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Abstract: The study of the polarimetric target decomposition algorithm with physical scattering
models has contributed to the development of the field of remote sensing because of its simple and
clear physical meaning with a small computational effort. However, most of the volume scattering
models in these algorithms are for forests or crops, and there is a lack of volume scattering models
for grasslands. In order to improve the accuracy of the polarimetric target decomposition algorithm
adapted to grassland data, in this paper, a novel volume scattering model is derived considering
the characteristics of real grassland plant structure and combined with the backward scattering
coefficients of grass, which is abstracted as a rotatable ellipsoid of variable shape. In the process of
rotation, the possibility of rotation is considered in two dimensions, the tilt angle and canting angle;
for particle shape, the anisotropy degree A is directly introduced as a parameter to describe and
expand the applicability of the model at the same time. After obtaining the analytical solution of
the parameters and using the principle of least negative power to determine the optimal solution of
the model, the algorithm is validated by applying it to the C-band AirBorne dataset of Hunshandak
grassland in Inner Mongolia and the X-band Cosmos-Skymed dataset of Xiwuqi grassland in Inner
Mongolia. The performance of the algorithm with five polarimetric target decomposition algorithms
is studied comparatively. The experimental results show that the algorithm proposed in this paper
outperforms the other algorithms in terms of grassland decomposition accuracy on different bands
of data.

Keywords: grassland; volume scattering model; degree of anisotropy; polarimetric target decomposition

1. Introduction

Grassland ecosystems have ecological functions such as windbreak and sand fixation,
water conservation, etc., which is an important part of the natural ecosystem and has
important geographic value for maintaining ecological balance, regional economy, and
human history [1]. However, neglecting the geographic location and interannual variation
of spring phenology leads to a high risk of overgrazing and grassland degradation, which
is a problem that needs to be solved urgently [2]. Therefore, it is important to monitor
grasslands. In recent years, there has been increasing interest in the potential offered by
microwave satellite-based instruments. This microwave technique measures the strength
of backscattered signals from the surface in almost all weather and lighting conditions [3].
The backscatter signal from vegetated surfaces is a function of the soil surface, the radar
system and the biophysical parameters of the scatterers in the vegetation that can influence
the depth to which the radar wave penetrates. Interpreting the backscatter signal gives
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us the parameters we want. This is one of the features that distinguishes the microwave
technique from optical satellites. The Polarimetric Synthetic Aperture Radar (SAR) with
full polarization measurement capability has become a mainstream sensor in the fields
of earth observation, disaster remote sensing, ocean remote sensing, reconnaissance and
surveillance, etc., and has become more and more widely used [4]. The polarimetric target
decomposition algorithm is the main implementation method for polarimetric feature
extraction of polarimetric SAR images [5]. Currently, polarimetric target decomposition
theory is divided into two categories: coherent target decomposition for describing pure
targets and incoherent target decomposition for describing distributed targets [6]. Since
distributed targets are more widespread in nature, the methods of incoherent polarimetric
target decomposition have been more widely used. Decomposition of incoherent targets
was first proposed by Huynen [7], which is divided into two main categories: eigenvalue
incoherent polarimetric target decomposition [8–11] and model-based incoherent polari-
metric target decomposition [12–14]. The basic decomposition framework used in this
paper is the model-based incoherent t polarimetric target decomposition algorithm. The
algorithms of Freeman [12] and Yamaguchi [14] are the classical algorithms for model-
based polarimetric target decomposition. This type of algorithm is not based entirely on
mathematical means, but makes full use of the scattering properties of radars, and the
decomposed scattering model and parameters have a clear physical meaning. Therefore,
this type of method has the advantage of clear physical meaning with less computation
and has higher practical value [15–17].

