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Abstract: A confined environment is a special kind of extreme working environment, and prolonged
exposure to it tends to increase psychological stress and trigger rhythmic disorders, emotional abnor-
malities and other phenomena, thus seriously affecting work efficiency. However, the mechanisms
through which confined environments affect human health remain unclear. Therefore, this study
simulates a strictly controlled confined environment and employs integrative multi-omics techniques
to analyze the alterations in gut microbiota and metabolites of workers under such conditions. The
aim is to identify metabolic biomarkers and elucidate the relationship between gut microbiota and
metabolites. High-throughput sequencing results showed that a confined environment significantly
affects gut microbial composition and clusters subjects’ gut microbiota into two enterotypes (Bla
and Bi). Differences in abundance of genera Bifidobacterium, Collinsella, Ruminococcus_gnavus_group,
Faecalibacterium, Bacteroides, Prevotella and Succinivibronaceae UCG-002 were significant. Untarget
metabolomics analyses showed that the confined environment resulted in significant alterations
in intestinal metabolites and increased the activity of the body’s amino acid metabolism and bile
acid metabolism pathways. Among the metabolites that differed after confined environment living,
four metabolites such as uric acid and beta-PHENYL-gamma-aminobutyric acid may be potential
biomarkers. Further correlation analysis demonstrated a strong association between the composition
of the subjects’ gut microbiota and these four biomarkers. This study provides valuable reference data
for improving the health status of workers in confined environments and facilitates the subsequent
proposal of targeted prevention and treatment strategies.

Keywords: confined environment; gut microbiota; uric acid; beta-PHENYL-gamma-aminobutyric
acid; multi-omics analysis

1. Introduction

A confined environment is a limited space with relative isolation from the outside
world, strict restrictions on access and environmental particularity constructed for specific
tasks. Typical scenarios include aerospace devices, submarines, martial tunnels, polar
scientific research and home isolation. Staff who spend a long time in a confined environ-
ment are unable to perceive the changes of day and night, and it is difficult for them to
vent their emotions reasonably, so they are prone to psychological disorders, triggering
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uncomfortable physiological symptoms such as disorders of the biological clock, insomnia,
tightness in the chest and mental depression [1–3]. In addition, household appliances in
confined environments, environmental microorganisms, temperature, humidity and air
components can also have an impact on the health of staff members [4].

Research showed that persistent psychological stress is prone to causing personal psy-
chological disorders, and affects the homeostasis of human gastrointestinal tract function
and metabolic homeostasis through the bidirectional dialog of the gut microbiota–brain
axis. In this process, the intestinal microbiota plays a very important regulatory role [5,6].
The balance of gut microbiota is not only the premise of maintaining normal intestinal
function, but also the basis of nerve connection and biological signal molecule transmission
between intestine and brain [7]. In addition, metabolites of gut microbiota, such as sero-
tonin, dopamine, norepinephrine, short-chain fatty acids, γ-aminobutyric acid, histamine
and acetylcholine, can act on the central nervous system (CNS) through nerve, endocrine
and immune pathways, regulate the occurrence and development of nerves and the devel-
opment of related central nervous diseases, and regulate the nervous system of the intestine
itself. Therefore, gut microbiota can influence the function of both the brain and intestine
through the gut microbiota–brain axis, leading to the occurrence of related diseases [8].

At present, many studies have proved the interaction between psychological stress and
gut microbiota [9–13]. Barandouzi et al. [14] found that the intestinal microbial composition
in depressive patients underwent significant changes compared to the healthy group, with
a marked decrease in species diversity. Zhang et al. [15] discovered alterations in intestinal
microbial diversity and metabolite profiles; several key differential gut microbial genera,
including Alistipes, Bacteroides and Parasutterella, showed strong correlation with organic
acids. Uric acid is an important indicator of body fluids. A study has shown that intestinal
cells secrete uric acid to resist oxidative stress when stimulated by factors such as reactive
oxygen species and hydrogen peroxide, and increase in uric acid is associated with gut
microbiota imbalance [16].

