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Abstract: Importance: The reprogramming of lipid metabolism is a significant feature of tumors,
yet the circulating levels of fatty acids in lung cancer patients remain to be explored. Moreover,
the association between fatty acid levels and related factors, including nutritional intake, tumor
metabolism, and tumor immunity, has been rarely discussed. Objectives: To explore the differences in
serum free fatty acids between lung cancer patients and healthy controls, and investigate the factors
associated with this phenomenon. Design and participants: A case-control study enrolled 430 primary
lung cancer patients and 430 healthy controls. The whole population had a medium [Q1, Q3] age of
48.0 [37.0, 58.9] years, with females comprising 56% of the participants. The absolute quantification
of 27 serum free fatty acids (FFAs) was measured using a liquid chromatography–mass spectrometry
(LC-MS/MS) detection. Data, including dietary intake, blood indicators, and gene expression of
lung tissues, were obtained from questionnaires, blood tests, and RNA-sequencing. Statistical
differences in FFA levels between lung cancer patients and healthy controls were investigated, and
related contributing factors were explored. Results: Levels of 22 FFAs were significantly higher
in lung cancer patients compared to those in healthy controls, with fold changes ranging from
1.14 to 1.69. Lung cancer diagnosis models built with clinical and FFA features yielded an area
under the receiver operating characteristic curve (AUROC) of 0.830 (0.780–0.880). Total fatty acids
(TFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) showed no
significant dietary–serum associations, indicating that the elevations might not be attributed to an
excessive intake of relevant fatty acids from the diet. For RNA-sequencing of lung tissues, among the
68 lipid metabolism genes, 26 genes showed significant upregulation (FDR < 0.05), while 33 genes
exhibited significant downregulation, indicating the involvement of the fatty acids in the tumor
metabolism. Through joint analysis with immune cells and inflammatory factors in the blood, fatty
acids might exert suppressing effects on tumor immunity. Conclusions: Lung cancer patients had
elevated levels of serum free fatty acids compared to healthy individuals. The elevations might not
be attributed to an excessive intake of relevant fatty acids from the diet but related to pathological
factors of tumor metabolism and immunity. These findings will complement research on fatty acid
metabolism of lung cancer and provide insights into potential intervention targets.
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1. Introduction

Among all cancer types, lung cancer ranks second in terms of incidence and carries
the highest mortality rate worldwide [1]. As a respiratory cancer, lung cancer has been
predominantly associated with various factors that impact the respiratory system, including
cigarette smoking and air pollution [2]. The metabolic heterogeneity of cancer has attracted
extensive attention due to its revelations in pathological mechanisms, potential therapeutic
targets, and diagnostic biomarkers [3,4]. Simultaneously, lung cancer screening and early
diagnosis have crucial performance in reducing lung cancer mortality. For instance, low-
dose computed tomography (LDCT) screening has been shown to decrease mortality
rates associated with lung cancer [5], and molecular biomarkers, including autoantibodies,
miRNAs, DNA methylation, blood protein profiling, and circulating tumor DNA, were also
progressing [6]. They provide a reference for metabolites that also hold potential for non-
invasive diagnosis. Therefore, the insight into lung cancer metabolism and discovery of
blood-based biomarkers possess potential value both in research and application prospects.

Analogous to other malignancies, lipid metabolism was a pivotal component in the
lung cancer metabolic reprogramming [7]. In tumor tissues, the heightened demands for
lipids stemmed from accelerated energy metabolism and amplified cell membrane synthe-
sis, involving molecular entities, such as fatty acids, triglycerides, and cholesterol. A pooled
analysis comprising 1,445,850 participants revealed that dietary saturated fatty acid intake
was a risk factor for lung cancer, whereas polyunsaturated fatty acids acted as protective
factors [8]. A meta-analysis of cohort studies including 1,832,880 participants indicated that
the blood levels of triglycerides, total cholesterol, and high-density lipoprotein cholesterol
all exerted an impact on the lung cancer occurrence [9]. Furthermore, statin medications,
which are used to manage lipid abnormalities, have demonstrated enhancements in the
survival outcomes for patients with lung cancer [10]. Based on these findings, further
exploration into a broader lipid profile is suggested, to depict lipid metabolism in lung
cancer and delve deeper into underlying mechanisms.

Free fatty acids (FFAs) present in the bloodstream as small molecules, distinct from
triglycerides and phospholipids. Although FFAs make up only about 10% of the total fatty
acid content, their roles have been discovered to include providing energy for skeletal mus-
cles and the heart, serving as precursors for signaling molecules, and more [11]. Diseases
characterized by free fatty acid abnormalities currently include diabetes, heart disease,
kidney disease, schizophrenia, and cancer [12–17]. There has been research on total FFAs,
as well as targeting pathways of arachidonic acid and linoleic acid [13,18], which reported
higher levels of FFAs in lung cancer patients. These studies mainly considered fatty acids’
involvement in tumor metabolism, especially through specific pathways. However, limited
information is available about the risk of lung cancer from a broad profile of serum FFAs in
relation to dietary nutrition and inflammation perspectives [19,20].