However, the model-based polarimetric target decomposition algorithm has the fol-
lowing two problems: (1) the problem of inadequate application of polarization data due
to the reflection symmetry assumption; (2) the problem of negative power due to the
discrepancy between the scattering model and the observation target. A large number of
improvements have been made by domestic and foreign scholars to address the above
problems. Adding scattering components is one of the most common methods to solve the
first problem. In 2005, Yamaguchi et al. [14] introduced spiral scattering components to
break the reflection symmetry assumption. In 2018, Gulab and Yamaguchi [18] proposed a
six-component decomposition method with the addition of oriented dipoles scattering and
composite scattering matrices that utilize the T13 component of the polarization coherency
matrix. In 2019, Gulab [19] built upon the above study by adding matrices corresponding
to the real part of T23 while removing the oriented-angle compensation as an operation.
This seven-component decomposition utilizes seven of the nine independent parameters.
In addition to increasing the scattering components to account for the corresponding inde-
pendent parameters, reducing the number of independent parameters can also improve the
parameter utilization. Because the undulation of the terrain and the tilted arrangement of
the buildings cause a shift in the polarization azimuth, orientation angle compensation is
used to minimize the cross-polarization component by rotating the polarization coherency
matrix so that the real part of T23 is zero after the rotation. Because T33 serves as the main
source of the volume scattering model in the classical polarimetric target decomposition
algorithm, the orientation angle compensation minimizes the cross-polarization term and
also alleviates the problem of volume scattering overestimation to some extent. Orientation
angle compensation has been used as a preprocessing step for the polarimetric coherency
matrix, and the algorithms that introduce this processing [20–22] have improved. In 2012,
Yamaguchi [23] proposed an algorithm to perform a double unitary transformation on
the polarimetric coherency matrix, which completely eliminates the T23 elements and re-
duces the nine independent parameters to seven, as well as greatly alleviates the negative
power problem. However, the above two approaches usually introduce models that can-
not correspond explicitly to the actual observation targets, making the advantages of the
model-based decomposition methods not obvious enough. Hongzhong Li [24] and Wentao
An [25], on the other hand, optimized the algorithms by directly correcting the reflection
symmetry assumption.
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For the second problem, scholars have proposed solutions from several perspectives.
In 2011, van Zyl et al. [26] introduced a non-negative eigenvalue constraint criterion to
effectively avoid the negative power phenomenon while retaining the traditional model.
Combining the advantages of eigenvalue-based decomposition, hybrid decomposition
can also avoid negative power. Cloude [27] proposed a hybrid Freeman/eigenvalue de-
composition method in which the surface scattering is orthogonal to the double bounce
scattering. In 2014, Yi Cui et al. [28] combined the two, which strictly guarantees that
all decompositions are non-negative and fully utilizes the polarimetric information. In
2016, Zou Bin et al. [29] improved the negative power problem by combining the eigen
decomposition with the four-component decomposition. Maurya [30] proposed a hybrid
technique for the decomposition of polarimetric synthetic aperture radar (SAR) data with
the aim of solving the negative power problem encountered in model-based decomposition
methods. While the Freeman decomposition assumes that the probability density function
associated with the orientation angle of the elementary scatterer satisfies a uniform distri-
bution, Yamaguchi proposed a truncated sinusoidal probability distribution to replace the
uniform distribution, which makes the volume scattering model more accurate and also
suggests an idea for other scholars to improve the volume scattering model.

Neumann et al. [31] proposed the use of von Mises distribution to characterize the
canopy of vegetation. Arii et al. [32] introduced a probability distribution of nth cosine
squared function. This distribution is mainly described by the orientation angle mean
and surface roughness parameters. In addition, based on the distribution function of the
phase difference in multiview data, Lee et al. [33] proposed a series of models for matching
different azimuthal distributions. Compared with the improvement of volume scattering
models, the improvement of surface scattering models and double bounce scattering models
are less studied, but they are also an idea for optimization algorithms.

In 2014, Chen Siwei et al. [34] refined the scattering model by introducing a rotation
angle parameter to rotate the traditional surface scattering model and double bounce
scattering models. To make the volume scattering model more compatible with the obser-
vation target, the volume scattering model can also be extended by introducing adaptive
parameters, and the volume scattering model can be made more compatible with the
observation target by automatically adjusting the volume scattering model through the
observation values. In 2010, Arii et al. [35] introduced the random direction angle and
random degree adaptive parameters to extend the volume scattering model without the
reflection symmetry assumption. In 2011, Antropov et al. [36] proposed a generalized
model for the contribution of forest volume scattering, which extends the volume scattering
range. Huang et al. [37] used an improved volume scattering model based on the nth
cosine function to describe vegetation, where the parameters are determined by the opti-
mal values from multiple experiments. Wang et al. [38] introduced parameters to reduce
the negative power by modeling dipole aggregation. Wang T et al. [39] proposed a full
parameter optimization method based on the residual matrix, which will consider all the
elements of the coherency matrix to achieve priority-free optimization. In order to improve
the accuracy of the decomposition, proposing a specific model for a specific observation
target is also a way to solve the problem. Chen et al. [40] combined the polarization ori-
entation (PO) in the four-component decomposition, and used this method to study the
extent of tsunami damages to the structures in urban areas, which is of great significance
in the assessment of natural disasters. Zhang et al. [41] investigated the characteristics
of the edge region of the building after introducing line scattering, which decomposes
the covariance matrix into a weighted sum of five basic scattering mechanisms, namely
surface scattering, double bounce scattering, volume scattering, helical scattering, and line
scattering, to construct a more generalized scattering model, which obtains better results
in man-made target detection. Xiang et al. [42] used a rotating double bounce model to
effectively separate the building-oriented induced cross-scattering from the overall high-
pressure component. Dou et al. [15] combined a generalized volume scattering model
with a simplified adaptive volume scattering model and a simplified Neumann volume
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scattering model to successfully separate the surface and the above-ground vegetation
by using the two-component decomposition as the basic framework, and estimated the
soil moisture using the decomposition parameters. Hajnsek et al. [43] used the above
three polarized characteristic parameters to distinguish the inversion of surface roughness
and soil moisture, which can be estimated separately, thus improving the accuracy of the
inversion of surface parameters. Numerous scholars have improved the model-based target
decomposition method and achieved better results, which also shows that the model-based
target decomposition algorithm has great potential in the field of remote sensing. However,
there are fewer volume scattering models proposed for grassland in the current research,
which leads to unsatisfactory decomposition results for grassland. Therefore, this paper
proposes a novel polarimetric target decomposition algorithm applied to grasslands.

