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Abstract: Gaps are openings within tropical forest canopies created by natural or anthropogenic
disturbances. Important aspects of gap dynamics that are not well understood include how gaps
close over time and their potential for contagiousness, indicating whether the presence of gaps may or
may not induce the creation of new gaps. This is especially important when we consider disturbances
from selective logging activities in rainforests, which take away large trees of high commercial value
and leave behind a forest full of gaps. The goal of this study was to quantify and understand how
gaps open and close over time within tropical rainforests using a time series of airborne LiDAR data,
attributing observed processes to gap types and origins. For this purpose, the Jamari National Forest
located in the Brazilian Amazon was chosen as the study area because of the unique availability of
multi-temporal small-footprint airborne LiDAR data covering the time period of 2011–2017 with five
data acquisitions, alongside the geolocation of trees that were felled by selective logging activities.
We found an increased likelihood of natural new gaps opening closer to pre-existing gaps associated
with felled tree locations (<20 m distance) rather than farther away from them, suggesting that
small-scale disturbances caused by logging, even at a low intensity, may cause a legacy effect of
increased mortality over six years after logging due to gap contagiousness. Moreover, gaps were
closed at similar annual rates by vertical and lateral ingrowth (16.7% yr−1) and about 90% of the
original gap area was closed at six years post-disturbance. Therefore, the relative contribution of
lateral and vertical growth for gap closure was similar when consolidated over time. We highlight
that aboveground biomass or carbon density of logged forests can be overestimated if considering
only top of the canopy height metrics due to fast lateral ingrowth of neighboring trees, especially in
the first two years of regeneration where 26% of gaps were closed solely by lateral ingrowth, which
would not translate to 26% of regeneration of forest biomass. Trees inside gaps grew 2.2 times faster
(1.5 m yr−1) than trees at the surrounding non-gap canopy (0.7 m yr−1). Our study brings new
insights into the processes of both the opening and closure of forest gaps within tropical forests and
the importance of considering gap types and origins in this analysis. Moreover, it demonstrates the
capability of airborne LiDAR multi-temporal data in effectively characterizing the impacts of forest
degradation and subsequent recovery.
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1. Introduction

The Amazon rainforest, a global biodiversity hotspot with an estimated 16,000 tree
species [1], plays a crucial role as the most prominent land carbon sink worldwide [2].
Recent studies have pointed out that the Amazon is transforming into more of a carbon
source than a sink due to elevated anthropogenic disturbances and intervention—mainly
associated with deforestation [3]. Other anthropogenic disturbances that affect very large
areas but do not change land use include logging and fire [4,5]. Moreover, studies also point
out that the effects of degradation due to logging and fire activities have been surpassing
the deforested area in the last decades [6]. The remaining degraded forests are left in a
disturbed state, which may lead to increased tree mortality due to edge and fragmentation
effects [5,7].

A forest that experienced disturbances from logging is left to recover with an in-
creased number of gaps in its canopy [8]. A gap is defined as a hole in the forest extending
down all levels [9]. It can be formed in different ways, such as from natural disturbances
(e.g., windthrows or lightning), background tree mortality boosted by certain environmen-
tal factors (e.g., water-related stress or soil fertility), or anthropogenic sources such as
logging, fire, and edge effects [10–12]. Nevertheless, gaps play a key role in the dynamics
of a tropical forest. Gaps provide an environment that has different resource levels to
the surrounding canopy, with increased light levels that provide colonization sites for
shade-intolerant species [13,14].

A key part of understanding how forest dynamics work relies on the ability to map
and quantify the gap dynamics. Gaps can be measured in different ways, starting at
the most basic level through field campaigns and survey methods [9,15,16], up to more
technological ways through remotely sensed light detection and ranging (LiDAR)-derived
data, collected from terrestrial or airborne platforms [12,17]. The airborne LiDAR data
provide a 3D representation of a gap through the point cloud [18], which allows for easier
high-resolution mapping of many forest attributes including gaps [19–21]. Furthermore,
the most common way to analyze gaps is through the calculation of canopy height models
(CHMs), considering height thresholds to define a gap ranging from 4 to 20 m above
ground [17,22,23]. More dynamic measurements of gaps have also been proposed, adapting
thresholds to the studied forest site or a relative threshold based on a zonal maximum
local height [12,24]. Nevertheless, whilst the use of LiDAR to map gaps is now very much
commonplace in understanding the structure of canopies, the use of repeated LiDAR data
to map canopy changes over an extended period is something that has been shown in a
few papers but not extensively evaluated [25,26].

