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Abstract: Purpose. This paper aims to present a unique perspective that emphasizes the intricate
interplay between energy, dietary proteins, and amino acid composition, underscoring their mutual
dependence for health-related considerations. Energy and protein synthesis are fundamental to
biological processes, crucial for the sustenance of life and the growth of organisms. Methods and
Results. We explore the intricate relationship between energy metabolism, protein synthesis, regula-
tory mechanisms, protein sources, amino acid availability, and autophagy in order to elucidate how
these elements collectively maintain cellular homeostasis. We underscore the vital role this dynamic
interplay has in preserving cell life. Conclusions. A deeper understanding of the link between energy
and protein synthesis is essential to comprehend fundamental cellular processes. This insight could
have a wide-ranging impact in several medical fields, such as nutrition, metabolism, and disease
management.
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1. Introduction

This paper is designed to articulate a particular viewpoint, rather than present a narra-
tive review or introduce new findings. Our intent is to provide an overall understanding
of the interconnectedness of energy metabolism, protein synthesis, and amino acid (AA)
availability, viewed as a dynamic system. The concept of this dynamic equilibrium was
first proposed by the Nobel laureate George Hoyt Whipple in the 1930s, suggesting that
tissue proteins exist in a state of flux with circulating plasma proteins [1].

In 1942, Rudolf Schoenheimer stated that “not only the fuel, but also the structural
materials, are in a steady state of flux”, thereby introducing the concept of “The dynamic state
of body constituents” [2]. This concept, while intuitive, has not garnered the attention it
merits in the medical field. Often, the focus remains on mere information gathering rather
than on deepening our understanding [3]. In essence, information is readily available and
accessible, but knowledge is gained through the processing and comprehension of this
information. In medical practice, both are vital for delivering high-quality patient care.

Before delving into the subject matter, we deem it essential to revisit some fundamen-
tal concepts.
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The primary objective of cells is to generate and utilize energy in the form of adenosine
triphosphate (ATP) for physiological functions such as molecule synthesis, movement,
and duplication. However, the second law of thermodynamics makes these tasks more
challenging than they initially appear. This law introduces the concept of order and disorder,
which is intricately linked to the amount of energy involved. As the available energy in a
cell decreases, the cell becomes more random, a state referred to as entropy. High entropy
equates to increased disorder and low energy. It is understood that a cell must maintain a
high degree of order to survive, necessitating a substantial amount of energy to sustain a
state of low entropy and remain alive [4]. From this viewpoint, it can be postulated that a
cell must continuously balance energy production and expenditure to maintain equilibrium.
This balance between catabolic and anabolic processes is crucial for cell survival.

Therefore, energy production and protein synthesis are deeply interconnected pro-
cesses at the heart of cellular biology, being highly interdependent and mutually regu-
lated [5,6]. Regrettably, despite the widespread understanding of each aspect of these
processes, they are seldom regarded as deeply interconnected elements that have the
potential to significantly impact an organism’s health.

Therefore, the objective of this paper is to provide not just a summary of the informa-
tion available, but also an in-depth comprehension of the dynamic interaction between
energy, protein synthesis and sources, and AA composition. This will be achieved by
presenting an integrated view of the processes that regulate this intricate combination.

2. Energy Metabolism

Metabolic systems, ranging from organisms to cellular organelles and biochemical
pathways, often exist in a steady state. In this state, reaction rates and concentrations of
metabolic intermediates remain constant or fluctuate within narrow values. Factors such as
the characteristics, kinetics, and activities of enzymes, temperature, and concentrations of
endogenous and exogenous molecules shape this steady state. Typically, for a given set
of parameters, there exists a single steady state, which is upheld by the system variables.
Metabolites directly affect the reaction rates. If the steady state is disrupted, the variables
involved react to reestablish it [7]. Energy-producing pathways often intersect and even
intertwine with biomass formation pathways [8].

Energy in biological systems primarily derives from the catabolism of macronutrients
such as carbohydrates, lipids, and proteins, triggered by specific stimuli. These nutrients
undergo a series of enzymatic reactions to produce ATP, the universal energy currency
of cells.