In this paper, an adaptive polarimetric target decomposition algorithm is proposed
by taking two-component decomposition as the basic decomposition framework and
introducing an adaptive parameter, anisotropy degree (A). In this paper, the particle shape
is considered from two dimensions, orientation randomness, i.e., the arrangement direction
of the particles, and anisotropy, i.e., the shape of the particles. When considering the
orientation randomness of the particles, the spin angle of the grass is ignored in combination
with the characteristics of the grass, and the tilt angle is restricted so that the range of its
value is no longer allowed to be an arbitrary angle. The anisotropy of the particles is then
modeled by the anisotropy degree A, which is used as an adaptive parameter introduced
in the text. Such a model is more realistic and the simulation of the grass will be more
accurate. After obtaining the analytical solutions of the parameters, the optimal solutions of
the parameters are determined by combining the principle of least negative power. Using
the proposed decomposition framework, the C-band AirBorne dataset from Hunshandak
Grassland in Inner Mongolia and the X-band Cosmos-Skymed dataset from Xiwuqi in
Inner Mongolia are used as experimental data to verify the effectiveness of the algorithm.

2. Methodology
2.1. Orientation Angle Compensation

The concept of the orientation angle was first introduced by Huynen in the target
decomposition of the S matrix [7]. Each pixel point of the target in a polarimetric SAR
image has its own orientation angle, and the deorientation operation is precisely designed
to eliminate the effects of these randomly distributed orientation angles. It is known
that a target shown in Figure 1 has a measured scattering matrix of S0 when in position
parallel to the H-axis. By using the Z-axis as the radar line-of-sight direction, the target is
rotated counterclockwise by the angle θ around the radar incidence direction in a plane
perpendicular to the radar’s line of sight to reach position b, which is where the angle of
orientation comes from.
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In order to find the scattering matrix after the target is rotated, this case can be equated
to the target not moving; the radar is rotated clockwise by an angle θ, i.e., the coordinate
system HV is rotated clockwise by the angle θ. Then, the incident electromagnetic wave



Remote Sens. 2024, 16, 2832 5 of 20

EI and the scattered electromagnetic wave ES become a new coordinate system, as shown
below [44]: [

cos θ −sin θ
sin θ cos θ

]
ES = S ·

[
cos θ −sin θ
sin θ cos θ

]
EI (1)

where S represents the scattering matrix after the target is rotated to position b. The
scattering matrix before and after the rotation are related as follows:

S0 =

[
cos θ sin θ
−sin θ cos θ

]
S
[

cos θ −sin θ
−sin θ cos θ

]
(2)

From this, the following formula for the deorientation angle of the coherent matrix
can be derived [44]:

T0 =

1 0 0
0 cos 2θ sin 2θ
0 −sin 2θ cos 2θ

T

1 0 0
0 cos 2θ −sin 2θ
0 sin 2θ cos 2θ

 (3)

After determining the orientation angle compensation formula, the most important
thing is to determine the value of the rotation angle θ. Since the T33 component of the
coherency matrix consists only of the cross-polarization term, we try to minimize it as much
as possible, which is also helpful for the subsequent negative power analysis. The T33 term
in Equation (3) can be written as follows:

T33(θ) = T33cos22θ − Re(T23)sin 4θ + T22sin22θ (4)

This gives the derivative of T33 with respect to θ as follows:

T′
33(θ) = 2(T22 − T33)sin 4θ − 4Re(T23)cos 4θ (5)

In order to obtain its minimum value, making the derivative zero, i.e., T′
33(θ) = 0, the

following equations can be obtained:

tan4θ =
2Re(T23)

T22 − T33
(6)

θ =
1
4

tan−1
(

2Re(T23)

T22 − T33

)
(7)

It can be found that T11(θ) remains unchanged while T23(θ) becomes purely imaginary,
which exactly fits the spiral scattering model of Yamaguchi’s four-component decomposi-
tion. It can also be found that T33(θ) decreases by Re(T23)sin 4θ and T22(θ) increases by the
same amount by rotation [20].

2.2. Adaptive Volume Scattering Model

In this paper, an anisotropic particle cloud is chosen to model the scattering proper-
ties of grass. The matrices needed for the subsequent algorithms are proposed based on
the scattering mechanism. Since the coherency matrix formulation is closer to the phys-
ical scattering properties and more zeros appear in the scattering model, all subsequent
decompositions in this paper use the coherency matrix [33].