Several studies are looking at various gap properties such as gap size, extent, fraction,
and distribution of gap sizes in the literature [17,26–28]. However, there are not many
studies looking into the mode of gap closure, whether it is predominantly closed by vertical
growth or lateral ingrowth of neighboring trees, and how existing gaps can potentially
contribute to the opening of new gaps through contagion [29]. The first point is important
because if gaps are predominantly closed by the lateral or horizontal encroachment of
neighboring trees [17,26,30], this means that remote sensing approaches measuring forest
structure and carbon from a bird’s eye can potentially overestimate its estimates. The
second point is important because, although gap contagion and spreading of gaps has been
studied as early as the 1980s, it is still in contention as to the presence of such a contagion
effect between gaps [17] or its absence [29]. Similarly to edge effects that occur at the
borders of the forest [5,7,31,32], the gap contagiousness may be an important mechanism
of tree mortality. This could be especially important in the largely degraded areas of the
southeast Amazon from which gap fraction and tree mortality have been estimated to be
higher than the recorded values in the other Amazonian regions [12].
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In this study, our goal was to quantify post-logging gap dynamics and forest regen-
eration within gaps in a tropical forest located in the Brazilian Amazon, with attribution
to gap types and origins. Specifically, we aimed to (1) identify and analyze the formation
and closure of forest gaps over time; (2) compare the rate of growth within gaps to the rate
of growth in the nominally undisturbed forest canopy and estimate rates of lateral and
vertical growth; and (3) assess whether the proximity to existing gaps contributed to the
formation of new gaps. To do this, a time series of airborne LiDAR and field datasets were
analyzed over the Jamari National Forest in the Brazilian Amazon. The availability of an
airborne LiDAR dataset that spans from 2011 to 2017 and precise ground data recorded for
selectively logged trees within the forest in 2010 and 2011 provided a great opportunity to
study the gap dynamics with logging. First, the temporal changes in gaps were analyzed to
assess both gap opening and closure. Then, growth was calculated, and a linear regression
model was fitted to relate the vegetation’s initial height with expected growth. Finally,
we applied a spatial analysis technique to test whether there was a significant spatial
relationship in the gap creation process, rejecting or supporting the gap contagiousness
theory, according to different gap types and origins.

2. Materials and Methods
2.1. Study Area

The study area is located in the Jamari National Forest (09◦10′S, 63◦010′W), in the Brazil-
ian state of Rondônia, in the southwest of Amazon rainforests (Figure 1). The vegetation
covers an area of over 220,000 hectares, predominantly composed of lowland ombrophilous
open forests [33]. The Jamari National Forest has a rainy tropical climate of hot humidity
with an average temperature of 25 ◦C. The region has well-defined wet and dry seasons,
with the wet season lasting from December to May and the dry season extending from
June to November. The average rainfall in the study is approximately 2200 mm year−1 [34].
The Jamari National Forest has had 44% of its territory allocated for selective logging ac-
tivities since 2008, with the logging activities being managed by the Brazilian Institute of
Environment and Renewable Mineral Resources (IBAMA) and the Brazilian Forest Service.
After extraction, the managed areas are left to recover naturally for 25 years [26]. The study
focuses on a forest area of 104.42 ha (approximately 1 × 1 km) located within the entitled
production area (UPA-01), which was selectively logged between 2010 and 2011. This area
was carefully chosen due to the availability of the multi-temporal acquisition of airborne
LiDAR data as well as the tree-by-tree information of logged trees collected at the field. The
field dataset was collected by the SAKURA IND company, which was the concessionaire
of this area at the time. It provides geolocation information on each tree within the area,
highlighting those that have been logged, as well as their identified species, the diameter at
breast height (DBH), and estimated volume (m3). The UPA-01 had at least 38 species of trees
of economic interest identified during the field data collection with DBH ranging between
35 and 271 cm. The mean DBH was 56 cm. The logging intensity in this area was 215 logged
trees (1699 m3 of wood), totaling a relative extraction of 2 trees ha−1 and 16.3 m3 ha−1.

2.2. Multi-Temporal LiDAR Data

Airborne LiDAR data were obtained in 2011, 2013, 2014, 2015, and 2017 after logging
activities for an overlapping area of 1 km2 in the UPA-01 area. They were acquired by a
consortium between the Brazilian Forest Service and the Sustainable Landscapes Brazil
Project (https://www.paisagenslidar.cnptia.embrapa.br/webgis/, accessed on 3 February
2021). All point clouds consisted of very high point densities with at least 12 ppm2 (Table 1).
This is much greater than the minimum point density (4 ppm2), which is usually necessary
to obtain reliable digital terrain models (DTMs) and canopy height models (CHMs) [35].

https://www.paisagenslidar.cnptia.embrapa.br/webgis/
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Figure 1. The location of the study area in Jamari National Forest, Rondônia, Brazil. The left panel 
shows the canopy height model acquired in 2011 in the background and the location of logged trees. 
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Figure 1. The location of the study area in Jamari National Forest, Rondônia, Brazil. The left panel
shows the canopy height model acquired in 2011 in the background and the location of logged trees.