In eukaryotic cells, energy production unfolds in a three-step process that is tightly
interconnected: (1) anaerobic glycolysis in the cytosol; (2) the citric acid cycle, alias, the
Krebs cycle; (3) aerobic oxidative phosphorylation in the mitochondria. It is crucial to note
that cells cannot store ATP easily, necessitating its continuous production to meet their
needs and keep their metabolism in a constant state of flux [9].

Recent research on T cell energy and protein metabolism shows that cellular metabolic
pathways involved in both protein antibody synthesis and energy production are activated
following specific antigen receptor stimulation [10,11]. In this context, glucose metabolism
significantly contributes to ATP synthesis. Both the anaerobic glycolytic cycle and aerobic
mitochondrial respiration are enhanced in activated T cells. The expression of glucose trans-
port proteins and glycolytic enzymes is swiftly induced. Concurrently, the mitochondrial
Krebs cycle flow and mitochondrial oxidative capacity and biogenesis are increased [12].
Notably, the mitochondrial function is also fueled by AAs, which supply energetic sub-
strates and generate crucial Krebs cycle intermediates to maintain an active mitochondrial
function and ATP production. This observation further confirms the close link between
energy dynamics and protein metabolism. In addition, recent studies demonstrated that a
specific blend of essential AAs (EAAs) stimulates mitochondrial biogenesis and function,
thereby increasing the number of these cytoplasmic organelles and strengthening energy
production [13,14].
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3. Protein Synthesis and Regulatory Mechanisms

Protein synthesis, a critical process in all biological systems, is vital for sustaining
life and facilitating organism growth and development [5]. It is worth noting that protein
synthesis is an energy-demanding process, consuming a minimum of four ATP molecules
for each peptide bond. Therefore, the synthesis of a standard protein, such as albumin,
necessitates over 2900 ATP molecules. These ATP molecules are generated from the
mitochondrial oxidation of approximately 60–70 glucose molecules, assuming that the
cell metabolism operates with low entropy [15]. This process is regulated by intricate
metabolic mechanisms. Indeed, as previously discussed, both energy production and
protein synthesis must be stringently regulated to meet the cellular and life demands.

There are 20 proteinogenic AAs, classified as essential (E) or non-essential (NE), a
categorization that, despite certain limitations, is easy to understand and apply. Already
since the 1940s, it was established that the only protein derivatives essential and sufficient
to maintain health and nitrogen balance were EAAs [16]. Therefore, protein synthesis in
cells requires a sufficient supply of AAs, in particular EAAs [17], and an adequate amount
of energy (ATP). Indeed, EAAs must be regularly replenished through diet, as mammals
cannot synthesize them autonomously, except to a limited extent that is incompatible
with life. Non-essential AAs (NEAAs), while abundantly supplied by food, can also be
synthesized by the body as needed, starting from EAAs. Thus, the availability of all EAAs in
sufficient amounts is the limiting factor in protein synthesis, as previously reported [18,19].
When conditions are met, protein synthesis can optimally proceed to construct proteins, be
they filamentous, globular, or enzymes.

Protein synthesis is a complex, energy-intensive process that involves multiple steps,
including transcription, translation, and post-translational modifications. The primary
players in these key regulatory mechanisms include the following.

3.1. Energy Sensors

It is well established that energy is released when ATP is converted to adenosine
diphosphate (ADP). Additional energy is released when a phosphate group is removed
from ADP to form adenosine monophosphate (AMP). When the cell consumes a large
amount of energy, and energy availability decreases (i.e., during protein synthesis), the
ATP/AMP ratio decreases, thereby stimulating AMP-activated protein kinase (AMPK).
AMPK is an energy sensor that curbs chemical synthesis in response to the cellular en-
ergy levels.

AMPK is a serine/threonine protein kinase complex composed of a catalytic sub-
unit (α), a scaffold subunit (β), and a regulatory subunit (Υ), each with a distinct role in
regulating allosteric enzymatic activities. Interestingly, when AMP binds to AMPK, it
triggers a significant conformational change, inducing the formation of a loop that inhibits
phosphatase action. Conversely, when AMPK binds to ATP, it rotates by approximately
180◦, enabling its dephosphorylation and thus its deactivation [20].