Since the size of grass is much smaller than the wavelength of an electromagnetic
wave, we use the concept of polarizability to discuss the scattering mechanism of particles.
When a particle is placed into a uniform incident field, that incident field will produce an
induced dipole moment as shown below [45]:

p = ρEi (8)
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where ρ is the tensor. Thus, the directions of p and Ei coincide only when the field is
applied to one of the three principal directions of the particle. Let the orientation of the
particle in space be characterized by three perpendicular unit vectors n1, n2 and n3, as
shown in Figure 2.
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The incident field can thus be expressed as follows:

Ei = E1n1 + E2n2 + E3n3 (9)

The particle is then characterized by three tensor components ρ1, ρ2 and ρ3, also
known as polarizabilities, such that the dipole moment can be expressed as follows:

p = ρ1E1n1 + ρ2E2n2 + ρ3E3n3 (10)

Due to its flexibility in modeling, there are many possible particle shapes with axis
lengths only (sphere, needle, disk, etc.); here, we chose the ellipsoid [46]. To compute
the scattering matrix for an arbitrary ellipsoid, we place the ellipsoid into a Cartesian
coordinate system. For simplicity, the incidence direction is chosen to be the positive Z-axis
and only the backscattering case is considered below. Figure 3 shows the ellipsoid in its
standard position, i.e., its three axes (n1, n2, and n3) are parallel to the Cartesian unit vectors
x, y, and z, respectively.
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Induced dipole moments in the direction of the three axes are represented in the
Cartesian coordinate system as shown below:

px = Ei
vP11 + Ei

hP12 (11)

py = Ei
vP21 + Ei

hP22 (12)

pz = Ei
vP31 + Ei

hP32 (13)

where the incident field is divided into vertical incidence Ei
v and horizontal incidence Ei

h.

Pik = Pki = mi1mk1ρ1 + mi2mk2ρ2 + mi3mk3ρ3 (14)
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where mij then shows the relationship between the Cartesian coordinate system and the
three axes of the ellipsoid, as shown below:

x = m11n1 + m12n2 + m13n3 (15)

y = m21n1 + m22n2 + m23n3 (16)

z = m31n1 + m32n2 + m33n3 (17)

A three-dimensional cubic ellipsoid is rotatable in three directions, which are referred
to as the rotation angle φ, the tilt angle τ, and the canting angle θ. Changes induced by
rotations around a fixed point can be represented by a rotation matrix [45], i.e., we can
start by considering rotations in one direction, and the final result can be represented by a
matrix product. By assuming a right-handed coordinate system and using the Z-axis as
the radar line-of-sight direction, the particle is at the standard position (θ = 0◦, τ = 90◦).
The rotation is shown in Figure 4, where the primitive axes are denoted x, y, and z. Typical
rotations around the three directions are denoted as follows:

[
Mϕ

]
=

cos ϕ −sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

 (18)

[Mτ ] =

 cos τ 0 sin τ
0 1 0

−sin τ 0 cos τ

 (19)

[Mθ] =

cos θ −sin θ 0
sin θ cos θ 0

0 0 1

 (20)

Then, its total rotation can be expressed by its product, as shown below:

[M] = [Mθ][Mτ ]
[
Mϕ

]
(21)

It is important to note that in connection with the actual situation, the rotation of the
grass is meaningless; therefore, for the particle, the rotation angle φ here is meaningless,
i.e., φ = 0.
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Figure 4. Schematic of particle rotation. The particle is shown at orientation θ = 0◦, τ = 90◦.

The backscattered field can be obtained as the p component perpendicular to the
propagation direction [45]. Combined with the backscattering coordinate system, the
scattering matrix of the ellipsoid can be derived as follows:

[S] =
[

a c
c d

]
(22)
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where
a = ρ1cos2θcos2τ + ρ2sin2θ + ρ3cos2θsin2τ

d = ρ1sin2θcos2τ + ρ2cos2θ + ρ3sin2θsin2τ

c = (ρ1cos2τ − ρ2 + ρ3sin2τ)cosθsinθ

(23)

The definition of A is below:
A =

ρ1

ρ2
(24)

In order to reduce the parameters of the model and decrease the complexity of the
subsequent decomposition, we perform some parametric simplifications [47]. The spin
angle is unobjectionable for the goal of our study, φ = 0, i.e., x2 = x3 for our hypothetical
ellipsoid. Furthermore, we are more concerned with the shape of the particles than their
specific size; therefore, we consider the relative ratios, such that ρ1 = 1 and ρ2 = ρ3 = A.