Partial closed-environment–simulation experiments show that adjusting room light,
temperature and air improves staff anxiety and increases subjects’ cognitive performance
and work efficiency [17,18]. However, changes in human gut microbiota and their metabo-
lites in confined environments, and the correlation between them, remain unclear. There-
fore, investigating the intrinsic relationship between gut microbiota and metabolites in
staff within confined environments is significant. In this paper, we analyzed the changes
in intestinal microbial composition and metabolite profiles of staff members using high-
throughput sequencing and untargeted metabolomics in a strict confined-space experimen-
tal environment, screened for metabolic markers, and elucidated the correlation between
gut microbiota and metabolites. This research lays a theoretical basis for improving the
health and work efficiency of staff in confined environments, and is conducive to proposing
targeted strategies.

2. Materials and Methods
2.1. Subject

The study involved 45 healthy male participants aged 19–26 years old, with heights
ranging from 163 to 186 cm and weights between 54 and 95 kg. The aim was to reduce po-
tential confounding factors related to age-related physiological differences. All participants
were free of cardiovascular diseases, hemorrhoids, infectious diseases, skin conditions and
any other illnesses. They did not take alcohol, antibiotics or other drugs in the 7 days
before the experiment and slept well to ensure that any effects observed were not affected
by the original health problems. Each participant was fully informed of the experimental
procedures and potential risks, and provided written informed consent. All experimen-
tal protocols were approved by the ethics committee of Naval Medical University under
approval number 2023032302.
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2.2. Confined Environment Simulation

The experiment was conducted in a simulated submarine cabin designed to replicate
the conditions of a living room, featuring normal atmospheric pressure, room temperature
and airtightness. The cabin has an effective volume of 200 m3, with temperature and
relative humidity controlled to within ±0.5 ◦C and ±5% RH, respectively. Throughout the
experiment, participants were prohibited from smoking and drinking, had a normal diet
and a moderate workload every day. They had access to computers and fitness equipment,
but there was no external network, and the cabin was kept in a state of information
isolation. The confined environment experiment lasted 35 days. After leaving the simulated
submarine cabin, participants were quarantined in a hotel for 16 days, during which
conditions were like those at home, except for the restriction on leaving the premises.

2.3. Sample Collection

Fecal and urine samples were collected on the day before storehouse (A), the last day at
the end of the confinement experiment (D) and 16 days after the hamper (E) and 15 parallel
samples were set up for each treatment, labeled A1–15, D1–15, and E1–15, respectively. All
samples were collected and placed on ice immediately, and subsequently stored at −80 ◦C
for further analysis.

2.4. High-Throughput Sequencing and Bioinformatics Analysis

Fecal samples were prepared for gut microbiota diversity analysis. Total DNA from
collected fecal samples was extracted using the PF Mag-Bind Stool DNA Kit (Omega Bio-tek,
Norcross, GA, USA) according to the manufacturer’s protocols. The V3-V4 16S rRNA gene re-
gions was amplified using the universal primers 338F (5′-ACTCCTACGGGGAGGCAGCA-3′)
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). PCR amplification conditions were per-
formed according to literature protocols [19]. The purified PCR products were subjected to
quality quantification using Quantus™ Fluorometer (Promega, Madison, WI, USA) and
then subjected to 16S rRNA gene sequencing on the Illumina MiSeq 2500 platform (Illumina,
San Diego, CA, USA) at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China).

Gut microbiota analysis of the subjects was conducted with the Majorbio Online Cloud
platform (https://cloud.majorbio.com/, accessed on 20 September 2022). Valid sequences
with more than 97% similarity were clustered into one operational taxonomic unit (OTUs)
using Uparse software (Version 7.0.1090). Representative sequences from each OTU were
screened for further annotation. For representative bacterial OTU sequences, the SILVA
database was used for annotation and classification. The α-diversity and β-diversity of
each sample were assessed using Mothur software (Version 1.30.2) and QIIME software
(Version 1.7.0), respectively, and the species diversity and abundance were compared
using Kruskal–Wallis and Wilcox rank sum test. Linear regression analysis was performed
using the Bray_Curtis distance algorithm based on genus level to evaluate the effects of
differential metabolites on gut microbiota. Enterotype analysis of intestinal microbiota
was conducted using the weighted_normalized_unifrac algorithm based on genus level.
LEfSe was employed to perform linear discriminant analysis (LDA) on samples grouped by
different gut types, identifying microbial communities or species significantly influencing
gut type differentiation. The Spearman’s rank correlation coefficient was used to calculate
the correlation between species relative abundance and differential metabolites, and the
results were visualized using a heatmap.