Hence, AMPK is an energy sensor that regulates several metabolic processes, including
protein synthesis, in response to the cellular energy levels. AMPK manages the cellular
energy availability by activating the flow of substrates towards energy-producing metabolic
pathways and deactivating energy-consuming ones. Specifically, AMPK inhibits the pro-
duction of fatty acids, cholesterol, and triglycerides but promotes the cell fatty acid uptake
and oxidation. It also stimulates glucose uptake in cells by activating glucose transporters.
Moreover, it triggers enzymes of glycolysis and inhibits glycogen synthase [21]. AMPK
also suppresses energy-consuming protein synthesis and stimulates autophagy (AUT) by
binding to a specific unit of the cytoplasmic signaling enzymatic system named mammalian
target of rapamycin (mTOR) (Figure 1).
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Figure 1. Schematic representation of the interaction between AMPK and mTOR and their influence
on energy (ATP) production.

AUT is a self-degradative process that has long been recognized as fundamental for
balancing energy sources during times of metabolic stress. It is a catabolic adaptive response
that aids survival by breaking down cellular components to maintain the availability
of molecules essential for cellular metabolism, as observed in mice between birth and
suckling [22].

It is now documented that AMPK regulates AUT through well-known mechanisms.
AMPK activates AUT by down-regulating mTOR activities and/or, more significantly,
stimulating the enzymatic complex Unc-51-Like Kinase 1 (ULK1), which is crucial for AUT
initiation. Indeed, AMPK-mediated phosphorylation of ULK1 stimulates autophagosome
biogenesis, the first step of AUT. Additionally, AMPK regulates the subsequent step of
AUT, the fusion of the outer membrane of an autophagosome and a lysosome to form an
autolysosome. This process transports the encapsulated materials to the lysosomal lumen,
where specific enzymes break down the material, making individual molecules of AAs
available for protein synthesis and/or mitochondrial respiration and releasing lipids and
carbohydrates critical for energy production [23].

However, it is important to emphasize that, under homeostatic conditions, AUT is a
natural metabolic process that, through lysosome-dependent regulated mechanisms, al-
lows the cell to eliminate unnecessary and/or dysfunctional structures, including proteins.
This process facilitates the recycling and/or increased availability of fundamental macro-
molecules to support cellular metabolism, both for energy and for synthetic purposes [24].

On the contrary, during acute and/or chronic stress situations, such as starvation or
catabolic stimuli, AUT can serve as an adaptive temporary response contributing to cell
survival by maintaining cytosolic molecules, primarily EAAs, which can then be recycled
for new protein synthesis and/or funneled through energy production cycles.

For instance, in cases of intracellular nutrient shortage secondary to starvation/growth
factor withdrawal or impaired ATP synthesis in the setting of ischemia, AUT can serve as an
adaptive response promoting cell survival, either by purging the cell of damaged organelles
or by generating the intracellular building blocks required to maintain vital functions, which
ultimately results in ATP production, protein synthesis, and improved cell survival with
recovery of myocyte function [25–27]. Conversely, under more extreme conditions, AUT
may also promote cell death through excessive self-digestion and degradation of essential
cellular constituents [28,29].

3.2. Amino Acid Availability

Both EAAs and NEAAs are derived from the digestion of dietary proteins. How-
ever, the efficiency of protein digestion and absorption of proteins as AAs decreases with
aging [30].
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The body can synthesize NEAAs from EAAs when metabolically necessary [5]. The
presence of EAAs in the cytosol plays a crucial role in regulating cell metabolism, including
protein synthesis and energy homeostasis [31]. Notably, a specific pool of EAAs, known as
branched-chain amino acids (BCAAs), particularly leucine, has a primary role in modulat-
ing the function of proteins involved in both global mRNA translation and the selection of
specific mRNAs for translation through mTOR activation [32].