At this point, substituting the assumptions about the parameters gives the following:

a = cos2θcos2τ + Asin2θ + Acos2θsin2τ

d = sin2θcos2τ + Acos2θ + Asin2θsin2τ

c = (cos2τ − A + Asin2τ)cosθsinθ

(25)

According to the conversion relation between the scattering matrix and the polarimet-
ric coherency matrix, the following expression can be obtained:

⟨[T]⟩ = 1
2

〈 (a + d)2 a2 − d2 2(a + d)c
a2 − d2 (

a − d)2 2(a − d)c
2(a + d)c 2(a − d)c 4c2

〉 =
1
2

⟨t11⟩ ⟨t12⟩ ⟨t13⟩
⟨t21⟩ ⟨t22⟩ ⟨t23⟩
⟨t31⟩ ⟨t32⟩ ⟨t33⟩

 (26)

where ⟨∗⟩ denotes the overall average.
It is assumed that only single scattering is important and that each particle in the

cloud is independent of the other particles around it [48]. In this paper, we focus on two
main parameters of the particles: the shape and the orientation distribution of the particles,
where the shape of the particle is represented by the anisotropy degree A. For the direction
distribution of particles, we no longer choose a completely random model, but limit it
according to the actual situation. The actual situation of the grassland can be abstracted as
shown in Figure 5.
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Figure 5. Abstractions of the actual situation in the meadow. (a) Actual abstraction; (b) effect on the 
canting angle 𝜃; (c) effect on the tilt angle 𝜏. 

From Figure 5a, it can be seen that the rotation angle 𝜑, the tilt angle 𝜏 and the cant-
ing angle 𝜃 are not uniformly distributed within 0 − 360°. The rotation angle 𝜑 is not 
emphasized in this paper to make it zero, and the reason has been explained in the 

Figure 5. Abstractions of the actual situation in the meadow. (a) Actual abstraction; (b) effect on the
canting angle θ; (c) effect on the tilt angle τ.

From Figure 5a, it can be seen that the rotation angle φ, the tilt angle τ and the
canting angle θ are not uniformly distributed within 0 − 360◦. The rotation angle φ is
not emphasized in this paper to make it zero, and the reason has been explained in the
previous section. In reality, the grass growth is not vertically upward, and the bending
growth of grass is a factor that must be considered for modeling. In this paper, the degree
of incline of grass is characterized in terms of two dimensions: the tilt angle and canting
angle. Different degrees of grass incline have different effects on its tilt and canting angles.
Figure 5b shows the effect on the canting angle θ, where different degrees of incline differ
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only in direction and the particle shape does not change. Figure 5c shows the effect on
the tilt angle τ; as the grass is tilted, the shape of the particles follows. Therefore, in this
paper, considering the particle shape of grass from two dimensions can better fit the actual
situation. Combined with the particle rotation schematic in Figure 4, the tilt angle τ should
be within the range 0 − 90◦, while the canting angle θ should be within the range ±90◦.
Therefore, the overall average of the coherency matrix is defined as follows:

〈
tij
〉
=

1
4π

∫ θ= π
2

θ=− π
2

∫ τ= π
2

τ=0
tij(θ, τ)sin τdτdθ (27)

According to Equations (25)–(27), the polarimetric coherency matrix of the ellipsoidal
particle is obtained by calculation as follows:

TV =


43A2+14A+3

15 0 0

0 (A−1)2

10 0

0 0 (A−1)2

10

 (28)

2.3. Polarimetric Target Decomposition Algorithm

The scattering mechanisms in the grassland region mainly include ground scattering
and volume scattering, so the two-component decomposition model is chosen as the basic
decomposition framework for polarimetric target decomposition in this paper. Among
them, the expression of ground scattering is as follows [49]:

TG =

1 α∗ 0
α

∣∣α|2 0
0 0 0

 (29)

where α is the shape factor; when |α|< 1 , TG corresponds to the direct surface scattering
mechanism; when |α|> 1 , TG corresponds to the double bounce scattering mechanism. The
volume scattering model utilizes Equation (28) derived in this paper; the total backscattering
model can be expressed as follows:

T = fGTG + fVTV =


fG + fV

43A2+14A+3
15 fGα∗ 0

fGα fG
∣∣α|2 + f V

(A−1)2

10 0

0 0 fV
(A−1)2

10

 (30)

where fG is the contribution of the ground scattering and fV is the contribution of the
volume scattering component. Based on the above equations, we can obtain 4 equations
that contain 4 unknowns: 

T11 = fG + fV
43A2+14A+3

15

T22 = fG|α|2 + f V
(A−1)2

10

T33 = fV
(A−1)2

10

T12 = fGα∗

(31)

The system of equations above has an equal number of unknowns and equations,
which gives an analytical solution to the equation, which can be obtained by solving the
above equation:

fG =
|T12|2

T22 − T33
(32)

α =
T12

fG
(33)
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A =
(2K − 14)±

√
(2K − 14)2 − 4(43 − K)(3 − K)

2(43 − K)
(34)

fV =
10T33

(A − 1)2 (35)

where

K =
3

2T33

(
T11 −

|T12|2

T22 − T33

)
(36)