Therefore, we conducted a case-control study to investigate whether serum free fatty
acid levels were different between lung cancer (LC) patients and healthy controls (HC), and
to evaluate whether the differences were attributable to nutritional or pathological factors.

2. Materials and Methods
2.1. Study Population

Between 1 August 2020 and 1 August 2023, a total of 430 patients diagnosed with
primary lung cancer were recruited at the Second Affiliated Hospital, Zhejiang University
School of Medicine in Hangzhou, China. Another 430 healthy individuals who participated
in an annual health check-up at the same hospital were also recruited as healthy controls.
The 1:1 matching criterion included the same gender, an age difference of within 5 years,
and recruitment times within 6 months. All participants provided informed consent for
the research. Samples, questionnaires, and blood tests for all participants were conducted
following standardized procedures.
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2.2. Sample and Data Collection
2.2.1. Serum Sample Collection

All participants underwent blood collection under fasting conditions. Venous blood
was centrifuged at 1500× g, 4 ◦C, for 10 min, then the serum was obtained into clot activator
tubes and immediately stored at −80 ◦C.

2.2.2. Serum Free Fatty Acid (FFA) Measurement

The quantification of 27 serum FFA concentrations was performed using a liquid
chromatography–tandem mass spectrometry (LC-MS/MS) detection. The details of the
analytical method are provided in the Supplementary Materials.

Subsequently, 7 subclasses of FFAs, including total fatty acids (TFAs), saturated fatty
acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs),
ω3 polyunsaturated fatty acids (ω3 PUFAs), ω6 polyunsaturated fatty acids (ω6 PUFAs),
and ω6/ω3 PUFAs were obtained through calculations [21]. TFAs included all FFAs. SFAs
included C12:0, C14:0, C15:0, C17:0, C20:0, and C22:0. MUFAs included C12:1, C14:1, C15:1,
C16:1, C17:1, C18:1, C18:1 T, C20:1, and C22:1. PUFAs included C18:2, C18:2 T, C18:3 α,
C18:3 γ, C20:2, C20:3, C20:4, C20:5, C22:4, C22:5 ω3, C22:5 ω6, and C22:6 ω3. ω3 PUFAs
included C18:3 α, C20:5, C22:5 ω3, and C22:6 ω3. ω6 PUFAs included C18:2, C18:3 γ,
C20:3, C20:4, C22:4, and C22:5 ω6.

2.3. Clinical Examination and Data Collection

Clinical examinations were performed according to the hospital’s uniform standards.
Triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (APOA1), apolipoprotein B
(APOB), and C-reactive protein (CRP) were quantified using an automatic biochemical ana-
lyzer (Beckman Coulter AU5800, Beckman Corporation, Indianapolis, IN, USA). Neutrophil
counts, lymphocyte counts, and leukocyte counts were measured with an automatic blood
cell analyzer (Mindray BC-6800, Mindray Corporation, Shenzhen, China). Neuron-specific
enolase (NSE), carbohydrate antigen 199 (CA199), carbohydrate antigen 125 (CA125), and
carcinoembryonic antigen (CEA) were measured using an automated chemiluminescence
immunoassay analyzer (Tellgen TESMI i200, Tellgen Corporation, Shanghai, China).

2.4. Questionnaire and Dietary Data Collection

All participants underwent face-to-face interviews conducted by investigators and
completed a basic questionnaire to obtain information, including age, gender, body mass
index, and smoking status. Among them, 95 participants (90 healthy controls and 5 patients)
completed a validated food frequency questionnaire (FFQ). The FFQ included intake
frequency and absolute quantification for 63 food items (Table S1).

Participants’ dietary intake of total energy, monounsaturated fatty acids, polyunsatu-
rated fatty acids, saturated fatty acid, and total fatty acids were calculated based on the
China Food Composition (Book 1, 2nd Edition). The individual daily nutrient intake calcu-
lation was described previously [22]. Briefly, we initially ordered the food items within each
food group from highest to lowest intake using 24 h data [23]. Subsequently, we created
the converted food composition table for each group by choosing the food items that made
up 80% of the total intake and weighting them according to their constituent ratios.

2.5. Diagnostic Prediction Models Construction

The participants were randomly stratified, sampling into a discovery dataset (n = 602)
and a test set (n = 258) by 7:3. Subsequently, we applied the Least Absolute Shrinkage and
Selection Operator (LASSO) regression to the discovery dataset to identify a smaller set of
features with nonzero coefficients capable of distinguishing LC patients. Logistic regression
models were trained with the 19 FFAs (selected from 27 FFAs) and clinical features in
the discovery dataset. Following this, the diagnostic model was utilized on the test set.
DeLong’s test was performed to investigate the differences in AUROC between the models.
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LASSO regression modeling was performed via the glmnet package in R 4.1.2 software.