Adequate amounts of cytosolic AAs for protein synthesis are also available through
alternative mechanisms, such as the degradation of intracellular proteins by AUT [33].
Interestingly, apart from being the building blocks of proteins, AAs, particularly EAAs,
have been documented to have other significant metabolic regulatory functions. Thus,
they have recently been defined as “metabokines”, which are molecules also capable of
influencing many cellular metabolic pathways. AAs regulates several energy metabolism
pathways in multiple tissues, including fatty acid β-oxidation, mitochondrial oxidative
phosphorylation, lipolysis, glycolysis, and gluconeogenesis [34]. In addition, data show
that AAs regulate multiple processes related to gene expression, including the modu-
lation of the function of proteins that mediate mRNA translation [32,35]. Moreover, it
has been demonstrated that a stoichiometrically balanced mixture of EAAs influences
mitochondrial energy production, not only providing fuel and/or Krebs cycle intermedi-
ates, but also stimulating the production of NO from eNOS, which favors the expression
of enzymes responsible for mitochondrial biogenesis, such as Peroxisome Proliferator-
Activated Receptor-Gamma Coactivator (PGC-1α) and Tfam, with a consequent increase in
mitochondria number [13,14] and mitochondrial bioenergetics [36].

3.3. mTOR Signaling

The mammalian target of rapamycin (mTOR) pathway is a cytoplasmic signaling
pathway that controls cell growth and global metabolism, including protein and energy
synthesis, in response to nutrient availability, cellular energy, and stress.

mTOR is a complex serine/threonine protein kinase in the PI3K-related kinase (PIKK)
family and forms the catalytic subunit of two distinct protein complexes: mTOR Complex
1 (mTORC1) and mTOR Complex 2 (mTORC2). Both mTORC1 and mTORC2, each con-
taining both common and unique subunits, play significant roles in cellular metabolism.
mTORC1 includes Raptor, whereas mTORC2 contains Rictor, Protor, and mSin1 (also
known as MAPKAP1) [37]. Despite being inhibited by Deptor, either mTORC1 or mTORC2
can deregulate Deptor expression, allowing the mTOR enzymatic complex to influence
cell metabolism in various ways, depending on a cell’s metabolic needs [38]. Addition-
ally, mTOR responds to the cytoplasmic energy amount, as sensed by AMPK. When the
energy levels are high, mTOR stimulates potential protein synthesis and cell growth. Con-
versely, when the ATP/AMP ratio decreases, mTOR influences catabolic processes such
as AUT [39–41]. These complex interactions increase mTOR-dependent control and fine
regulation of anabolic or catabolic pathways.

In addition to energy production, mTOR also modulates protein synthesis. For in-
stance, it regulates translation factors like eIF4EBPs and promotes the phosphorylation
of the ribosomal subunit S6, which is crucial for protein synthesis. mTOR also acts as a
transcriptional regulator of mitochondrial functions, stimulating genes such as PGC-1α
and Estrogen-Related Receptor-α (ERR-α), leading to increased mitochondrial respiration
in skeletal muscle tissue and many cell lines. The impact of mTOR on PGC-1α involves
ying yang-1 (YY1), a member of the GLI-Kruppel class of zinc finger proteins that acts as a
transcriptional regulator [42,43].

Notably, evidence shows that EAAs also activate the mTOR pathway. Like insulin,
specific EAAs activate protein synthesis, stimulate ribosome synthesis, and suppress AUT
by stimulating mTOR-dependent metabolic pathways in muscles. However, unlike insulin,
certain EAAs do not stimulate mTOR via phosphoinositide 3-kinase and Akt but indirectly
activate the TSC1/2-Rheb complex through the small guanosine triphosphatase Rheb
protein. In detail, TSC2 is a guanosine triphosphatase-activating protein acting on Rheb
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that, through still unknown mechanisms, either directly or indirectly regulates mTOR
activity [44–46].

Interestingly, we demonstrated that a special mixture of EAAs influences mTOR
signaling, inducing muscle protein synthesis in both skeletal and cardiac muscles of young
and elderly healthy sedentary and trained rats [13]. However, it is important to emphasize
that these nutrient- and energy-sensitive pathways form a complex network of reactions
that influence each other and are likely organ-dependent. Further studies are needed to
understand these complex phenomena in more detail.

3.4. Transcription Factors

Conditions such as AA deprivation and mitochondrial respiratory chain dysfunction,
leading to reduced energy production, activate transcription factors like Activating Tran-
scription Factor 4 (ATF4). ATF4 serves as a stress integrator for nutrient and energy signals,
modulating the gene expression of protective protein chaperones like GPR78/BiP, which
regulate protein refolding, enzymes, and antioxidants such as heme oxygenase. Moreover,
it has been demonstrated that ATF4 significantly interacts with mTOR and regulates the
expression of genes involved in AUT, such as ULK1 [47–50].