2.5. Untargeted Metabolomics Analysis of Urine

All metabolites in urine were analyzed by untargeted metabolomics. In short, urine
samples (100 µL) were mixed with 400 µL of extraction solution (acetonitrile:methanol = 1:1,
v/v). After vortexing for 30 s, the samples were subjected to low-temperature ultrasonic
extraction for 30 min (5 ◦C, 40 KHz). The mixture was centrifuged at 13,000× g, 4 ◦C for
10 min, and the supernatant was collected for subsequent LC-MS/MS analysis. Equal
volumes of all sample metabolites were mixed to prepare a pooled quality control sample

https://cloud.majorbio.com/


Nutrients 2024, 16, 2998 4 of 18

for assessing the reproducibility of the entire analysis and detection process. Metabolite
detection of urine samples was performed using a SCIEX UPLC-Triple TOF 5600 (Thermo
Fisher Scientific, MA, USA) system. Chromatographic conditions were as follows: UPLC
column, ACQUITY HSS T3 column (100 mm × 2.1 mm i.d., 1.8 µm; Waters, Milford,
MA, USA); column temperature, 40 ◦C; flow rate, 0.4 mL/min; injection volume, 10 µL;
solvent system: solvent A consisted of 0.1% formic acid in water:acetonitrile (95:5, v/v) and
solvent B consisted of 0.1% formic acid in acetonitrile:isopropanol:water (47.5:47.5:5, v/v/v);
gradient elution. The samples were separated by HSS T3 column and then entered mass
spectrometry (MS). MS equipped with an electrospray ionization (ESI) that can work in both
positive and negative ion modes. ESI optimal parameters were set as follows: ionization
source heating temperature 500 ◦C; ion spray voltage 5000 V (positive), −4000 V (negative).

The processing software Progenesis QI version 2.3 (Waters Corporation, Milford, CT,
USA) was used to transform and analyze LC/MS raw data, including peak detection,
comparison and identification, and finally a 3D data matrix in CSV format was obtained.
After matching with metabolic public databases HMDB, Metlin and Majorbio databases, a
data matrix was uploaded to Majorbio Online Cloud Platform for bioinformatics analysis.
Significantly different metabolites were screened according to the variable importance in
the projection (VIP) obtained by orthogonal least partial squares discriminant analysis
(OPLS-DA) and the p-value generated by a paired-sample student’s t test. Differential
metabolites were annotated for metabolic pathway analysis using the KEGG database
to identify pathways involving these metabolites. Pathway-enrichment analysis was
conducted using the Python software (version 3.12.5) package SciPy.Stats, and Fisher’s exact
test was employed to identify the biological pathways most relevant to the experimental
treatments.

3. Results
3.1. Enterotypes Analysis of Intestinal Microbiota in Subjects

The composition of intestinal microbiota in 60 subjects was detected via 16S rRNA
high-throughput sequencing. A total of 2,972,632 sequences were obtained, and the aver-
age sequence length was 410 bp. These sequences were clustered into 822 operable taxa,
including 13 phyla, 95 families and 258 genera. According to the floristic abundance at
the genus level, the weighted_normalized_unifrac algorithm was used and PAM (Parti-
tioning Around Medoids) clustering was carried out, and the best clustering K value was
calculated with the Calinski–Harabasz (CH) index. The enterotype of gut microbiota was
determined by principal coordinates analysis (PCoA) [20]. Enterotype analysis revealed
that 45 participants could be classified into two enterotypes (Figure 1A). Type I was the
Blautia type (Bla) and type II was the Bifidobacterium type (Bi). Although the two groups
of participants exhibited a high degree of overlap in terms of intestinal microbiota types,
there were significant differences in enterotype characteristics. Therefore, the subsequent
analysis of gut microbiota is based on enterotype.

To further understand the microbial community diversity indicated by OTU, we
calculated α-diversity to reflect species richness and diversity of individual samples. The
α-diversity analysis of each enterotype group showed no significant differences in ACE
index and Chao index between Bla group and Bi group (Figure 1B,E). Shannon and Simpson
indexes are used to measure species diversity. Influenced by species richness and evenness
within the sample community, higher values of the Shannon and Simpson indices indicate
greater species diversity [21]. As shown in Figure 1C,D, the Shannon index of the Bla group
was significantly higher than that of the Bi group, while the Simpson index of the Bi group
was significantly higher than that of the Bla group, which may account for the differences
in gut microbiota typing.
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Figure 1. Analysis of enterotype clustering and α-diversity changes in closed environment.
(A) Enterotype analysis of gut microbiota (A: before entering the cabin; D: in the cabin; E: out
of the cabin). (B–E) Box plots plotted with the ACE, Shannon, Simpson and Chao indices, respectively.
Kruskal-Wallis rank sum test was used to compare the group differences, * p < 0.05, *** p < 0.001.