2.6. Selection of Genes in Fatty Acid Metabolism Pathway

Based on pathways related to fatty acid metabolism (hsa01212: fatty acid metabolism;
hsa01040: biosynthesis of unsaturated fatty acids; hsa00071: fatty acid degradation;
hsa00062: fatty acid elongation; hsa00061: fatty acid biosynthesis) from the KEGG (Ky-
oto Encyclopedia of Genes and Genomes), we identified 78 genes regulating fatty acid
metabolism (Table S9).

2.7. RNA-Sequencing of Lung Tumors and Adjacent Normal Tissues

A total of 346 lung tumor and 401 adjacent non-tumor tissue samples from the LC
patients were collected and processed according to the details outlined in the Supplemen-
tary Methods. Gene expression levels were quantified using RSEM and batch corrected
(Combat algorithm, SVA package, RSEM v0.6). Differential expression genes between lung
tumors and adjacent normal tissues were evaluated using R package edgeR.

2.8. Statistical Analysis

All data analyses were performed using R 4.1.2 software (Stanford University, Stanford,
CA, USA). First, the Shapiro–Wilk normality test was conducted to assess the normality of
the data. Then, to investigate differences in FFA levels between the LC and HC groups, Stu-
dent’s t test was employed for normally distributed data, whereas the Mann–Whitney U test
for skewed distributed data. Multivariate logistic regression analysis was applied to assess
FFAs’ effects, as well as interaction effects between FFAs and blood chemistry indicators on
lung cancer, adjusting for covariates. Spearman’s rank correlation analysis was utilized
to assess the correlations between dietary fatty acids’ intake and serum FFAs, as well
as correlations between the blood indicators and serum FFAs. The Benjamini–Hochberg
method was applied to control the false discovery rate (FDR).

Subgroup analysis was conducted to examine the distinctions between the LC and HC
groups in FFA levels, stratified by age, gender, smoking status, and BMI, respectively.

3. Results
3.1. Characteristics of the Study Population

As shown in Table 1, the study population had a medium [Q1, Q3] age of 48.0
[37.0, 58.9] years, with females comprising 56.0% of the participants. There were no sta-
tistically significant differences in age, gender, body mass index, TG, TC, LDL-C, HDL-C,
ApoA1, and ApoB between the lung cancer (LC) group and the healthy control (HC) group.
Among study participants, smoking prevalence was 26.0%, in which the LC group had a rel-
atively higher proportion of smokers at 28.6%. The LC group exhibited significantly higher
levels of C-reactive protein and neutrophil counts, but lower levels of lymphocyte counts.

Table 1. Baseline characteristics of the study population.

Participants

p-ValueTotal
(n = 860)

Healthy Controls
(n = 430)

Lung Cancer Patients
(n = 430)

Gender, (%)

Male 378 (44.0) 189 (44.0) 189 (44.0)
1Female 482 (56.0) 241 (56.0) 241 (56.0)

Age (years) 48.03 [37.00, 58.85] 48.00 [37.00, 58.00] 48.84 [36.90, 59.24] 0.344
Body mass index (kg/m2) 23.42 [21.12, 25.59] 23.63 [21.22, 25.72] 23.12 [21.05, 25.37] 0.075
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Table 1. Cont.

Participants

p-ValueTotal
(n = 860)

Healthy Controls
(n = 430)

Lung Cancer Patients
(n = 430)

Smoking status, (%)

Smoker 224 (26.0) 101 (23.5) 123 (28.6)
0.017Non-smoker 622 (72.3) 326 (75.8) 296 (68.8)

Unknown 14 (1.6) 3 (0.7) 11 (2.6)
Diabetes, (%) 38 (4.4) 16 (3.7) 22 (5.1) 0.512

Blood indicators

Total cholesterol (mmol/L) 4.95 [4.30, 5.66] 4.95 [4.28, 5.61] 4.94 [4.32, 5.71] 0.548
Triglycerides (mmol/L) 1.15 [0.82, 1.76] 1.10 [0.81, 1.70] 1.17 [0.83, 1.85] 0.238

LDL cholesterol (mmol/L) 2.67 [2.18, 3.27] 2.70 [2.20, 3.26] 2.63 [2.16, 3.30] 0.735
HDL cholesterol (mmol/L) 1.34 [1.11, 1.58] 1.31 [1.07, 1.57] 1.35 [1.14, 1.59] 0.088
Apolipoprotein A1 (g/L) 1.39 [1.23, 1.56] 1.39 [1.22, 1.56] 1.38 [1.25, 1.56] 0.944
Apolipoprotein B (g/L) 0.90 [0.72, 1.08] 0.90 [0.72, 1.05] 0.90 [0.73, 1.11] 0.264