The total power can be expressed as follows:

Span = a2 + 2c2 + d2 (37)

Then, determining the adaptive parameters is a necessary step. When the volume
scattering model does not match the observed target, negative powers occur. Therefore,
in order to improve the adaptability of the model, the adaptive parameters can be deter-
mined by minimizing the possibility of negative powers [38]. It can be easily obtained by
deforming Equation (31) as shown below:

Tremainder = T − fV


43A2+14A+3

15 0 0

0 (A−1)2

10 0

0 0 (A−1)2

10

 =

T11 −
2(43A2+14A+3)

3(A−1)2 T33 T12 0

T∗
12 T22 − T33 0
0 0 0

 (38)

From Equation (38), it is easily obtained that the following conditions need to be
satisfied to make the power of the ground scattering component non-negative:

T11 −
2
(
43A2 + 14A + 3

)
3(A − 1)2 T33 ≥ 0 (39)

T22 − T33 ≥ 0 (40)(
T11 −

2
(
43A2 + 14A + 3

)
3(A − 1)2 T33

)
(T22 − T33)− |T12|2 ≥ 0 (41)

Equation (39) is related to surface scattering and Equation (40) is related to double
bounce scattering. Equation (41) may fail when Equations (39) and (40) are satisfied, but
Equation (41) may still be negative for larger |T12|2 [33]. By analyzing the experimental
data, it is apparent that larger waters may have a larger |T12|2. Combining our experimental
data and the scope of the study, here we do not consider the third condition. For condition
two, it is the basic idea of orientation angle compensation [50]. Through the compensation
treatment of the orientation angle, the value of T33 is minimized while T22 is raised by
the same value. After the compensation of the orientation angle, the volume scattered
power component is subsequently reduced, the secondary scattered power component is
increased, and the surface scattered power component is almost unchanged.

Therefore, the orientation angle compensation can somewhat solve the problem of
overestimation of the volume scattering power component. At the same time, the increase
in T22 has obvious improvement regarding the problem of negative power value because
one of the main reasons for the negative power value of surface scattering or double bounce
scattering is that T22 < T33. For the second condition, we dealt with it using orientation
angle compensation. So, the first condition will be our main basis for determining the
adaptive parameters. Choosing a minimum A value that satisfies the first condition is the
determined optimal parameter value. Figure 6 shows the whole process of this algorithm.
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Figure 6. The flowchart of the algorithm. 
Figure 6. The flowchart of the algorithm.

3. Results and Analysis

In order to verify the advantages of the algorithm proposed in this paper in the
grassland polarimetric target decomposition algorithm, we implemented the algorithm in
this paper on two experimental areas: the X-band COSMOS-SkyMed dataset of Xiwuqi
grassland in the Inner Mongolia Autonomous Region and the C-band AirBorne dataset
of Hunsandak grassland in the Inner Mongolia Autonomous Region. The third part of
the paper will analyze the advantages of the algorithm from qualitative and quantitative
perspectives, respectively, and to further illustrate the reliability of the algorithm, the
experiment will also be compared with other algorithms on the premise of the same
study areas.

3.1. Experiments on X-Band Data from the Grasslands of Xiwuqi in the Inner Mongolia
Autonomous Region

The spatial resolution of this dataset is 3m and the data collection date is 28 August
2023. The pixels of the original image were 17,953 × 7589. The corresponding PauliRGB
image and optical image are shown in Figure 7. From the optical image, it can be seen that
the grass in the test area is lush and covers a wide area.

These five algorithms, FRE2 [49], Y4R [20], HTCD [51], OSM [52] and the algorithm
of this paper, respectively, are used in an experiment on the experimental dataset, and
the experimental results are shown by Figure 8. In order to have a more intuitive feel
of the results of the experiments, the intensity of the scattering component at each pixel
point is represented by the color in the pseudo-color composite map. The double bounce
scattering power (Pd) is indicated by a red color, the volume scattering power (Pv) by
a green color, and the surface scattering power (Pd) by a blue color. As a whole, the
two algorithms, FRE2 and HTCD, show a blue-green color as a whole, and their volume
scattering and surface scattering account for the main components, which is not in line
with the characteristics of the grassland region. The Y4R and OSM algorithms show a
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green color as a whole, which indicates that the volume scattering accounts for the main
components. However, it is not difficult to see that these two algorithms are fuzzy for the
discrimination of bridges and roads in the figure, so the algorithm may have the problem
of overestimation of volume scattering, and this speculation will be specifically verified in
the subsequent quantitative analysis.
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Figure 7. SAR image and optical image of the study area. (a) SAR image; A: located in urban area;
B: located in grasslandarea; C: a relatively sparse area of grassland containing a road. (b) optical
image of selected areas.