Table 1. Summary of acquisition information regarding the airborne LiDAR point clouds that were
collected in UPA-01 between 2011 and 2017. The point cloud density unit in ppm2 consists of points
per square meter.

Information 2011 2013 2014 2015 2017

Laser Scan Sensor Optech 3100 Optech, Orion Trimble, Harrier 68i Optech 3100 Optech ALTM Gemini

Acquisition date 17 November 2011 20 September 2013 10 September 2014 21 September 2015 20 April 2017

Acquisition altitude (m) 850 853 500 750 700

Off-nadir angle (◦) 11.1 11.1 15 15 15

Scan frequency (kHz) 59.8 67.5 400 100 100

Average point cloud
density (ppm2) 15.4 15.5 30.4 33.6 12

The LiDAR point cloud was processed from its raw data into a canopy height model
(CHM). Firstly, the point clouds were clipped to the same extent using the lasclip function
and tiled for faster processing using the lastile function from LAStools v3.1.1 [36]. The
point clouds were classified into ground or vegetation classes using lasground, lasheight,
and lasclassify functions, using default parameters [36]. The data were visually inspected
for quality control to ensure points classified as ground and vegetation fell in the expected
locations in the study area. To avoid potential issues coming from the different LiDAR
acquisitions in the extracted DTM, we compared the ground points’ height of the different
dates using the 2014 acquisition as a reference and adjusted the mean height of the clouds
by subtracting or adding the difference to the point cloud from 2014. The point clouds from
the multiple acquisitions were normalized in terms of elevation due to minor differences we
observed between the acquisitions (less than 1 m), similar to those performed in a previous
study [26]. After the normalization, all points were used to create a single consistent
DTM to be used to normalize all elevation to height and create the CHMs. Unlike the
vertical correction performed, it was not necessary to align the point clouds horizontally
as no major shifts in large stable tree crowns could be observed in between acquisitions.
Once all the point clouds had their height values adjusted, the ground points from all five
acquisitions were merged to create a combined DTM with 1 × 1 m resolution using the
lidR package v3.1.3 [37] from R language [38]. This DTM was used to normalize all point
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clouds using the normalise_height function from lidR, and then CHMs for each date were
extracted at a 1 × 1 m grid with the grid_canopy function from lidR. All returns from the
LiDAR collection were used to create the CHMs.

2.3. Gap Delineation

Two gap concepts were considered in this study, as follows: (1) static gaps, delineated
using one LiDAR CHM, representing static open areas in the canopy at one point in time;
and (2) dynamic gaps, calculated from differences between two CHMs, indicating canopy
disturbances occurring between a period likely related to tree mortality or branch/crown
damage [17]. Static gaps were defined as holes in the forest canopy that extended up to
10 m in height above the ground with at least an area of 10 m2. Whilst this differs from
the common height threshold for a gap definition by Brokaw’s 2 m above ground, studies
of gap dynamics using LiDAR in similar tropical forests show that gaps extend to much
higher heights above ground than Brokaw’s limit [17]. Using the field coordinates of
selectively logged trees in 2010/2011, we qualified the forest and gaps of the first LiDAR
CHM (year 2011) into three classes, as follows: (i) natural gaps of at least 30 m away from
selectively logged trees; (ii) gaps formed from selective logging in 2010/2011, situated no
more than 30 m from selectively logged trees; and (iii) non-gaps, including the remaining
forest canopy area not covered by gaps. Previous studies have shown that the match
between the logged tree geolocations and airborne lidar data in this site had a horizontal
accuracy of less than 20 m [26].

Dynamic gaps were defined as a negative height difference between two time pe-
riods greater or equal to 10 m with an area greater or equal to 10 m2 [17]. Previous
studies associate these differences with the occurrence of treefalls or crown damage in the
canopy [17,25,26]. The dynamic gaps were delineated by calculating the change, or the
subtraction, between two LiDAR CHMs (∆CHM) of the four-time intervals: (i) 2011 to 2013,
(ii) 2013 to 2014, (iii) 2014 to 2015, and (iv) 2015 to 2017.