C-reactive protein (mmol/L) 1.10 [0.50, 2.20] 0.80 [0.40, 1.50] 1.55 [0.90, 3.20] <0.001
Neutrophil counts (×109/L) 3.58 [2.84, 4.50] 3.24 [2.67, 3.88] 4.03 [3.18, 5.59] <0.001

Lymphocyte counts (×109/L) 1.77 [1.44, 2.17] 1.85 [1.55, 2.30] 1.63 [1.32, 2.07] <0.001

Histopathology

Histology, (%)

Adenocarcinoma 406 (94.4)
Other types 21 (4.9)
Unknown 3 (0.7)

Stage, (%)

In situ carcinoma 65 (15.1)
Early stage 349 (81.2)

Advanced stage 16 (3.7)

Abbreviations: LDL, low-density lipoprotein; HDL, high-density lipoprotein. Data are presented as a number
(percentage) for categorical variables and median [Q1, Q3] for continuous variables.

In the LC group, in terms of tumor pathological subtypes, adenocarcinoma accounted
for 94.4%. In terms of staging, early-stage lung cancer (I–II) accounted for 81.2%, with other
cases including in situ carcinoma and advanced-stage lung cancer (III–IV).

3.2. Serum Levels of Free Fatty Acids

Table 2 shows the serum fatty acids’ concentrations between the LC group and the
HC group. Serum levels of five FFAs, including C15:1, C18:1 T, C18:2 T, C20:0, and C22:0,
were not detectable under the LC-MS/MS analytical method and thus were excluded from
subsequent analyses. Levels of the other 22 FFAs were all significantly higher in the LC
group (fold change > 1, p < 0.05) than those in the HC group, with changes ranging from
14% to 70%. Additionally, the calculated levels of certain types of fatty acids, such as
MUFAs and PUFAs, were all found to elevate in the lung cancer patients. As shown in
Table 2, after adjusting for age and gender in the multivariable logistic regression models,
most FFAs still exhibited elevated concentrations in the LC group (OR > 1, p < 0.05), except
for C12:1 and the ω6/ω3 PUFAs ratio.

Subgroup analyses were also conducted for both smoking and non-smoking popu-
lations (Table S2), males and females (Table S3), age not exceeding 50 years old and over
50 years old (Table S4), as well as populations of normal weight, overweight, and obesity
(Table S5). Similar to results in the overall population, lung cancer was associated with
higher levels of most types of FFAs, with odds ratio (OR) values greater than 1.
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Table 2. Comparison of serum free fatty acids (FFAs) between lung cancer patients and healthy controls.

FFAs
FFA Concentrations (µmol/L) Comparison between

Groups
Multivariate Logistic

Regression Model

Healthy Controls
(n = 430)

Lung Cancer Patients
(n = 430) Fold Change p-Value OR (95% CI) p-Value

C12:0 0.97 [0.34, 2.14] 1.25 [0.57, 2.56] 1.29 0.004 1.107
(1.038–1.187) 0.003

C12:1 0.30 [0.06, 0.69] 0.51 [0.11, 1.01] 1.69 <0.001 1.137
(0.995–1.368) 0.128

C14:0 5.15 [3.29, 7.71] 7.15 [4.38, 10.56] 1.39 <0.001 1.129
(1.091–1.170) <0.001

C14:1 0.31 [0.07, 0.72] 0.51 [0.18, 0.97] 1.62 <0.001 2.018
(1.567–2.640) <0.001

C15:0 0.61 [0.32, 1.00] 0.74 [0.37, 1.24] 1.22 0.001 1.428
(1.168–1.764) 0.001

C15:1 Below detection limit

C16:1 16.41 [11.06, 25.22] 24.90 [15.12, 39.56] 1.52 <0.001 1.048
(1.036–1.059) <0.001

C17:0 1.19 [0.80, 1.64] 1.58 [0.99, 2.32] 1.33 <0.001 1.648
(1.409–1.942) <0.001

C17:1 1.07 [0.69, 1.55] 1.47 [0.81, 2.22] 1.37 <0.001 1.742
(1.481–2.066) <0.001

C18:1 184.52 [129.25, 262.41] 254.32 [165.60, 367.92] 1.38 <0.001 1.005
(1.004–1.006) <0.001

C18:1 T Below detection limit

C18:2 170.02 [118.33, 239.16] 247.83 [159.33, 367.25] 1.46 <0.001 1.005
(1.004–1.007) <0.001

C18:2 T Below detection limit

C18:3 α 9.51 [6.99, 13.20] 14.77 [9.35, 20.88] 1.55 <0.001 1.111
(1.086–1.137) <0.001

C18:3 γ 1.09 [0.77, 1.50] 1.64 [1.02, 2.38] 1.50 <0.001 2.579
(2.108–3.194) <0.001