3.2. Effects of Confined Environment on Intestinal Microbiota of Different Enterotypes

To supplement the qualitative analysis, this work further examined the effects of
confined environments on intestinal microbiota across different enterotypes at the phylum
and genus levels, as shown in Figure 2A. The results indicated that the intestinal microbiota
of the Bla enterotype group was dominated by Firmicutes, Bacteroides and Actinobacteriota,
accounting for 95.87% of the total abundance, with Firmicutes and Bacteroides accounting
for 74.14% and 14.81%, respectively. Different from the Bla enterotype group, Firmicutes,
Actinobacteriota and Proteobacteria were the main phyla in the Bi enterotype group and
accounted for 97.31% of the total, of which Firmicutes and Actinobacteriota accounted
for 67.81% and 22.85%, respectively. At the genus level, the main components of the Bla
enterotype group are Blautia, Faecalibacterium, Bacteroides and Agathobacter. And the main
components of the Bi enterotype group are Bifidobacterium, Blautia, Eubacterium_hallii_group
and Escherichia-Shigella (Figure 2B). Notably, the Bi enterotype group had higher levels
of Bifidobacterium and Blautia compared to the Bla enterotype group. A bubble plot was
used to further analyze the compositional structure of the gut microbiota, displaying the
top 30 most abundant genera, where the size of the circles represented the differences in
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relative abundance. As shown in Figure 2C, most of the intestinal microbiota belonged to
the Firmicutes phylum, and there were significant compositional differences between the
Bla and Bi groups. The dominant bacteria also differed between the two groups, with the
Bi group having higher levels of Actinobacteriota such as Bifidobacterium and Collinsella,
compared to the Bla enterotype group.
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Figure 2. Alterations in intestinal microbial composition in closed environments. (A,B) Relative
abundance barplot of intestinal microbiota based on phylum and genus levels; (C) bubble plot
analysis of intestinal microbiota in different enterotype groups; (D) upset plots analysis of intestinal
microbiota in different enterotype groups; (E) source tracker pieplot of intestinal microbiota in
different enterotype groups.

As shown in Figure 2D, the upset plots analyzed the subject’s intestinal microbiota.
The results showed that 134 core bacterial taxa were shared across the six groups. The
number of Bi enterotype group was less than that of Bla group at genus level. There were no
significant changes in microbial abundance between Bla and Bi enterotype groups before
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and after confined environment experiment. The source tracker pieplot indicated that
58.99% of the microbiota in the Bla_E group originated from the Bla_A group, 17.37% from
the Bla_D group and only 2.74% of the microbiota was of unclear origin (Figure 2E). In the
Bi_E group, approximately 50.81% of the microbiota originated from Bi_A, 31.33% from
Bi_D and only 1.71% of the microbiota was of unclear origin (Figure 2E). These findings
suggest that the microbiota of the two enterotype types before leaving the cabin are mainly
from A and D groups, while a small number of microorganisms from unknown sources may
be caused by airtight conditions. To sum up, a confined environment significantly altered
the composition of the intestinal microbiota at both the phylum and genus levels, leading
to notable changes in the dominant bacterial taxa in the subjects’ intestinal microbiota.

3.3. Differences in the Response of Different Intestinal Microbiota to Confined Environment

To further investigate the composition of intestinal microbiota in the two enterotypes
within a confined environment, we evaluated the differences in microbiota at dominant
phylum and genus levels, and identified species with significant intergroup differences.
Hypothesis testing was performed on the species across different microbial community
groups, as shown in Figure 3. There were highly significant changes (p < 0.01) in Fusobacte-
riota, Desulfobacterota, Bacteroidota and Actinobacteriota between the two enterotypes at
phylum level (Figure 3A). The Bacteroidota phylum abundance in the Bla enterotype group
was significantly higher than in the Bi group, whereas the Actinobacteriota phylum abun-
dance in the Bi group was significantly higher than in the Bla group, which is consistent
with the results shown in Figure 2. Genus-level analysis showed that the relative abundance
of Bifidobacterium, Eubacterium_hallii_group, Collinsella and Ruminococcus_gnavus_group
was significantly higher in Bi group than in Bla group (* p < 0.05, ** p < 0.01, *** p < 0.001)
(Figure 3B). Meanwhile, Faecalibacterium, Bacteroides, Fusicatenibacter, Agathobacter, Prevotella,
Alistipes, norank_f__Eubacterium_coprostanoligenes_group, Succinivibronaceae UCG-002, Lach-
nospiraceae_NK4A136_group, Roseburia, Christensenellaceae_R-7_group and Parabacteroides
genera abundance was significantly lower in the Bi enterotypes group than in the Bla group
(Figure 3B).

