clinical, and
biodiscovery implications of venom variability in the Agkistrodon species, underscoring their dynamic
evolution, emphasising the need for tailored clinical approaches, and highlighting the potential for
novel diagnostic and therapeutic developments inspired by the unique properties of snake venoms.

Keywords: Agkistrodon; viper; venom; evolution; coagulation

Key Contribution: Most reports on the venom effects of Agkistrodon species focus on A. contortrix
contortrix, with the other subspecies and species comparably neglected. The genus Agkistrodon is
shown to have dynamic variation in the anticoagulation effects of its venoms. The implications span
evolution, clinical medicine, and biodiscovery.

1. Introduction

The genus Agkistrodon within the Viperidae snake family evolved from Asian pit
vipers that crossed the Bering Strait. These snakes are found in North America, having
adapted to a wide range of habitats from wetlands to dry forests and ranging from the
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southeastern United States down to the northern province of Guanacaste in Costa Rica [1].
The Agkistrodon genus is divided into two clades; the copperhead clade, consisting of A.
contortrix contortrix, A. contortrix mokasen, A. contortrix phaeogaster, A. laticinctus pictigaster,
and A. laticinctus laticinctus, are specialists of wooded areas and rocky terrains, while
the moccasin clade, consisting of A. bilineatus, A. conanti, A. howardgloydi, A. piscivorus
leucostoma, A. piscivorus piscivorus, and A. taylori, are specialists to aquatic environments
like swamps, streams, and marshes, with the exception of the southernmost species, A.
howardgloydi, which has secondarily adapted to tropical dry forests [2]. Agkistrodon venoms
have been shown to be dominant by snake venom metalloproteases (SVMPs), Group II
phospholipase A2 (PLA2), and kallikrein-type serine proteases, with conserved proteolytic
and phospholipase activities but differential haemorrhagic and myotoxic activities [3].
Agkistrodon envenomations may produce local and systemic effects; local symptoms include
swelling, severe pain, bruising, blistering, and potentially significant tissue damage around
the bite area, while the systemic signs and symptoms in severe cases include bleeding
disorders, shock, or even organ failure, particularly if the venom components interfere
with blood clotting or cardiovascular functions [4–10]. Most reports, however, are on A. c.
contortrix, with few on other A. contortrix subspecies and scant reports for other species.

Snake venoms have long been studied for their complex biochemical properties and
are primarily made up enzymatic and non-enzymatic proteins evolutionarily honed to alter
any physiological pathway reachable by the bloodstream [11]. They represent an abundant
source of bioactive molecules with a yet unrealised scope of potential medical applications
in the leading areas of human death and disability, such as cardiovascular disease, diabetes,
cancer, and chronic pain [12]. The coagulotoxic effects of snake venoms, while being
critical for prey immobilisation and therefore predatory success and snakes’ survival, are
of particular significant interest in medical research for potential therapeutic applications,
especially in the treatment of conditions related to thrombosis and cardiovascular disease.
A myriad of toxin types have been isolated and characterised from snake venoms that
disrupt blood coagulation, with the venoms of viperid snakes being particularly rich in such
toxins. The effects of anticoagulant toxins include the inhibition of the clotting enzymes
thrombin, VIIa, Xa, IXa, XIa, and XIIa and the depletion of fibrinogen levels, leading to
death from haemorrhagic shock or internal bleeding [13–22].

Platelet-mediated primary clotting is disrupted by the binding of venom toxins to a
variety of platelet receptors or destruction of platelet cofactors such as the von Willebrand
factor (vWF). In primary haemostasis, platelets are activated and alter their shape in a
way that presents the fibrinogen binding receptor, thus facilitating platelet cross-linking
and aggregation. The main families of toxins that interfere with platelet aggregation are
3FTxs (three-finger toxins) [23], L-amino acid oxidases [24], the lectin framework (including
classical lectins and derived SNACLECS lectin-like proteins) [25], regions of the prepro
region of the natriuretic peptide precursor [26], Group I PLA2 proteins [27], Group II PLA2
proteins [28], and the snake venom metalloproteinase (SVMP) disintegrin domain, which
is released from P-II SVMPs by post-translational proteolytic cleavage and expressed as a
monodomain in extremely derived forms [29].