The algorithm proposed in this paper with its overall green color, consistent with the
characteristics of the grassland region, followed by the road and bridge in the figure can be
seen in the approximate outline. In a comprehensive comparison, the algorithm proposed
in this paper is more advantageous in the polarimeric decomposition of the grassland.
The next quantitative analysis will further illustrate the advantages and disadvantages of
each algorithm.

In order to quantitatively evaluate the scattering components, three well-characterized
test areas were selected for the experiment for specific data analysis, as shown in Figure 7:
Area A, located in the area of man-made buildings; area B, located in the area of municipal
grassland; and area C, a relatively sparse area of grassland containing a highway. Table 1
gives the proportion of distribution of each polarimetric component in all methods for the
three regions. In order to make the comparison between algorithms more obvious, we
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visualized Table 1 and generated a data bar graph, as shown in Figure 9. Figure 9 gives the
percentage of polarimetric target decomposition components for each algorithm in regions
A, B and C.
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Table 1. Percentage of each scattering component of grassland data in Xiwuqi, Inner Mongolia
Autonomous Region, China (%).

Area Component FRE2 Y4R HTCD OSM Proposed

A
Pd 34.77 35.94 41.80 29.69 45.70
Pv 39.84 51.56 23.83 62.11 36.72
Ps 25.39 12.50 34.37 8.20 17.58

B
Pd 1.59 3.91 4.69 3.91 7.81
Pv 62.47 82.03 40.63 87.50 80.47
Ps 35.94 14.06 54.68 8.59 11.72

C
Pd 6.25 7.81 8.20 12.50 11.33
Pv 57.81 50.00 29.69 61.33 58.59
Ps 35.94 42.19 62.11 26.17 30.08
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Figure 9. Histogram of the percentage of each scattering component of grassland data in Xiwuqi,
Inner Mongolia Autonomous Region, China. (a) Area A; (b) area B; (c) area C.

For area A, which was chosen as it contained houses, roads and a small amount of
vegetation, the scattering characteristics should be dominated by double bounce scattering,
containing a certain proportion of volume scattering components and less surface scattering.
Based on this judgment, the decomposition results of FRE2, Y4R and OSM are not consistent
with the actual situation, and the decomposition results of all three algorithms are that the
volume scattering has the highest proportion among the three components. Among them,
the difference between double bounce scattering and volume scattering of Y4R is too large,
and it is very likely that there is a decomposition problem with too high volume scattering.
The decomposition results of the remaining two algorithms, on the other hand, are more in
line with the actual situation. And the percentage difference between the algorithms Pd
and Pv proposed in this paper is not much, which is more in line with the actual situation.

For area B, a region with lush grassland cover was chosen, and its scattering charac-
teristics should be dominated by volume scattering, containing less surface scattering and
double bounce scattering. Based on this judgment, the decomposition results of HTCD are
not consistent with the actual situation, and the decomposition results of the algorithms
are all that surface scattering has the highest proportion among the three components. The
remaining four algorithms all conform to the actual situation, but the FRE2 algorithm has
lower volume scattering; based on the actual optical image, it can be seen that the area
is basically a region with more lush grass, and its volume scattering should be higher,
and compared to the other algorithms, the volume scattering component of FRE2 is lower,
which does not fit the actual situation closely.

For area C, a grassland area with relatively low grass cover and a river passing
through the area is chosen, and its scattering characteristics should be dominated by
volume scattering, but it is lower than that of region B, with a certain amount of surface
scattering and double bounce scattering components. HTCD has too much double bounce
scattering, which dominates the decomposition of the region, and the decomposition results
are not in line with the actual situation. Although the remaining four cases are all consistent
with the actual situation, the volume scattering and double bounce scattering share of
FRE2 and Y4R are not very different, which are also inconsistent in the optical image;
the decomposition results of these two algorithms are poorly fitted to the actual situation
compared with the remaining two algorithms. In summary, the algorithm proposed in this
paper has better decomposition results for the grassland region.

3.2. Experiments on C-Band Data from the Hunsandak Grassland in Inner Mongolia
Autonomous Region

To further illustrate the effectiveness of the algorithm, a second experiment is con-
ducted in this paper. The second experiment uses the C-band AirBorne dataset from the
Hunshandak grassland region of Inner Mongolia with a spatial resolution of 1 m. The data
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were collected on 14 July 2021. The dataset contains the pixel number of 3027 × 4096. The
corresponding PauliRGB image and optical image are shown in Figure 10. Based on the
optical image of the experimental data area, it can be seen that the grass cover area in test
area II is less compared to that in test area I. A certain area of bare ground exists.
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These five algorithms are used in an experiment on the experimental dataset, and the
experimental results are shown by Figure 11. As a whole, the HTCD and OSM algorithms
show a blue color as a whole, indicating that surface scattering is the main component.
This is not consistent with the characteristics of the grassland region. This algorithm,
FRE2, presents a green color as a whole, which is consistent with the characteristics of the
grassland, but does not reflect the bare ground component, so the algorithm may have the
problem of overestimation of volume scattering, and this speculation will be specifically
verified in the subsequent quantitative analysis. The decomposition results of Y4R are
roughly in line with the actual situation, but still, the surface scattering component is
over-represented. Compared with the algorithm proposed in this paper, the algorithm
proposed in this paper is in better agreement with the actual situation.
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In order to quantitatively evaluate the scattering components, we chose the following
three well-characterized test areas for specific data analysis, as shown in Figure 10: area A,
located in the area of man-made buildings; area B, in the area of grassland; and area C in
the area of bare ground containing a road. Table 2 gives the proportion of the distribution of
each polarimetric component in all methods for the three regions. To make the comparison
between the algorithms more obvious, we visualized Table 2 and generated a data bar graph,
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as shown in Figure 12. Figure 12 gives the percentage of polarization target decomposition
components for each algorithm in regions A, B and C.