2.4. Data Analysis
2.4.1. Lateral and Vertical Growth

Gaps can close over time due to the vertical growth of vegetation inside the gaps or
lateral ingrowth of neighboring trees occupying the space. To disentangle vertical from
lateral growth inside gaps, we used a method that assessed the maximum vertical growth
of vegetation inside gaps [17,26]. The maximum vertical growth was defined as the mean
plus three standard deviations of the mean height change inside the center of gaps between
LiDAR acquisitions. To remove the influence of lateral ingrowth from this estimate, a
negative buffer of −5 m was applied to each gap. Thus, only the center of gaps was
used to calculate the maximum vertical growth and only gaps with a pre-buffer radius
larger than 5 m (~78 m2 in the area) were used for this calculation. These are significantly
larger sizes than the minimum gap size allowed by our definition (10 m2). This maximum
vertical growth was then used to classify height change in gaps as either lateral (above the
maximum growth) or vertical (below maximum growth) growth. Mean growth or height
gain was calculated for each analyzed year. Furthermore, the 5th and 95th percentiles for
vertical growth were also calculated, along with the number of gaps that were delineated.

We calculated statistics describing the number of new gaps formed between dates and
existing gaps that were closed. New gaps formed were taken from the number of gaps
delineated by the dynamic gaps, whilst existing gaps closed were calculated by comparing
static gaps with the static gaps at the next LiDAR acquisition. If there was no intersection
between a compared gap from the first and second date, then the gap was considered
closed. These values were then normalized so that they represented opening and closure
values per year. To visually represent the gap closure process, one gap was chosen to
exemplify the changes in the gap due to lateral ingrowth between each acquisition from
2011 to 2017. Finally, we compared the vegetation growth between the three stratified
classes (natural gaps, logged gaps, and non-gaps). Height change was calculated between
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pairs of subsequent CHM and values were filtered only for positive values below the
maximum vertical growth.

2.4.2. Growth Model

To measure and understand how vegetation has grown in height inside gaps and at
the forest canopy, a model was fitted using the current height and height gain between
subsequent time periods derived from multi-temporal LiDAR data. We exclusively consid-
ered height gain values that were positive when calculating the ∆CHM values across all
dates. After that, we sieved out the remaining values for lateral ingrowth by employing
the maximum vertical growth value as done in previous studies [17,26]. The relationship
between original height and height gain was quantified through a linear model, where the
original height was used to predict the tree height gain per year. The exponential variable
transformation was tested to improve data relationships. The model’s performance was
verified with a determination coefficient (R2), root mean square error (RMSE), and relative
RMSE (ratio between RMSE and mean observed height). To compare the mean vertical
growth across the three classes, the mean value for growth was calculated and normalized
to growth per year considering the time period between acquisitions. This provides three
mean vertical growth values for each class calculated between the four acquisition periods,
allowing for comparisons to be made between the classes. These values for growth were
represented as box plots showing each of the three classes of gaps displayed for each of the
periods between acquisitions. As part of the boxplot, notches were used to compare the
medians of the values for 95% confidence intervals.

2.4.3. Gap Contagiousness

To determine whether there is a relationship between gap creation and proximity to
pre-existing gaps, we performed three experiments with spatial analyses (Table 2). The first
one looked at whether the distribution of static gaps from one date was associated in space
with the newly created dynamic gaps of the next time period (“Static vs. Dynamic”). The
second one tested whether there was a difference between natural or logging static gaps
on the creation of dynamic gaps in the subsequent time period (“Gap type vs. Dynamic”).
Finally, the third one verified whether the distribution of dynamic gaps from one time
period was associated with newly created dynamic gaps in the next time period (“Dynamic
vs. Dynamic”). For this purpose, the gap centroids were analyzed using the nncross
function from the spatstat R package [39]. This function, given two-point patterns X and
Y, finds the nearest neighbor in Y for each point of X. We then created a complete spatial
randomness (CSR) envelope with a 1% significance level by running 199 Monte Carlo
simulations of random (Poisson) point processes. This procedure was done using the
Gcross function in the spatstat R package [40]. This allowed us to compare and determine
whether the empirical distributions of distances were statistically different or not from
random. If the cumulative distribution falls within the envelope, then the spatial pattern
can be attributed to randomness; however, if the cumulative distribution lies above the
1% CSR envelope, then we can infer that the relationship between the two sets of points is
clustered at that given distance.

Table 2. Summary of the gap contagiousness experiments and the datasets compared with spatial analyses.

First Spatial Dataset Second Spatial Dataset

Experiment 1—Static gaps vs. subsequent dynamic gaps:

2011 Static Gaps 2011–2013 Dynamic Gaps
2013 Static Gaps 2013–2014 Dynamic Gaps
2014 Static Gaps 2014–2015 Dynamic Gaps
2015 Static Gaps 2015–2017 Dynamic Gaps
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Table 2. Cont.