In addition, we used non-metric multidimensional scaling (NMDS) analysis to reduce
the dimensionality of the intestinal microbiome data of subjects, and again verified the
difference in intestinal microbiome composition between the Bi group and Bla group in
a confined environment. The results showed that the intestinal microbiota composition
of the Bi group changed throughout the experiment, while the Bla group showed almost
no variation (Figure 3C). LDA results showed that the Bla_A group was significantly
enriched in Faecalibacterium, Alistipes and Lachnospiraceae_NK4A136_group (Figure 3D).
The Bla_D group, on the other hand, was notably enriched in the genera Bacteroides,
Succinivibronaceae UCG-002 and Roseburia. In the Bla_E group, significant enrichment
was observed in Pyramidobacter, Anaerotruncus and Butyricimonas. Conversely, the Bi_A
group was significantly enriched in Corynebacterium and Intestinibacter. The Bi_D group
showed significant enrichment in Bifidobacterium and Streptococcus, while the Bi_E group
was significantly enriched in Turicibacter.

3.4. Untargeted Metabolomics Analysis

Untargeted metabolomics analysis was performed on urine samples before and after
subjects entered and exited the cabin, and after data preprocessing, a total of 2637 metabo-
lites were identified in this metabolome, of which 2311 and 700 metabolites were annotated
to the HMDB and KEGG databases, respectively. The metabolic data were processed using
OPLS-DA, as shown in Figure 4A; the metabolite compositions of groups A, D and E were
significantly different from each other, and could be well distinguished from each other.
KEGG pathway annotation was performed for all metabolites, and the top 20 ranked KEGG
pathways are shown in Figure 4B. Biosynthesis of phenylpropanoids, tyrosine metabolism,
tryptophan metabolism, ABC transporters, arginine and proline metabolism, bile secretion
and steroid hormone biosynthesis are more active metabolic pathways. Figure 4C shows
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the categorization statistics of KEGG metabolic pathways, the metabolites annotated to the
subjects were mainly concentrated in the categories of metabolism, human diseases and
organismal systems, with the metabolism of amino acids (164), biosynthesis of other sec-
ondary metabolites (88), metabolism of cofactors and vitamins (52), lipid metabolism (164),
biosynthesis of other secondary metabolites (88), metabolism of cofactors and vitamins
(52), lipid metabolism (50) and digestive system (52). The results of HMDB compound
categorization (class level) showed that compounds with relative abundance >2% were
mainly in the categories of carboxylic acids and derivatives (17.80%), fatty acyls (13.02%),
organooxygen compounds (11.66%) and prenol lipids (10.26%) (Figure 4D).
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3.5. Differential Metabolite Analysis