C20:0 Below detection limit

C20:1 1.83 [1.24, 2.57] 2.82 [1.70, 4.46] 1.54 <0.001 1.516
(1.378–1.678) <0.001

C20:2 1.85 [1.29, 2.50] 2.65 [1.66, 3.63] 1.43 <0.001 1.794
(1.578–2.054) <0.001

C20:3 1.21 [0.85, 1.59] 1.79 [1.12, 2.35] 1.48 <0.001 2.615
(2.134–3.243) <0.001

C20:4 5.54 [4.42, 7.33] 6.33 [4.73, 8.62] 1.14 <0.001 1.138
(1.079–1.202) <0.001

C20:5 0.43 [0.27, 0.65] 0.54 [0.33, 0.80] 1.25 <0.001 2.142
(1.497–3.118) <0.001

C22:0 Below detection limit

C22:1 0.24 [0.15, 0.39] 0.36 [0.18, 0.68] 1.51 <0.001 3.366
(2.291–5.194) <0.001

C22:4 0.86 [0.60, 1.22] 1.26 [0.79, 1.78] 1.45 <0.001 2.972
(2.323–3.855) <0.001

C22:5 ω3 0.85 [0.59, 1.25] 1.21 [0.76, 1.72] 1.42 <0.001 2.234
(1.787–2.825) <0.001

C22:5 ω6 0.47 [0.33, 0.71] 0.67 [0.43, 0.95] 1.42 <0.001 4.503
(2.995–6.918) <0.001

C22:6 ω3 5.23 [3.95, 7.08] 6.33 [4.38, 8.71] 1.21 <0.001 1.133
(1.084–1.187) <0.001

SFAs 6.17 [3.83, 9.93] 8.65 [5.22, 13.09] 1.40 <0.001 1.079
(1.054–1.107) <0.001

MUFAs 203.78 [145.66, 293.28] 288.23 [186.34, 406.18] 1.41 <0.001 1.005
(1.004–1.006) <0.001
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Table 2. Cont.

FFAs
FFA Concentrations (µmol/L) Comparison between

Groups
Multivariate Logistic

Regression Model

Healthy Controls
(n = 430)

Lung Cancer Patients
(n = 430) Fold Change p-Value OR (95% CI) p-Value

PUFAs 198.35 [138.56, 274.79] 283.38 [185.48, 413.06] 1.43 <0.001 1.005
(1.004–1.006) <0.001

ω3 PUFAs 16.49 [12.60, 22.44] 23.88 [15.68, 31.79] 1.45 <0.001 1.072
(1.055–1.089) <0.001

ω6 PUFAs 176.02 [123.41, 245.75] 253.39 [164.56, 374.26] 1.44 <0.001 1.005
(1.004–1.007) <0.001

ω6/ω3 PUFAs 10.40 [8.57, 12.52] 11.05 [8.91, 13.70] 1.06 0.022 1.013
(0.988–1.042) 0.324

Total FFAs 422.63 [294.03, 588.74] 600.75 [385.44, 836.85] 1.42 <0.001 1.003
(1.002–1.003) <0.001

Abbreviations: SFAs, saturated fatty acids; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty
acids; ω3 PUFAs, ω3 polyunsaturated fatty acids; ω6 PUFAs, ω6 polyunsaturated fatty acids; ω6/ω3 PUFAs,
ratio of ω6 PUFAs to ω3 PUFAs. Data are presented as median [Q1, Q3] for data with a skewed distribution.
Fold change calculation: median value of LC group/median value of HC group. Multivariate logistic regression
models were adjusted for age, gender, BMI, smoking status, and diabetes status.

3.3. Diagnostic Prediction Models

We utilized the metabolic characteristics of the obtained free fatty acids to develop
innovative diagnostic methods for lung cancer with machine learning methods (Figure 1).
Using the LASSO regression algorithm, we identified 19 fatty acids to distinguish between
LC and HC. Subsequently, we constructed 4 logistic regression models in the discovery
set, incorporating clinical information, lung tumor biomarkers [24], and the 19 fatty acid
features as variables, which were then validated in the test set.

Model 2 incorporated 19 FFAs and clinical features, yielding an area under the receiver
operating characteristic curve (AUROC) of 0.830 (95% confidence interval (CI): 0.780–0.880,
accuracy: 0.764, precision: 0.712, recall: 0.803, f1 score: 0.755; Figure 1, Table 3). Compared
to reference model (AUROC: 0.646 (0.579–0.714), accuracy: 0.620, precision: 0.538, recall:
0.657, f1 score: 0.592) trained with clinical features and tumor biomarkers, the diagnostic
performance for lung cancer significantly improved in Model 2 (p < 0.001) (Table 4).

Table 3. Evaluation of machine learning-derived prediction models for LC diagnosis in the test set.