The few direct inhibitors of the secondary clotting’s extrinsic and intrinsic pathways
that have been characterised from snake venom include a dimeric 3FTx complex from
Hemachatus haemachatus that inhibits FVIIa [30]; a monomeric 3FTx, also from H. haemachatus,
that inhibits the extrinsic pathway activation of FX [31]; and a Kunitz peptide from Bungarus
fasciatus that inhibits FXIa [32]. FIXa has been shown to be inhibited by lectin-like toxins
from viperid snake venoms [25,33].

In contrast to the paucity of described inhibitors of the extrinsic or intrinsic pathways,
a myriad of snake venom enzymes have been described that promote coagulopathic effects
upon blood coagulation through deleterious actions upon the common pathway, which
may contribute to the characteristic haemorrhagic syndrome in snakebite envenomings.
The activation of Protein C by kallikrein-type serine proteases would inhibit FVa and FVIIIa
upstream and consequently inhibit FX activation and prothrombinase formation indirectly
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downstream [34–38]. Direct inhibition of FXa has been shown for Group I PLA2 from Naja
(cobra) venoms [27,39–41] in addition to lectin toxins from viperid snake venoms [25,33].
Lectin toxins that are inhibitors of prothrombin or thrombin (or both) have been isolated
and characterised [25,42–47].

A major target for anticoagulant venoms acting upon the common pathway is fib-
rinogen depletion, either through destructive cleavage of fibrinogen, or cleavage in a
peudo-procoagulant (aka: thrombin-like) manner such that the fibrin clots that are directly
formed by the venom are weak and transient, thereby quickly breaking down [38,48]. The
latter are pseudo-procoagulant in that the clots are transient and result in a net outcome of
an anticoagulative state. We speculate this to be a consequence of a compromised capacity
of the venom-cleaved fibrinogen chains to correctly polymerise into stable, interlinked
fibrin meshes. These actions should not be confused with true procoagulant actions in
which the cleavage of fibrinogen into fibrin retains its full polymerisation capabilities and
functional potential due to the venom activating an upstream clotting enzyme, such as
converting Factor VII into FVIIa, Factor X into FXa, or Factor II (prothrombin) into FIIa
(thrombin) [16,21,48–52]. Both non-clotting and pseudo-procoagulant (transient clotting)
cleavage of fibrinogen lead to a depletion of the levels of normal and intact fibrinogen avail-
able for clotting. In addition, the fibrinogen degradation products may also be bound by
thrombin and thus also reduce the amount of thrombin available for clot formation [29,38].
Both outcomes would directly contribute to the haemorrhagic effects of these kinds of
snake venoms.

Fibrinogenolysis in a non-clotting manner has been described for kallikrein-type serine
proteases in addition to metalloproteases (SVMPs) in snake venoms [29,38]. Kallikrein-type
enzymes may degrade both the Aα- and Bβ-chains or display selectivity for the Aα-chain
or Bβ-chain [38]. Consistent with the single early origin of the Toxicofera venom system,
the kallikrein-type serine proteases shared between the venoms of anguimorph lizards and
those of snakes share this plesiotypic activity [38,53]. The plesiotypic (basal) state is the
ability to degrade both chains, and the specialisation of one or the other chain is an apotypic
(derived) activity. Degrading both the Aα- and Bβ-chains is also the plesiotypic state of
P-III SVMP, but chain-specific versions have been described [29,54]. Thus, venom-induced
fibrinogenolysis is a consequence of the action of pseudo-procoagulant enzymes, which
form feeble fibrin clots that are readily degraded, or the action of enzymes that degrade
fibrinogen and render it unclottable.