The synergistic interplay between food, energy production, protein synthesis, AA
availability, and AUT ensures the maintenance of cellular homeostasis and overall health,
as depicted in Figure 2.
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Figure 2. Energy levels (amount of ATP) regulate the levels of both protein synthesis and autophagy.
The production of ATP through the Krebs cycle provides the energy necessary for protein synthesis
by activating mTORC1. However, it also produces reactive oxygen species (ROS), which have been
shown to induce autophagy. Low energy levels resulting from the consumption of ATP for the
construction of thousands of peptide bonds necessary for protein synthesis activate AMPK, which in
turn inhibits mTORC1 and activates autophagy, providing substrates to support ATP production.
ULK1, Unc-51-Like Kinase 1.

4. Dietary Proteins: Quality and Sources
4.1. The Importance of Protein Quality

Proteins play an indispensable role in all living organisms’ functions and are found
in every tissue. In humans, proteins constitute around 15% of the body mass, with over
60% being contractile proteins, primarily concentrated in muscle tissues. Therefore, proper
protein nutrition is crucial for maintaining bodily functions and, ultimately, health.

However, not all dietary proteins are created equal. The quality of proteins consumed,
not just the quantity, is of utmost importance. This concept is often overlooked, especially
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when formulating protein supplements. The quality of a protein is determined by the
presence of all EAAs in adequate quantities, as well as by its digestibility and absorption,
all of which increase its utility for the body. High-quality proteins can be found in both
animal and vegetable foods, such as milk, eggs, salmon, lean meats, and soy proteins. This
leads us to a crucial qualitative concept: the biological value (BV) of proteins. The BV
is a multifactorial measure that considers the quantity, quality, and mutual relationship
of the EAAs present in food proteins. Essentially, it describes a protein quality and the
constructive potential of the AAs contained within it. BV can also be defined as the ratio
between retained nitrogen and absorbed nitrogen, minus the amount eliminated through
sweat, feces, and urine.

4.2. Plant or Animal Protein Sources and Intake

A recent systematic review and meta-analysis of prospective cohort studies suggested
that plant proteins are associated with a lower risk of overall mortality, including from
cardiovascular diseases and tumors [51]. However, this situation changes with age. For
older adults, plant proteins may not be the best solution. A recent study among adults aged
fifty-one and older showed that doubling the plant protein amount in the diet resulted in a
22% decrease in total protein intake, indicating malnutrition [52]. These data suggest that
increasing plant-based foods while reducing animal products could have negative health
effects on the population aged over fifty-one, both males and females.

Furthermore, in adults aged over 71 years, doubling the plant protein intake resulted
in an average protein intake of only about 0.8 g/kg/day of body weight [52]. Among
women over 71, 33% could not meet their average daily protein needs. In elderly males,
even though the protein intake could barely meet the theoretical daily recommendation,
it still failed to meet the daily intake of 1.0–1.2 g/kg of protein recommended by the
PROT-AGE Study Group of the European Union Geriatric Medicine Society (EUGMS). The
efficiency of plant protein varies greatly depending on the protocol applied, making it
difficult to provide clear recommendations on how plant proteins should be incorporated
into specific dietary patterns [53]. On the other hand, doubling the consumption of dairy
products easily met the recommended protein levels. Therefore, for older adults, increasing
the dairy product intake may help achieve the appropriate daily protein nutritional level
(approximately 1.2 g/kg), which aligns with the growing consensus that older adults need
to consume more proteins to maintain health and quality of life [52].