Variables in Model AUROC
(95% CI) p-Value Accuracy Precision Recall F1 Score

Model 1 Age, gender, BMI, and
smoking status

0.549
(0.479–0.620) 0.009 0.535 0.470 0.554 0.509

Model 2 Model 1 + 19 FFAs 0.830
(0.780–0.880) <0.001 0.764 0.712 0.803 0.755

Model 3 Model 2 + CEA, CA125,
CA199, and NSE

0.836
(0.786–0.887) <0.001 0.760 0.727 0.787 0.756

Reference
model

Model 1 + CEA, CA125,
CA199, and NSE

0.646
(0.579–0.714) Reference 0.620 0.538 0.657 0.592

Accuracy = (TP + TN)/(TP + FP + TN + FN); Precision = TP/(TP + FP); Recall = TP/(TP + FN);
F1 Score = 2 × Precision × Recall/(Precision + Recall). Abbreviations: AUROC, area under the receiver operating
characteristic curve; BMI, body mass index; CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 125;
CA199, carbohydrate antigen 199; NSE, neuron-specific enolase; TP, true positive; TN, true negative; FP, false
positive; FN, false negative.
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Figure 1. Machine learning-derived prediction models for LC diagnosis. (A) Design of the modeling
workflow. LASSO regression and logistic regression were adopted for feature selection and model
training. The models were validated in the test set. (B) The receiver operating characteristic (ROC)
curve for the diagnosis of LC patients in the test set.

Table 4. Multivariate logistic regression results and parameters for Model 2.

Variables Coefficient p-Value OR (95% CI) Value Assigned in Model

Constant −0.578 0.532
Age −0.002 0.808 0.998 (0.982–1.014)

Gender 0.101 0.709 1.106 (0.652–1.888) Male: 0; Female: 1
BMI −0.058 0.069 0.944 (0.886–1.004)

Smoking status 0.655 0.020 1.926 (1.111–3.368) Smoker: 1; Non-smoker: 0
C12:0 0.084 0.096 1.088 (0.988–1.208)
C12:1 −0.079 0.521 0.924 (0.654–1.078)
C14:1 −0.383 0.314 0.682 (0.323–1.441)
C15:0 −0.431 0.153 0.650 (0.351–1.148)
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Table 4. Cont.

Variables Coefficient p-Value OR (95% CI) Value Assigned in Model

C16:1 0.066 <0.001 1.068 (1.032–1.107)
C17:0 0.439 0.106 1.551 (0.925–2.700)
C17:1 −1.471 <0.001 0.230 (0.112–0.451)
C18:2 0.001 0.576 1.001 (0.999–1.003)

C18:3 α −0.005 0.857 0.995 (0.944–1.053)
C18:3 γ 0.610 0.015 1.840 (1.138–3.043)
C20:1 0.025 0.807 1.026 (0.838–1.263)
C20:2 −0.038 0.855 0.962 (0.640–1.477)
C20:3 1.545 <0.001 4.688 (2.168–10.565)
C20:4 −0.190 0.001 0.827 (0.737–0.926)
C20:5 0.998 0.029 2.714 (1.128–6.807)
C22:1 0.666 0.006 1.947 (1.284–3.316)
C22:4 0.335 0.472 1.398 (0.561–3.511)

C22:5 ω3 −1.582 <0.001 0.206 (0.083–0.484)
C22:5 ω6 0.789 0.152 2.202 (0.765–6.596)

3.4. Dietary Fatty Acid Intake and Serum FFAs

Dietary fatty acid intakes, including TFAs, SFAs, MUFAs, and PUFAs, were computed
from individual FFQs and adjusted for intake per 1000 kcal of energy.

As shown in Figure 2, the correlations between these four types of dietary fatty acids
and their corresponding components in serum were analyzed using Spearman correlation
analysis. Among them, only SFAs exhibited a notable positive association between dietary
intake and serum levels, with a moderate correlation coefficient of 0.358 (p < 0.05). TFAs,
MUFAs, and PUFAs showed no significant dietary–serum associations, with correlation
coefficients of 0.109, 0.116, and 0.022, respectively.
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3.5. Differential Gene Expression in Fatty Acid Metabolism Pathways

As shown in Figure 3 and Table S6, genes related to fatty acid metabolism showed
significantly distinct expression between lung tumors and normal tissues. Among the
68 relevant genes, 26 genes showed significant upregulation (FDR < 0.05), while 33 genes ex-
hibited significant downregulation, revealing the presence of abnormal fatty acid metabolism
in lung cancer tissues.
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3.6. Correlations between FFAs and Blood Indicators

Spearman correlations were conducted between FFAs and blood indicators in the
whole population, HC group, and LC group, respectively, as shown in Figure S1. Several
FFAs had positive or negative correlations with TG, TC, LDL-C, HDL-C, ApoB, ApoA1,
C-reactive protein, neutrophil counts, neutrophil–leukocyte ratio, lymphocyte counts, and
lymphocyte–leukocyte ratio. Moreover, some correlations exhibited differences among
different populations. For instance, many FFAs were correlated with lymphocyte counts
in the HC group, but lacked these correlations in the LC group, which indicated potential
interaction effects between them in lung cancer incidence.