In addition to fibrinogenolysis, some snake venom enzymes have been shown to
directly lyse fibrin clots [38,55]. Indirect clot lysis is also accomplished by kallikrein-type
serine proteases activating plasminogen into plasmin [38,56–59]. Unlike plasminogen
activation by bacteria [60–63], the snake venom activation of plasminogen occurs via
proteolytic cleavage of the zymogen into the active enzymatic form. Other mechanisms of
snake venoms for increasing the amount of available plasmin in order to destroy any clots
formed in response to damage to the vascular bed are mediated by kallikrein-type serine
proteases and metalloproteases that cause the release of the endogenous plasminogen
activator from endothelial cells [29,38].

Despite its evolutionary novelty and medical importance, there is a notable deficiency
in studies examining intra-species and inter-species variability in venom coagulotoxicity
within the Agkistrodon genus [3], with questions remaining as to the contribution of such
diversity to the variability in reported clinical coagulotoxic effects [4,64]. This incomplete
analysis limits our understanding of the venom’s evolutionary history, potential clinical
effects, and biomedical potential. Addressing these gaps through targeted research is
critical not only for advancing our fundamental scientific knowledge but also for harnessing
Agkistrodon venoms’ therapeutic utility.

2. Results and Discussion

Plasma clotting time was significantly delayed for A. conanti, A. contortrix mokasen, A.
contortrix phaeogaster, A. howardgloydi, A. piscivorus leucostoma, and A. piscivorus piscivorus,
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with no clotting within a machine maximum time of 999 seconds for all four A. conanti
replicates and all but one replicate for A. contortrix mokasen and A. howardgloydi (Figure 1A),
with significant shifts relative to the control (Figure 1B). As the three most potent venoms
(A. conanti, A. contortrix mokasen, and A. howardgloydi) do not represent a monophyletic clade
(Figure 1C), this suggests that independent amplification of net anticoagulation potency on
clotting time has occurred on at least three separate occasions within the genus (Figure 1).
This represents convergent evolution, suggesting selection forces geared towards the same
functional outcome. Subsequent tests to ascertain sites of action included incubation with
activated enzymes or incubation with plasma followed by the addition of a specific enzyme
to determine if downstream zymogens or cofactors were affected.

The incubation tests of the activated enzymes Factors XIa, IXa, Xa, and IIa (also known
as thrombin) revealed that FXIa was not significantly inhibited by any of the venoms; FIXa
was significantly inhibited (p < 0.05) by A. bilineatus, A. contortrix contortrix, A. contortrix
mokasen, A. contortrix phaeogaster, A. howardgloydi, and A. laticinctus laticinctus, with A.
howardgloydi dramatically the most potent; FXa was significantly inhibited (p < 0.05) for all
venoms, with A. conanti, A. contortrix contortrix, A. conanti, A. howardgloydi, A. piscivorus
leucostoma, and A. piscivorus piscivorous the most potent; and FIIa (thrombin) was not
significantly affected by any of the venoms (Figures 2 and 3). As the taxa that most potently
inhibited FXa do not form a monophyletic clade (Figure 4), this suggests that FXa inhibition
is a basal trait within this genus that has been amplified on three occasions and therefore
an indication of convergence in adaptation. This is consistent with FXa inhibition having
been documented in other pit vipers from the Americas, including the Bothriechis, Bothrops,
Cerrophidion, Crotalus, and Ophryacus species [21,22,65,66]; Asian pit vipers, including the
Deinagkistrodon and Gloydius species [65,67,68]; true vipers, including the Cerastes, Daboia,
Pseudocerastes, and Vipera species [65,69–73]; and elapid snakes including the Naja and
Pseudechis species [14,41,74,75]. The toxin types responsible are diverse, including Kunitz
peptides, lectin-framework toxins, and phospholipases A2.