4.3. Insect Proteins

Historically, insects have been consumed and institutionally accepted as food in many
regions due to their sufficient nutritional value for humans [54–56]. Recently, amid concerns
over potential food resource shortages, various alternative food sources have been proposed
for industrialized countries, with insects garnering significant interest [57]. The resurgence
of insects as a food source is linked to their nutritional, environmental, and economic
value [58,59]. The nutritional value of insects can vary based on factors such as diet, devel-
opmental stage, sex, species, growth environment, and analysis methods [59–61]. However,
there is a consensus that insects are extremely rich in proteins, fats, and vitamins [62]. On
average, the protein content of edible insects ranges from 35% to 60% in dry weight or from
10% to 25% in fresh weight [63,64]. These values are higher than those for plant protein
sources like cereals, soy, and lentils [55]. Some insect species even appear to offer more
protein than chicken meat and eggs [65]. However, the digestibility of insect proteins is
highly variable due to the presence of chitin in the exoskeleton, which is nearly indigestible
for humans [64,66]. If chitin is removed, digestibility appears to increase, ranging from
77% to 98% [67]. The current literature primarily focuses on extraction and purification
techniques, with a lack of scientific data regarding the actual utility of these proteins.
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4.4. Protein Intake and Utilization

Recently, a pilot study in humans found that the intake of pea- and whey-derived
proteins (both proteins providing EAAs in noticeable amounts, still EAAs/NEAAs <<0.9)
produced comparable results in body composition, muscle volume, force production,
daily performance, and strength after 8 weeks of high-intensity functional training [68].
However, the current studies are limited and often yield conflicting results. Nonetheless,
plant proteins can still offer nutritional benefits, even with qualitative limitations that
render them inferior to animal proteins. In terms of elderly nutrition, while guidelines still
recommend the same protein amount throughout adulthood (0.8 g/kg/day~56 g/day for
males and ~46 g/day for females) [69], many recent studies recommend higher protein
amounts for those over 65. This suggests that a daily protein intake of at least 1.0–1.2 g/kg
is beneficial for general health, recovery after illness, and functional status maintenance,
especially in the elderly [70]. An even higher protein intake (1.2–1.5 g/kg/day) is crucial
for those with acute or chronic diseases, while individuals with serious illnesses, acute
injuries, or severe malnutrition may require a protein intake of at least 2.0 g/kg [71], due to
the presence of hypercatabolic metabolism. Unfortunately, proteins are never fully utilized.
Protein digestion typically takes from 1 to 2 h, and only about 40–70% of the AAs that make
up proteins are assimilated [30]. The unabsorbed ratio of alimentary proteins constitutes
nitrogenous waste that must be eliminated by the kidneys and liver. This is why a diet
excessively high in protein can overload these organs over time, potentially compromising
their function.

5. Protein Turnover and Requirements

Even in a state of rest and in healthy individuals, proteins, in all their forms and
functions, undergo a continuous process of degradation and synthesis. This turnover allows
the body to replace worn-out molecules and maintain optimal function. For instance, heart
proteins are typically renewed every 30 days, and muscles degrade 250–350 g of protein
per day, necessitating replenishment. Skeletal muscle, which constitutes approximately
40% of the body weight, contains 50–75% of all proteins in the human body [72]. The
total body protein turnover, which includes simultaneous processes of protein synthesis
and breakdown, accounts for approximately 20% of resting energy expenditure. It is
estimated that about 1–2% of the total skeletal muscle mass undergoes turnover [72].
Consequently, despite its primary role of converting chemical energy into mechanical
energy for movement, muscle also plays a significant role in metabolism. It acts as a storage
site for an energetic substrate (glycogen), a nitrogen donor, and a source of gluconeogenic
molecules and fuels (amino acids), which are essential during physical activities and/or
instances of malnutrition, starvation, injuries, and chronic diseases [73].

5.1. Physical Activity and Hypercatabolic Syndrome

Physical activity is beneficial at any age. Data show that regular movement can en-
hance the body’s ability to synthesize proteins, whereas a sedentary lifestyle can diminish
this ability and affect the absorption of certain nutrients. Consequently, healthy adults who
engage in moderate to vigorous physical activity require more protein (1.3–1.6 g/kg/day)
to boost their muscle mass and physical strength compared to their sedentary counter-
parts [74]. Notably, it is recommended to increase the total daily protein intake to at least
1.2 g/kg in healthy older people because aging negatively influences the protein metabolism
due to intrinsic malnutrition and/or catabolic stimuli caused by an aging-induced altered
inflammation process, termed immunosenescence [75].