The differential metabolite set Bla_Bi was established by grouping the two enterotypes
according to the criteria (FC > 1, VIP > 1, p < 0.05), and a total of 198 differential metabo-
lites were obtained. HDMB analysis of differential metabolites showed (class level) that
compounds with relative abundance > 2% were mainly found in carboxylic acids and
derivatives (13.33%), organooxygen compounds (13.33%), fatty acyls (11.11%) and prenol
lipids (10.00%) categories (Figure 5A), which differed somewhat from the overall metabolite
categorization (Figure 4D). OPLS-DA analysis showed that the differential metabolites
of subjects in the Bla group in the confined environment were well differentiated from
those of the Bi group, suggesting that confined-space living had a significant effect on
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subject metabolism (Figure 5B). The analysis results of the volcano plot indicated that a
total of 198 metabolites were significantly different (p < 0.05, FC > 1) in the Bla_ vs. Bi_
group, with 104 metabolites upregulated and 94 metabolites downregulated in the Bla
group compared to the Bi group (Figure 5C). The KEGG database was used to annotate the
differential metabolites, and the results indicated that most of the differential metabolites
were annotated as amino acid metabolic pathways (Figure 5D). Further KEGG enrichment
analysis of differential metabolites revealed that metabolic pathways such as cholesterol
metabolism, secondary bile acid biosynthesis, primary bile acid biosynthesis, bile secre-
tion, tyrosine metabolism, phenylalanine metabolism, α-linolenic acid metabolism and
acridone alkaloid biosynthesis were significantly enriched (p < 0.05) (Figure 5E). In the
enriched pathway, the differential metabolites were mainly concentrated in the piece of
amino acid metabolism and bile acid-related metabolism. As shown in Figure 5F, the heat
map analysis of the top 30 differential metabolites of VIP rankings showed that the Bla
group metabolites were significantly different from the Bi group. The 25 of compounds
such as mesobilirubinogen, URSINIC ACID, glycocholic acid, glycocholic acid, and virgini-
amycin m1 were significantly upregulated in the Bla group (Figure 5F). While in Bi group,
prostaglandin D1, 5,5-Diisopropyl-2,2′-dimethylbiphenyl-3,3′,4,4′-tetrone, enterolactone
3′-sulfate, 4-hydroxytriazolam, and cholic acid compounds were significantly upregulated
(Figure 5F).
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3.6. Effect of Confined Environment on the Relative Abundance of Uric Acid

In this work, we analyzed the relative abundance changes of uric acid before and
after the subjects were subjected to the confined environment experiment, and the result
was shown in Figure 6. In particular, the relative uric acid content of the Bi group was
significantly higher than in Bla group throughout the experiment (Figure 6A). After living
in the confined environment, the relative uric acid content in both the Bla and the Bi group
subjects showed a significant increase, and sometime after leaving cabin, the relative uric
acid content decreased significantly and significantly compared with that in the cabin,
and recovered to the level before the cabin. The above results suggest that the confined
environment may lead to an imbalance of uric acid content in humans (Figure 6B,C).
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3.7. Correlation Analysis of Intestinal Microbiota with Metabolites

The differential metabolites were ranked by VIP value, the top 25 differential metabo-
lites were taken to be analyzed and screened for potential biomarkers, and the results are
shown in Figure 7. The metabolites with TOP25 VIP values were analyzed by receiver
operating characteristic (ROC) curve analysis, and five metabolites with ROC > 0.80 were
obtained, which had VIP values ranging from 3.39 to 4.93. The HMDB classification based
on the class level was mainly prenol lipids, benzene and substituted derivatives, and car-
boxylic acids and derivatives (Figure 7A). Figure 7B showed a comparison of the differences
of these five metabolites in the two enterotypes, and all five differential metabolites were
significantly upregulated compared to the Bi group. The KEGG pathway-annotation results
of the differential metabolites in Figure 5 have shown that amino acid metabolism and
lipid metabolism are more active during metabolism, and in combination with the ROC
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analysis in Figure 7C, it was hypothesized that the amino acid and lipid metabolites in the
metabolites (beta-PHENYL-gamma-aminobutyric acid, (3S,5R,6R,6′S)-6,7-didehydro-5,6-
dihydro-3,5,6′-trihydroxy-13,14,20-trinor-3′-oxo-beta,epsilon-caroten-19′,11′-olide 3-acetate,
and lyciumoside VIII) as well as uric acid may be potential biomarkers.
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Figure 8 shows the linear regression analysis of intestinal microbiota in different groups
of participants with uric acid, beta-PHENYL-gamma-aminobutyric acid, (3S,5R,6R,6′S)-
6,7-didehydro-5,6-dihydro-3,5,6′-trihydroxy-13,14,20-trinor-3′-oxo-beta, epsilon-caroten-
19′,11′-olide 3-acetate and lyciumoside VIII metabolites were analyzed by linear regression.
Significant correlations were found between the Shannon index of gut microbiota and four
potential biomarkers in both groups of gut types (Figure 8A–D). Among them, uric acid
showed a significant negative correlation, while the remaining three metabolites showed a
significant positive correlation (p < 0.05).