To investigate the depletion of the phospholipid cofactor or zymogen degradation,
plasma incubation was followed by the addition of an activated enzyme (Figures 2 and 3).
This revealed that the clotting cascade steps between that of FXIa and FIXa were affected by
A. bilineatus, A. conanti, A. contortrix contortrix, A. contortrix mokasen, A. contortrix phaeogaster,
and A. howardgloydi; that those of FIXa and FXa were affected by A. bilineatus, A. contortrix
mokasen, A. contortrix phaeogaster, A. howardgloydi, and A. piscivorus leucostoma; and those
of FXa and FIIa were affected by A. contortrix mokasen, A. contortrix phaeogaster, and A.
howardgloydi (Figures 2 and 3). The depletion of phospholipid levels by PLA2 toxins has
been shown to inhibit the activity of FXa due to this enzyme’s requirement of phospholipids
as binding cofactors [76]. Therefore, the lessened activity of FXIa and FIXa when added to
plasma preincubated with venom may also be due to lowered phospholipid levels. In this
case, there would be an equal distribution of effect for the FXIa, FXIa, and FXa additions
after preincubation, a pattern seen for A. bilineatus, A. contortrix mokasen, A. contortrix
phaeogaster, and A. howardgloydi. The most potent effects were noted for A. contortrix mokasen
and A. howardgloydi, indicative of the convergent amplification of this trait. Therefore, for
these species, the effects upon the activity of FXIa, FIXa, and FXa when added to the plasma
preincubated with venom appear to be due to phospholipid degradation. However, for A.
conanti, only the addition of FXIa was affected, not the downstream FIXa or FXa pathways.
This therefore suggests that A. conanti degrades the FIX zymogen. Zymogen destruction
has been previously described for pit vipers from the Americas, such as the destruction
of the FX zymogen by Crotalus mictlantecuhtli mictlantecuhtli and Crotalus mictlantecuhtli
oaxacus [51]. Future work, however, would be required to confirm the hypothesis that A.
conanti venom destroys the FIX zymogen.
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Figure 1. Venom impacts upon clotting of human plasma. (A) Raw time numbers (machine maximum:
999 s). p-values for each venom relative to control are from Brown–Forsythe and Welch ANOVA tests
with post hoc Dunnett T3 multiple comparisons. (B) Proportional increases in clotting time relative to
the control (no venom effect = 0%). (C) Ancestral reconstruction of the relative effects upon clotting
time; phylogeny based upon Burbrink [2]. Data are n = 4 mean ± standard deviation.
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Figure 2. Copperhead clade proportional increase in clotting time relative to the control for each test
(no venom effect = 0%). Note: to allow for comparison across venoms, all graphs are scaled relative
to the point of greatest impact, which is (plasma + venom) + FIXa for A. conanti in Figure 3. Data are
n = 4 mean ± standard deviation.
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Figure 3. Moccasin clade proportional increase in clotting time relative to the control for each test (no
venom effect = 0%). Note: to allow for comparison across venoms, all graphs are scaled relative to
the point of greatest impact, which is (plasma + venom) + FIXa for A. conanti in this figure. Data are
n = 4 mean ± standard deviation.
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in clotting time relative to the control (no venom effect = 0%). Phylogeny based upon Burbrink [2].
Data are n = 4 mean ± standard deviation.

Thromboelastography was utilised to examine the direct effects upon fibrinogen
(Figure 5). None of the venoms clotted fibrinogen in the pseudo-procoagulant manner
seen in diverse pit vipers such as the Crotalus, Gloydius, and Protobothrops species [17–19,77]
and true vipers such as the Bitis species [78]. Subsequently, we ascertained the effects
upon fibrin clot formation and strength by incubating fibrinogen with the venoms and
subsequently adding thrombin to trigger clot formation. A. piscivorus leucostoma was the
only venom to delay clot formation (Figure 5A) relative to the control (Figure 5B). This
is consistent with depletion of fibrinogen levels due to destructive cleavage. This is in
contrast to the delay of the onset of clot formation and the diminishing of the speed of clot
growth when whole plasma is used [79], which is due to contributory effects observed
upon upstream clotting factors (Figures 2 and 3). The direct degradation of fibrinogen is
a trait that has been documented in the venoms of other pit vipers, such as the Crotalus,
Gloydius, and Protobothrops species [17,19,20], and true vipers, such as the Bitis and Causus
species [15,78]. However, clot strength was affected by all species (Figure 5C) relative to the
control (Figure 5D). This is consistent with cleaving fibrinogen in a non-clotting manner
but one that produced damaged fibrinogen still able to be cleaved by thrombin and form
into a weak, unstable fibrin clot. Therefore, species that did not impede coagulation can
still produce pathophysiological outcomes by damaging fibrinogen such that any clots
formed (by prey or a human bite victim) would be weak and short-lived, resulting in
an anticoagulative state of reduced or corrupted clotting potential, thereby promoting or
facilitating pathologies such as internal bleeding and haemorrhagic shock.