Table 2. Percentage of each scattering component of the Hunsandak Grassland data, Inner Mongolia
Autonomous Region, China (%).

Region Component FRE2 Y4R HTCD OSM Proposed

A
Pd 45.33 49.63 45.32 51.67 62.90
Pv 49.63 1.04 0.12 0.54 3.15
Ps 5.04 49.33 54.56 47.79 33.95

B
Pd 2.18 3.16 2.19 6.20 7.61
Pv 87.83 47.71 1.95 36.89 65.64
Ps 9.99 49.13 95.86 56.91 26.75

C
Pd 3.92 4.61 3.92 7.88 2.04
Pv 93.81 9.96 0 5.11 14.99
Ps 2.27 85.43 96.08 87.01 82.97
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Figure 12. Histogram of the percentage of each scattering component of the Hunsandak grassland
data in the Inner Mongolia Autonomous Region. (a) Area A; (b) area B; (c) area C.

For area A, an area containing a house road and a certain area of bare ground was
selected, and its scattering characteristics should be dominated by double bounce scat-
tering, containing a certain proportion of surface scattering components and less volume
scattering. Based on this judgment, the decomposition results of FRE2, Y4R and HTCD are
not consistent with the actual situation. The volume scattering of FRE2 is the dominant
component, while the surface scattering of HTCD is the dominant component, and the
surface scattering and double bounce scattering of Y4R are almost the same, so the decom-
position results of these three algorithms are not consistent with the actual situation. The
decomposition results of OSM are consistent with the actual situation, but the advantages
of double bounce scattering are not. The decomposition results of OSM are consistent with
the actual situation, but the advantage of double bounce scattering is not obvious. The
algorithm proposed in this paper has obvious advantages in double bounce scattering,
which is more in line with the actual situation.

For area B, an area with lush grassland cover was selected for the study, and its
scattering characteristics should be dominated by volume scattering, containing less surface
scattering and double bounce scattering. Based on this judgment, the decomposition results
of HTCD, Y4R and OSM are not consistent with the actual situation, and the algorithms’
decompositions all result in the highest proportion of surface scattering among the three
components. The remaining two algorithms, both of which are realistic, have higher volume
scattering for the FRE2 algorithm. Analyzing this in conjunction with Figure 11 shows that
the FRE2 algorithm suffers from an overestimation of volume scattering.
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For area C, a bare ground region with relatively low coverage and a highway passing
through the region was chosen, and its scattering characteristics should be dominated
by surface scattering, containing less surface scattering and double bounce scattering.
The volume scattering of FRE2 is overestinated and dominates the decomposition of the
region, which makes the decomposition results inconsistent with the actual situation.
Although the remaining four cases are all consistent with the actual situation, the volume
scattering of HTCD is zero, which is also seen to be inconsistent in the optical image. In
summary, the algorithm proposed in this paper gives better decomposition results for the
grassland region.

4. Conclusions

In this paper, an adaptive grassland scattering model decomposition with two-component
decomposition as the basic framework is proposed. The model abstracts grass as a rotatable
ellipsoid of variable shape from the perspective of polarization tensor and combines it
with the actual grassland. Considering the presence of fallen grass in the real situation, the
rotation is simulated in two dimensions: the tilt angle τ and canting angle θ. The degree
of anisotropy A is directly introduced as a parameter to describe the shape of the grass.
Finally, a novel volume scattering model is proposed by integration calculation. In the
decomposition process, two-component decomposition is used as the basic framework, and
the negative power minimization principle is used to determine the value of the parameter
A to obtain the final decomposition result. In this paper, the validity of the method is
verified using data from Xiwuqi and Hunshandak in Inner Mongolia. The experimental
results show that the proposed method can obtain reasonable scattering mechanisms for
various terrain types compared with algorithms such as FRE2, Y4R, HTCD, and OSM, and
it is a more suitable decomposition algorithm for grasslands. During the experimental
process, we found that the model proposed in this paper has some advantages in terms of
vegetation coverage and road segmentation, which can be followed up in these two aspects.
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