Spearman’s correlation coefficient was used to analyze the relationship between in-
testinal microbiota and uric acid, beta-PHENYL-gamma-aminobutyric acid, (3S,5R,6R,6′S)-
6,7-didehydro-5,6-dihydro-3,5,6′-trihydroxy-13,14,20-trinor-3′-oxo-beta, epsilon-caroten-
19′,11′-olide 3-acetate and lyciumoside VIII were correlated among the four metabolites
(Figure 9A). Most genera abundance correlated significantly with the biomarkers. Among
them, the genera Bifidobacterium, Streptococcus, Lactobacillus, Fusicatenibacter, Ruminococ-
cus_gnavus_group, Monoglobus and Enterobacter were positively correlated with the uric
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acid level. The genera Bacteroides, Faecalibacterium, Dorea, Escherichia-Shigella, Succinivi-
bronaceae UCG-002, Coprococcus and norank_f__Eubacterium_coprostanoligenes_group were
negatively correlated with uric acid level. The remaining three markers showed a consistent
trend of species correlation, showing a negative correlation with Bifidobacterium, Ruminococ-
cus_gnavus_group and a positive correlation with the relative abundance of the genera
Faecalibacterium, Bacteroides, Prevotella and Succinivibronaceae UCG-002. The above results
suggest that these genera may significantly influence the structure of intestinal microbiota.
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Figure 8. Linear regression analysis of four different biomarkers and gut microbiota characteristics.
(A) Linear regression of gut microbiota with uric acid. (B) Linear regression of gut microbiota
with (3S,5R,6R,6′S)-6,7-didehydro-5,6-dihydro-3,5,6′-trihydroxy-13,14,20-trinor-3′-oxo-beta, epsilon-
caroten-19′,11′-olide 3-acetate. (C) Linear regression of gut microbiota with beta-PHENYL-gamma-
aminobutyric acid. (D) Linear regression of gut microbiota with lyciumoside VIII.

Multivariate association with linear models (MaASLin) analysis is an approach that
effectively identifies multivariate associations between clinical data and microbiomic
profiles [22]. In this study, MaAsLin analysis confirmed that the genera Bifidobacterium,
Succinivibronaceae UCG-002 and Enterococcus were significantly correlated with potential
biomarkers that may influence the health status of the subjects (Figure 9B–E).
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4. Discussion

Confined environments are isolated and closed extreme working environments, where
living for a long period of time can lead to a series of problems, thus greatly affecting
work efficiency and physical and mental health [23,24]. Confined environments, often
found in aerospace, deep-sea and polar research situations, are integrated living and
working environments. In such situations, the occupants are subjected to workloads, noise,
work rhythms and other factors, leading to metabolic disorders. This in turn acts on the
bidirectional dialog of the gut microbiota–brain axis, inducing a range of disorders [25,26].
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Current research on the health impacts of confined environments predominantly focuses
on ergonomics, behavior and other related factors, while studies on the composition of gut
microbiota are relatively limited. In a recent review, the authors explored the impact of
various work environments on the human gut microbiota [27]. However, the gut microbiota
is closely linked to gastrointestinal metabolic homeostasis. To address this, we explored the
changes in the intestinal microbiota and metabolites of staff in a confined environment using
a multi-omics coupling technique and statistically analyzed the correlations in this study.

Enterotype classification is the clustering of different samples with similar structures of
dominant microbiota into one group by means of statistical clustering, which provides a re-
liable tool for understanding the microbial diversity in healthy individuals and patients [28].
Microbial diversity analysis revealed significant differences in the intestinal microbiota of
the subjects, which could be categorized into Bi and Bla enterotype groups. This result is
inconsistent with traditional enterotype analysis methods but aligns with findings from a
recent study [18,29]. In addition, it was found that a confined environment significantly
altered community abundance and microbiota composition in both groups of enterotype.
The study suggests that differences in the intestinal microbiota may influence metabolic
phenotypes as well as responses to diet, stress and surrounding environment, thereby
influencing physical and mental health [30–32]. The significant enrichment of the genera
Bifidobacterium, Eubacterium_hallii_group, Collinsella and Ruminococcus_gnavus_group in
the Bi group, and the lower relative abundance of Succinivibronaceae UCG-002 may have
made the subjects in this group more adapted to the closed environment compared to
the Bla enterotype group [19]. Metabolomic analyses showed that the confined environ-
ment significantly altered the types and levels of metabolites in both groups of enterotype
samples. In terms of metabolic pathways, the differences were mainly focused on amino
acid metabolism and bile acid-related metabolism. In addition, we hypothesized that uric
acid, beta-PHENYL-gamma-aminobutyric acid, (3S,5R,6R,6′S)-6,7-didehydro-5,6-dihydro-
3,5,6′-trihydroxy-13,14,20-trinor-3′-oxo-beta, epsilon-caroten-19′,11′-olide 3-acetate and
lyciumoside VIII 4 differential metabolites as potential biomarkers.