Subsequent assays were undertaken to ascertain the relative conversion of the Protein
C zymogen into an activated form (Figure 6), as this is of interest not only in the context of
venomous snake predatory ecology but also due to such venom enzymes having been of
significant drug design and development interest, exemplified by their use in the develop-
ment of the drug Protac® isolated from A. contortrix contortrix [80]. Protein C, once activated
to Activated Protein C (APC), inactivates clotting factors Va and VIIIa. This inactivation
prevents the overproduction of thrombin and thus controls the formation of blood clots.
Protein C also influences fibrinolysis (the process of breaking down clots) by modulating
the activity of plasminogen activator inhibitor-1 (PAI-1), thereby promoting the breakdown
of fibrin clots.
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Figure 5. Thromboelastography tests where venom was incubated with fibrinogen without forming
a clot, with thrombin subsequently added to form. (A) Thromboelastography R values (reaction
time) representing the time taken from the start of the test until initial fibrin formation began. This
measurement reflects the speed at which clotting starts. As the fibrinogen test was run under
Claussian conditions, in which an excess of thrombin was added, any delay in R is reflective of
depletion of fibrinogen levels. (B) R values as proportional increases in clotting time relative to the
control (no venom effect = 0%). (C) Thromboelastography G values, which each represent the shear
elastic modulus strength of a clot, which quantifies the clot’s firmness. The G value is expressed
in dynes per square centimetre (d/sc) and provides a direct measure of the strength and stability
of the blood clot formed during the test. Lower values indicate weaker clots. (D) G values as
proportional increases in clotting time relative to the control (no venom effect = 0%; negative values
indicate decreases in clot strength). p-values in (A,C) for each venom relative to control are from
Brown–Forsythe and Welch ANOVA tests with post hoc Dunnett T3 multiple comparisons. Data are
n = 4 mean ± standard deviation.
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Placed into a phylogenetic context (Figure 7), both the ability to directly damage fib-
rinogen, such that thrombin forms weaker clots, and the ability to activate the endogenous
enzyme Protein C (which inactivates clotting factors Va and VIIIa and promotes fibrinolysis)
are traits basal to the genus, but both traits have each been independently amplified on
several occasions. The damaging action upon fibrinogen is at the most potentiated in the
last common ancestor of the A. laticinctus taxa within the copperhead clade and the last
common ancestor of the A. piscivorus taxa within the moccasin clade (Figure 7). For Protein
C activation, this has been potentiated in the last common ancestor of the A. contortrix taxa
while being amplified on two separate occasions within the moccasin clade, once in A.
bilineatus and again in A. conanti (Figure 7). Conspicuously, the two actions appear to be
negatively correlated but not entirely mutually exclusive, with the venoms amongst the
most potent for one action being amongst the least potent for the other (Figures 5–7).
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The intraspecific and interspecific variability in Agkistrodon observed in this study
regarding increases in clotting time, decreases in fibrinogen levels, and decreases in fibrin
clot strength and prior proteomics data [3] are consistent with clinical reports of intraspe-
cific and interspecific variability in increased PT and aPTT times, hypofibrinogenemia, and
bleeding complications [4,64]. From a clinical perspective, these variations may reflect the
differential ability to cause haemostatic disorders in the envenomed patient, which may
impact diagnosis and management plans, including relative antivenom efficacy. The clinical
implications of these findings are significant for understanding snakebite envenomation
and its treatment, especially when considering the various nuanced angles of attack that
can result in the same or similar coagulopathies. Clinical reports have described alter-
ations in clotting parameters in a proportion of cases inflicted by Agkistrodon species [8,81].
Variability in venom effects can lead to different clinical presentations, such as increased
prothrombin time (PT), activated partial thromboplastin time (aPTT), hypofibrinogenemia,
and bleeding complications. Clinicians need to be aware of the potential variability in
envenomation effects to accurately diagnose and manage snakebite cases. This may involve
tailored therapeutic approaches and supportive care based on the specific venom profile
of the snake involved. However, the variability in venom composition also underscores
the need for broad-spectrum antivenoms that can neutralise a range of venom effects by
reinforcing current viperid antivenoms with relevant Agkistrodon species so as to widen
their neutralising scope.
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From an evolutionary perspective, these variations may reflect adaptive significance,
natural selection, and genetic drift and gene flow. The observed variability in the venom
impacts upon clotting time, fibrinogen levels, and fibrin clot strength may reflect evolution-
ary adaptations to different ecological niches or prey types. Future work should investigate
effects on prey plasma, as this has been shown to be an area of dynamic variation [52,82–85].
The differences in venom effects may be the result of natural selection, where certain venom
profiles confer a survival advantage in specific environments. Variability in venom proper-
ties might also arise from genetic drift or gene flow between populations, contributing to
the diversity observed in clotting time and fibrinogen levels.