3.7. Interaction Effects between FFAs and Immune Factors in Lung Cancer

As shown in Figure 4, in the logistic regression analysis of lung cancer occurrence,
some FFAs exhibited significant interaction effects with levels of C-reactive protein and
lymphocyte counts. Positive interaction effects indicated mutual enhancement, while
negative interaction effects suggested mutual resistance or attenuation. For instance, C20:3
showed a negative interaction effect with C-reactive protein, while C18:3 α had inverse
interaction effects with lymphocyte counts.
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Figure 4. Interaction effects between FFAs and blood parameters in multivariate logistic regres-
sion models. Models were adjusted for age, gender, BMI, smoking status, and diabetes status.
Abbreviations: CRP, C-reactive protein; NE, neutrophil counts; Lym, lymphocyte counts.

4. Discussion

In this study, an elevated serum free fatty acids pattern was found in lung cancer
patients, distinguished from a healthy population. With a substantial sample size of
860 participants, stratified analyses across different demographics were conducted to
demonstrate the robustness of the findings. In addition, through joint analysis combining
nutritional, tumor-related, and immune-related data, we explored the factors influencing
free fatty acids and how they functioned in lung cancer.

Building upon previous research, this study has yielded new points. A study unveiled
that the levels of total serum free fatty acids of cancer patients surpassed those in non-
cancer patients [13], but the study compared only hospitalized patients’ data, and specific
types of fatty acids were not distinguished. Moreover, the performance of the lung cancer
diagnostic model constructed based on this approach was not satisfactory (AUROC = 0.545).
Another study, focused on the metabolic pathways of C20:4 (arachidonic acid) and C18:2
(linoleic acid) in serum, revealed a 1.8–3.3-fold elevation of their downstream metabolites
in lung cancer patients [18]. The general understanding from these studies was that FFAs
contributed to the tumor progression by influencing metabolism. In this study, with the
LC-MS/MS method employed to quantify common medium- and long-chain fatty acids
(C12-C22) in serum, we were able to show that abnormalities in fatty acid levels were not
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limited to specific compounds. This illustrated a picture wherein a wider variety of fatty
acids were linked with lung cancer.

The human body obtains a rich supply of fatty acids from various food sources [25],
besides endogenous synthesis. In our population, we observed a lack of correlation be-
tween dietary fatty acids and serum free fatty acids, except for SFAs. A meta-analysis
of prospective cohort studies revealed that excessive intake of total fat and SFAs posed
risk factors for lung cancer, while high intake of PUFAs served as a protective factor [8].
However, we observed elevated serum levels of free fatty acids in lung cancer patients,
irrespective of the specific fatty acid types, compared to those in the healthy population.
Our results suggested that the elevated concentrations of serum fatty acids might not solely
be attributed to an excessive dietary intake of corresponding components. It is worth
noting that our dietary data only included a portion of the study cohort, i.e., 95 participants.
Thus, further studies are warranted to validate the correlation of serum FFAs and dietary
FFA intake.

Fatty acids were essential for cells, participating in cell membrane synthesis, energy
metabolism, signaling, and protein acylation [26]. Besides supporting tumorigenesis, lipid-
regulated signaling processes played crucial roles in cancer progression and metastasis. In
addition to endogenous synthesis, tumors also acquired lipids, including fatty acids, from
the extracellular environment. Free fatty acids, due to their accessibility, were preferen-
tially utilized by tumors [27]. RNA-sequencing data supported the notion that abnormal
metabolism of fatty acids existed in lung tumor tissues. These differentially expressed
genes primarily involved fatty acid beta-oxidation (e.g., ACACB, ACADL, and CPT1A),
desaturation of acyl fatty acids (e.g., SCD5), and elongation of carbon chains (e.g., HACD1
and OXSM). These functions exerted effects on cancer cell proliferation, tumor growing,
progression, and metastasis [28].

Multiple fatty acids participated in crucial steps promoting tumor progression. Oleic
acid (C18:1) could disrupt the dense packing of saturated acyl chains and increase mem-
brane fluidity, which favored the intravasation and formation of tumor cells’ in vivo metas-
tasis [29]. Metabolites of arachidonic acid (C20:4), such as class 20-hydroxyeicosatetraenoic
acid, encompassed numerous lipid-signaling mediators that played a central role in cell-
signaling cascades relevant to pathological physiology [30]. Recognized as active carcino-
gens or promoters of tumor growth, elevated expression levels of these metabolites had
promoting effects on cancer development. Palmitic acid (C16:1) was absorbed by cancer
cells and converted into acetyl-CoA, participating in the downstream transcription factor
protein NF-κB, supporting the processes of tumor proliferation and metastasis [31]. Con-
versely, effectively inhibiting tumors can be achieved by blocking fatty acid metabolism.
The application of ND-646, an ACC1 inhibitor, to human NSCLC cell lines nearly elimi-
nated lipid synthesis and accumulation, simultaneously inhibiting cell proliferation and
promoting apoptosis [28,32].