Indeed, conditions such as aging, chronic and/or autoimmune diseases, injuries, and
tumors increase catabolic stimuli due to the production of catabolic inflammatory molecules
(i.e., cytokines and hormones), leading to the Hypercatabolic Syndrome (HS). The HS
significantly increases whole-body metabolism, thereby increasing energy consumption
and disrupting the balance between anabolic and catabolic stimuli. This imbalance results
in the breakdown of muscle contractile proteins and circulating visceral proteins and the
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release of AAs. In these metabolic conditions, the released AAs are deaminated, and the
resulting carbon skeletons are used to produce energy and other metabolic intermediates
necessary to meet the increased metabolic demands. In this context, the role of skeletal
muscle and circulating visceral proteins extends beyond ensuring posture maintenance
and locomotion and transporting molecules or atoms [76].

The biochemical consequence of HS is a protein disarrangement, which clinically
manifests through symptoms such as sarcopenia, hypoalbuminemia, anemia, infections,
and fluid compartmentation alterations. These symptoms result in increased hospitalization
and morbidity for the patient [76]. In these metabolic conditions, the synergy between
adapted physical activity and protein nutrition becomes crucial. Emphasis should be placed
on providing high-biological-value proteins and, most importantly, on ensuring the intake
of all EAAs [74].

Any increase in the body’s metabolic demand necessitates a greater nitrogen (protein)
nutritional intake, where all EAAs must be present in the correct quantities. Studies have
shown that oral supplementation with an EAAs mixture in a stoichiometric ratio supports
the body metabolism in both aging and chronic hypercatabolic diseases such as diabetes,
cardiomyopathies, and tumors [6,45,76,77].

5.2. The Limits of Protein Intake

While some healthy adults, especially athletes, can tolerate a higher protein intake, a
review suggests that consuming more than 2 to 2.5 g/kg/day of protein (approximately
25% of the energy needs) might be excessive [78]. Occasional excess protein consumption
could lead to transient gastrointestinal issues. However, a consistently high protein intake
over the long term may contribute to digestive, renal, and vascular abnormalities [74].
Moreover, a high consumption of animal protein can increase the risk of cardiovascular
death [79,80]. Therefore, individuals of all ages need a balanced diet that includes a variety
of macro- and micronutrients. Consuming a diet that is too high in protein, particularly
animal protein, can have negative health effects. The key is to maintain a balanced intake
of all nutrients, not just proteins, for overall health and wellbeing.

Recent research has revealed a mechanism in which a high protein intake, through an
increase in plasma leucine, leads to mTORC1-mediated inhibition of monocyte/macrophage
autophagy, subsequently causing atherogenesis. This discovery has significant clinical and
public health implications. Protein intake at any level above the minimum recommended
daily intake (0.8 g/kg/day) is generally considered safe and acceptable and has gained
popularity. However, a high protein and/or leucine intake should be approached with
caution [80]. As such, the daily protein intake must be carefully evaluated and tailored to
the patient’s metabolic conditions.

6. The Significance of EAA Supplementation

Cells frequently adapt their metabolic strategies under conditions of nutrient de-
privation to sustain their survival and growth. Therefore, adequate protein nutrition is
crucial at various ages and in different physiological states. Years ago, a study in humans
demonstrated several key findings related to AA administration. Firstly, the absolute
increase in energy expenditure is dose-dependent and does not appear to reach a plateau.
Secondly, this increase is positively correlated with AA-induced protein synthesis. Lastly,
the thermic effect is not dependent on the dose of AAs administered [81]. These findings
underscore the complex interactions between protein intake, metabolic responses, and
physiological conditions.

Quantifying the dietary AA intake is crucial, as both exogenous and endogenous AAs
contribute to protein synthesis. While some studies reported habitual AA intakes, none
assessed adherence to the Dietary Reference Intakes for each EAA [82]. Unfortunately, all
dietary proteins, including those with a high BV, have an EAAs/NEAAs ratio of less than
1, meaning that are always in excess. Typically, the EAAs/NEAAs ratio in a food protein is
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approximately 30/70, requiring organisms to consume large quantities of NEAAs to meet
the daily need for all EAAs in adequate amounts.