From a biodiscovery perspective, these variations reflect the potential to yield novel
therapeutics or biotechnological applications such as diagnostic uses. The unique properties
of snake venom proteins and enzymes, such as those affecting clotting time and fibrinogen
levels, can inspire the development of new drugs for coagulation disorders, cancer, and
other diseases. Studying the variability in venom effects can provide insights into the
biochemical pathways involved in haemostasis and how they can be modulated. This can
lead to the discovery of new therapeutic targets. Venom components can also be harnessed
for biotechnological applications, such as developing diagnostic tools or novel biomaterials.
Understanding the diversity in venom effects can expand the potential applications of these
bioactive molecules.

In conclusion, the observed variability in venom effects across different species and
populations of Agkistrodon highlights the intricate interplay between evolutionary adap-
tation, clinical implications, and biodiscovery potential. Evolutionarily, these variations
underscore the adaptive significance of venom composition, driven by natural selection
and genetic dynamics such as drift and gene flow. Clinically, this variability necessitates
a nuanced approach to diagnosing and managing snakebite envenomation, emphasising
the importance of the development of broader-spectrum antivenoms. From a biodiscovery
perspective, the unique biochemical properties of snake venoms hold immense promise for
the development of novel therapeutics and biotechnological applications. By harnessing
the diversity in venom effects, we can unlock new pathways for medical and scientific
advancements, ultimately benefitting a wide range of fields from haemostasis to cancer
treatment and beyond. As such, the coagulotoxic properties of snake venoms represent a
fascinating area of research that bridges evolutionary biology, pharmacology, and medicine.

3. Materials and Methods
3.1. Venoms

A. c. contortrix venom was donated to author J.C. by César Olmos (Cullera, Valencia,
Spain).

A. c. conanti (Liberty County, FL, USA), A. c. mokasen (Powell County, KY, USA), A.
laticinctus pictagaster (Pecos County, TX, USA), A. laticinctus laticinctus (Tarrant County,
TX, USA), and A. p. leucostoma (Harris County, TX, USA) venoms were collected from
specimens maintained in the serpentarium of the National Natural Toxins Research centre
at Texas A&M University—Kingsville, USA and collected by author E.S.

A. c. phaeogaster and A. taylori venoms were collected by author E.S. from specimens caught
in Cole County, Missouri (USA), and Sota La Marina, Tamaulipas (Mexico), respectively.

A. howardgloydi venom was collected by authors B.L. and J.C. from specimens collected
in the Costa Rican Province of Guanacaste and maintained in captivity in the serpentarium
of the Instituto Clodomiro Picado (University of Costa Rica).

A. bilineatus (Mexico) and A. p. piscivorus (USA) venoms were purchased from Latoxan
(Valence, France).

3.2. Coagulation Methods

Human plasma work was performed under University of Queensland Biosafety Ap-
proval #IBC134BSBS2015 and Human Ethics Approval #2016000256. The Australian Red
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Cross (44 Musk Street, Kelvin Grove, QLD 4059, Australia) supplied human platelet—poor
plasma (3.2% citrated) under research approval #16-04QLD-10.