For factors associated with lung cancer incidence, some free fatty acids exhibited
interactive effects with levels of lymphocytes and C-reactive protein in the bloodstream.
These interactions implied that FFAs mighty be involved in the immune response to lung
cancer, exerting suppressing effects, which may influence the cancer progression. Tumor
cells exhibited distinct metabolic patterns, including lipid metabolism, which altered the
local metabolic environment and inhibited anti-tumor immunity in various ways compared
to normal stromal cells [33]. Fatty acid metabolism significantly impacted the proliferation
and function of cells within the tumor microenvironment [34], involving various cell types
that participate in immune functions. The buildup of surplus fatty acids in Natural Killer
cells suppressed their cytotoxic activity [35]. Increased uptake of fatty acids by cells,
triggered by the elevation of PPARα/δ target genes, hindered the production of IFN-γ and
cytotoxic granules. This impairment affected the tumor-associated dendritic cells’ ability to
initiate anti-tumor responses by activating T cells [36]. The deletion of FASN and inhibition
of lipid synthesis could trigger apoptosis in intra-tumoral Treg cells, leading to a potent anti-
tumor response and reduced tumor growth. Existing studies have reported the extensive
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involvement of fatty acids in tumor immunity. In addition, there were suppressing immune
effects of fatty acids on lung cancer. This revealed the presence of complex regulatory
mechanisms in the relationship among fatty acids, tumors, and immunity.

Based on existing evidence, we could not simply conclude whether higher FFAs were
the cause or consequence of lung cancer incidence. There were mendelian randomization
studies that suggested C22:5 ω3, C22:6 ω3, and PUFAs were causes of lung cancer in the
European population [27,37–39]. However, no such causal relationship has been found
between other types of fatty acids and lung cancer yet. On the other hand, it is worth
considering whether reducing fatty acid levels could enhance the effectiveness and progno-
sis of lung cancer treatment. For instance, lipid-lowering statins could help improve the
prognosis of lung cancer patients [10]. Perhaps reducing fatty acid levels is how statins
achieve their function [40]. These findings suggest promising research and application
prospects for the relationship between fatty acids and lung cancer.

The use of blood metabolites for lung cancer diagnosis is garnering increasing at-
tention due to its non-invasive nature and outstanding predictive performance. Lung
cancer diagnostic models that screened metabolites from various pathways, including fatty
acids, amino acids, uric acid, choline, and purines, reported AUROC values exceeding
0.8 [41–45]. This suggested that these metabolites and their respective pathways might
exert a substantial impact on lung cancer development, in which fatty acids make a signifi-
cant contribution. Furthermore, the application of machine learning methods of artificial
intelligence in developing diagnostic models enables the selection of high-dimensional and
complex features, addresses nonlinear relationships, and achieves higher predictive per-
formance, which is suitable for models constructed with multiple metabolites [46]. In this
study, using free fatty acids as candidate predictors, the AUROC reached 0.830, significantly
outperforming the predictive efficacy compared to models incorporating clinical features
and traditional tumor markers. This demonstrates superior clinical applicability compared
to some tumor markers in lung cancer diagnosis. While it did not reach the diagnostic
level of some broad-spectrum metabolite models (AUROC > 0.9), the broad-spectrum
mass spectrometry testing is non-specific and generally used for preliminary screening,
with limited application in quantitative analysis of specific analytes. While the FFA-based
model performed well, further validation against broader diagnostic models is needed in
future studies. The free fatty acid LC-MS/MS quantification method discovered in this
study partially overcame these challenges, showing great potential for further research and
widespread application in lung cancer diagnosis.

5. Strengths and Limitations

This study had several strengths. First, we established a validated and reliable liquid
chromatography–mass spectrometry (LC-MS/MS) method to measure 27 common free fatty
acids in the human body. Second, the study population consisted of 430 lung cancer patients
and 430 healthy controls, providing a large sample size that facilitated subgroup analysis
and could serve as a reference for the clinical application of free fatty acids. Third, for the
first time, we integrated multi-omics approaches, including nutritional, gene expression,
and immune indicator data, to explore the influencing factors and effects associated with
free fatty acids.

This study also had some limitations. As a case-control study, it could not establish
a causal relationship between serum levels of free fatty acids and the occurrence of lung
cancer. The dietary data were limited to 95 participants, which may not be representative
of the entire cohort.

6. Conclusions

Lung cancer patients had elevated levels of serum free fatty acids compared to healthy
individuals, and the elevation appeared not to be substance specific. This might not be
attributed to excessive intake of relevant fatty acids from the diet, but rather a pathological
phenomenon associated with lung cancer. Abnormal expression of fatty acid metabolic
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pathway genes was observed, and serum free fatty acids might also exert complex effects
on tumor immunity. These findings will complement research on fatty acid metabolism in
lung cancer and provide insights into potential intervention targets.
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