Recent studies in experimental models showed that a diet with moderate EAA defi-
ciency significantly reduced survival as a function of EAA concentration, while an EAA
excess increased survival [17,18]. However, under normal conditions, about 70% of the
EAAs obtained from muscle protein degradation are reincorporated into other muscle
proteins. Unfortunately, the efficiency of this process can only be partially increased. Conse-
quently, supplementing EAAs by providing exclusively single BCAAs, although required in
greater quantities, cannot support or increase the rate of muscle protein synthesis, because
the limited availability of other EAAs quickly becomes the limiting factor [83]. Therefore,
an anabolic state cannot occur without the availability of all EAAs in adequate quantities.

The positive effect of supplementation with a mixture of all single EAAs in stoichio-
metric ratio, according to the human metabolic needs, has been observed in numerous
experimental conditions [84–86], including chemotherapy [87,88]. This effect is based on
the stimulation of anabolism through the activation of eNOS, leading to mitochondrial
biogenesis and the reduction of reactive oxygen species (ROS) [13], as well as mTORC1
activation, resulting in increased protein synthesis [89]. Furthermore, free EAAs do not
need to be digested; so, they are rapidly absorbed and quickly available in the circulation
to support the cell metabolism [90].

Recent studies indicated that certain metabolites and nutrients, including AAs, that
are not classified as vitamins, cytokines, or hormones, can regulate fundamental metabolic
cell pathways. These bioactive metabolites have been termed metabokines [34]. This new
understanding of metabokines expands our knowledge of the complex interactions within
cellular metabolism and may open new avenues for therapeutic interventions.

Emerging evidence suggests that EAAs act as metabokines, influencing the metabolism
of not only healthy cells but also diseased ones, including tumor cells [35].

For example, diets that selectively restrict all NEAAs have been shown to increase
the life expectancy of mice with colon cancer, suggesting a potential therapeutic role in
humans [91]. Specific dietary patterns with various food energy sources, including some
AAs, can induce tumor cells into a state of non-proliferative senescence [92]. Additionally,
supplementation with leucine has been shown to counteract cancer-induced cachexia [93].
A thorough review of the existing literature on the interplay between metabolism and cell
death in tumorigenesis underscores the significant role that various metabolic processes
play in either promoting or inhibiting cell death. This influence is not only through direct
stimuli causing stress and cell death, but also through impacting key regulators of different
cell death processes.

The tumor microenvironment is also implicated in the metabolic regulation of cell
death, suggesting that modulating cancer cell metabolism could be a viable and effective
strategy to regulate tumorigenesis [94]. The characterization of metabolic reprogramming
in the tumor microenvironment is becoming increasingly crucial in cancer research and
patient care [95]. This emerging focus could potentially pave the way for innovative
therapeutic approaches in cancer treatment.

Another example concerns heart diseases. Cardiac cachexia continues to pose a
significant clinical challenge in the management of patients with heart failure. This condi-
tion is characterized by unintentional weight loss, resulting from catabolism, a metabolic
state where fat and skeletal muscle mass are broken down to fulfill the body’s energy
requirements. Cardiac cachexia is prevalent in patients with advanced heart failure and is
independently associated with mortality [96].

Studies have revealed that patients with chronic heart failure exhibit reduced arterial
AA levels, which restricts the supply and availability of AAs to the heart. This is directly
correlated with clinical disease severity and left ventricular dysfunction [97].

These findings underscore the need for rigorous nutritional monitoring and dietary
education for patients with chronic heart failure and all patients in a hypercatabolic state.
This should be supplementary to standard dietary advice for these individuals. The
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objective is to ensure an optimal nutritional status that supports the overall health and
potentially mitigates the progression of cardiac cachexia.

These studies confirm that AAs and their metabolites can influence the cellular
metabolism by acting as metabokines capable of exerting epigenetic control of metabolic
pathways in both normal and pathological cells. This evidence opens new avenues for the
therapeutic use of AAs.

7. Conclusions

Life’s intricate machinery depends on the dynamic flux and the interrelated influences
among energy, protein synthesis, and the availability of AAs. These elements must work
in synergy and maintain a mutual balance. A comprehensive understanding of these pro-
cesses provides valuable insights into the molecular basis of various diseases and presents
potential targets for therapeutic intervention, emphasizing their inseparable dynamic com-
bination for life’s sustenance. Emerging findings support the notion that supplementation
with an EAA mixture containing all single EAAs in stoichiometric ratio could be clinically
significant in hypercatabolic and/or malnourished patients.
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