The anticoagulant methods were as follows:

• (Clotting enzyme + venom) + plasma

# Undertaken to ascertain sites of actions upon particular enzymes.
# Step 1: 50 µL of venom + 50 µL of 0.025 M calcium + 25 µL of OK buffer + 50 µL

of PPL + 75 µL of human plasma.
# Step 2: 120 s incubation at 37 ◦C.
# Step 3: Addition of 25 µL of enzyme.

• (Venom + plasma) + clotting factor

# Undertaken to ascertain sites of action upon zymogens downstream from a
particular enzyme.

# Step 1: 50 µL of venom + 50 µL of 0.025 M calcium + 25 µL of OK buffer + 50 µL
of PPL + 75 µL of human plasma.

# Step 2: 120 s incubation at 37 ◦C.
# Step 3: Addition of 25 µL of enzyme.

• Enzymes used:

# Factor IIa (thrombin), Stago cat. #00611.
# Factor VIIa, 1.5 µg/mL, Haemonetics cat. #HCVIIA-0031.
# Factor IXa, 15 µg/mL, Haemonetics cat. #HCXIA-0160.
# Factor Xa, Stago kit; cat. # 00311.
# Factor Xia, 15 µg/mL, Haemonetics cat. #HCXIA-0160.
# Factor XII (activated with kaolin), 15 µg/mL, Haemonetics cat. #HCXII-0155.

Thromboelastography was undertaken using the TEG5000 platform to determine
the venom effects upon the strength and elasticity of the fibrin clots. The methods were
as follows:

• Seven µL of venom was added to 72 µL of CaCl2, 72 µL of phospholipid, and 20 µL of
Owren–Keller buffer, followed by 189 µL of fibrinogen and then run immediately for
30 min measurement of clot formation.

• As the venoms did not directly clot the fibrinogen, assays were completed with an
additional step by adding 7 µL of thrombin followed by a further 30 min to determine
if the fibrinogen had been destroyed by the venom to prevent clotting.

Protein C zymogen activation was undertaken using a Fluoroskan Ascent™ (Thermo
Scientific, Vantaa, Finland) as follows:

• In total, 10 µL of phospholipid, 10 µL of venom (containing 1 µg of venom), and 10 µL
of Protein C zymogen (containing 10 µg total of zymogen) were manually pipetted,
followed by the automated pipetting of 70 µL of a mixture of buffer (5 mM CaCl2,
150 mM NaCl, and 50 mM Tris-HCl at pH 7.3) and fluorogenic peptide substrate
(ES011 substrate Boc-Val-Pro-Arg-AMC; Boc: t-Butyloxycarbonyl; 7-Amino-4- methyl
coumarin) into each experimental well of a 384-well plate.

• Activated factors were used in place of zymogens as positive controls.
• The zymogens were also replaced in the venom control wells by 10 µL of Fluoroskan

buffer to determine the activity of the venom directly upon the substrate.
• Fluorescence generated by the cleaving of the substrate was automatically recorded

by the machine. The results were obtained by subtracting blank values from reac-
tions, followed by the subtraction of the venom without zymogen from the venom
with zymogen.

3.3. Phytools Methods

Ancestral state reconstruction was undertaken in R-studio (Version 2024.04.2+764)
using the following script:
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library(ape)
library(maps)
library(phytools)
data<-read.csv(file.choose())
dat<-data
mapvar<-dat$var
names(mapvar)<-dat$species
tree<-read.tree(file.choose())
asr<-contMap(tree,mapvar,plot=F)
plot(setMap(asr,col=c(1,4,5,3,7,2,6)),lwd=10)

3.4. Statistical Analyses

Brown–Forsythe and Welch ANOVA tests with post hoc Dunnett T3 multiple compar-
isons were undertaken in Graphpad Prism 8.1.1 (GraphPad Prism Inc., La Jolla, CA, USA)
to ascertain the statistical significance of the venom effects relative to the control values.
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