Uric acid, also known as trioxopurine, is the final product of purine metabolism [33].
A study indicated that intestinal cells secrete large amounts of uric acid to resist external
environmental stimuli, and increased uric acid level is associated with an imbalance in
intestinal microbiota [16]. In this work, we revealed that the confined environment had
different effects on uric acid levels in participants in the Bla and Bi enterotype groups.
Confined environments can significantly increase uric acid levels, possibly because of
metabolic abnormalities, which is consistent with results of Chen et al. [19]. Additionally,
subjects’ uric acid levels were negatively correlated with the abundance of bacterial genera
such as Succinivibronaceae UCG-002, Coprococcus, Ruminococcus and Fusicatenibacter, which
were reported in the study to possibly affect uric acid metabolism [34]. Furthermore, we
found that Bifidobacterium abundance was significantly higher in the Bi group compared to
the Bla group and it exhibited a strong positive correlation with uric acid level. It has been
shown that Bifidobacterium can promote the degradation of uric acid in the intestine [35,36].
Therefore, we can hypothesize that the elevated uric acid levels promote an increase of
Bifidobacterium abundance to maintain the balance of uric acid content in the body.

Beta-PHENYL-gamma-aminobutyric acid, also known as phenibut, is an agonist used
clinically to treat anxiety and alcohol withdrawal symptoms. In Europe and America, it
is marketed as a nutritional supplement for improving sleep [37]. Prolonged social iso-
lation in closed environments may lead to emotional abnormalities, poor interpersonal
skills, insomnia, decreased appetite, etc. [38]. In our results, the genera Bacteroides, Pre-
votella, Faecalibacterium, Ruminococcus, Fusicatenibacter and Succinivibronaceae UCG-002 were
positively correlated with beta-PHENYL-gamma-aminobutyric acid level. A study has
reported that Succinivibronaceae UCG-002, Ruminococcus and CAG-352 are closely related to
insomnia [39]. Succinivibronaceae UCG-002 in the gut is the main bacterial genus positively
associated with mediating chronic insomnia and coronary microvascular dysfunction [40]
and is strongly associated with decreased appetite [10]. And the genus Fusicatenibacter may
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be associated with memory decline or cognitive impairment [41]. No other two metabolites
have been reported on confined environments, so their use as potential biomarkers awaits
further study.

Study on the effects of closed environments on human health is still in its infancy in
our country [19]. This type of test is usually limited by several experimental conditions,
such as small number of subjects, short experimental period and the physical condition
of the subjects in the confined environment. Although the number of subjects in this
study was only 45, this paper provides a database for improving the health and work
efficiency of workers in confined space environments. Further in-depth analysis of gut
types will require larger sample sizes, particularly focusing on functional analysis of core
intestinal microbiota. It is anticipated that regulating specific microbial communities may
help enhance human health in confined environments.

5. Conclusions

In this work, we investigated the effects of a confined space on gut microbiota and
metabolites. Microbial diversity and metabolomic analyses were utilized to document
the response of subjects with different enterotypes to a confined environment. Significant
differences in species composition abundance and metabolite levels were observed between
Bi and Bla enterotype-type subjects after experiencing a confined environment. Uric
acid, a potential biomarker, showed a significant increase in the levels of subjects while
living in confined spaces and was significantly correlated with the genera Bifidobacterium,
Succinivibronaceae UCG-002, Coprococcus, Ruminococcus and Fusicatenibacter. In addition, beta-
PHENYL-gamma-aminobutyric acid showed significant correlation with the genera Bacteroides,
Prevotella, Faecalibacterium, Ruminococcus, Fusicatenibacter, and Succinivibronaceae UCG-002
as potential biomarkers. The metabolites (3S,5R,6R,6′S)-6,7-didehydro-5,6-dihydro-3,5,6′-
trihydroxy-13,14,20-trinor-3′-oxo-beta,epsilon-caroten-19′,11′-olide 3-acetate and lyciumoside
VIII as potential biometabolites remain to be further investigated.
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