First Spatial Dataset Second Spatial Dataset

Experiment 2—Static gaps from 2011 stratified by type vs. subsequent dynamic gaps:

2011 Logged Gaps 2011–2013 Dynamic Gaps
2011 Natural Gaps 2011–2013 Dynamic Gaps

Experiment 3—Dynamic gaps vs. subsequent dynamic gaps:

2011–2013 Dynamic Gaps 2013–2014 Dynamic Gaps
2013–2014 Dynamic Gaps 2014–2015 Dynamic Gaps
2014–2015 Dynamic Gaps 2015–2017 Dynamic Gaps

3. Results
3.1. Gap Opening

For the analyzed time series (2011–2017), we observed the area occupied by gaps had
maximum values in 2011 following the selective logging (mean area of 72.5 m2) and lowest
values in 2017 (mean area of 43.2 m2) (Table 3). Overall, the total area of gaps steadily
declined from 83,806 m2 in 2011 to 43,908 m2 in 2017, showing a 52.4% reduction in the
total gap area of the study area. These correspond to a gap fraction of 8.4% in 2011 and 4.4%
in 2017. The number of static gaps also declined over time but showed a slight increase
in the last analyzed date. The increase in the number of static gaps over time, despite a
reduction in their total area, can be attributed to various natural and anthropogenic factors.
Tree falls due to age or strong winds lead to gaps, as do storms, lightning strikes, and fires
that damage or kill trees. The probability of occurrence is influenced by environmental
conditions—areas with higher wind speeds or more frequent storms are more likely to
experience natural gap formation. Forest structure and composition also play a role; older
forests with larger, mature trees may have more gaps due to tree falls, while younger,
denser forests might have fewer but smaller gaps. Human activities, such as selective
logging observed in the 2011 data, increase the likelihood of gap formation by removing
specific trees.

Table 3. The number of static gaps and their total area for each LiDAR acquisition date between 2011
and 2017.

Year Area (m2)
Number of
Static Gaps

Mean Gap Area
(m2)

Gap Fraction
(%)

2011 83,806 1156 72.5 8.4
2013 56,563 1069 52.9 5.6
2014 56,366 1074 52.5 5.6
2015 43,138 939 45.9 4.3
2017 43,908 1017 43.2 4.4

The visual interpretation of the dynamic gaps over time highlighted the dynamism
of these forests with high rates of gap openings in the different time intervals (Figure 2).
When quantifying these gap openings, we noted a reduction in the static gap area from
2011 to 2017. However, the rates of dynamic gap creation and closure over time were highly
variable and did not follow a clear pattern (Table 4). There was a higher number of new
gaps formed per year than those that were closed, except in the 2014–2015 time period,
where 191.8 new gaps were formed, while 321.5 gaps on average were closed.
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Table 4. Dynamic gap openings and closures over time for LiDAR data acquisition intervals. Values
were normalized to average gaps per year.

Newly Open Dynamic Gaps
(Gaps per Year)

Closed Dynamic Gaps
(Gaps per Year)

2011–2013 230.1 212.5
2013–2014 306.7 260.0
2014–2015 191.8 321.5
2015–2017 352.4 200.9

3.2. Mode of Gap Closure and Tree Growth

We estimated a maximum vertical growth rate of 3.8 m yr−1 from 283 pixels of 1 × 1 m
(or 283 m2 of gap area) located at the center of 15 gaps considering the ∆CHM between
2011 and 2013. Using this value as the threshold to differentiate lateral ingrowth and
vertical growth, we estimated average vertical growth rates inside gaps ranging from 1.4 to
1.6 m yr−1 (Supplementary Table S1).

As the mechanisms of gap closure, vertical and lateral ingrowth had similar contri-
butions, and the average annual rate of closure was 16.7% yr−1. From the total 83,308 m2

of static gap area occurring in 2011, 43.1% (35,950 m2) closed vertically up to 2017, while
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44.3% (36,915 m2) closed laterally (Table 5), therefore lateral and vertical gap closure having
a similar relative contribution over time. By the end of the analysis period in 2017 (six years
of recovery), only 12.5% (10,443 m2) of the gap area remained open (below the 10 m height
gap threshold). Lateral ingrowth was faster in the first two years of recovery after logging
in 2011 (58.5% or 21,583 m2 of gap closure) with an average rate of 29.2% yr−1 in the first
two years.

Table 5. The total area of static gaps from 2011 (m2) that remained open or were completely closed
(reaching a 10 m height gap threshold) in each year after logging.

Year Gap Closed Vertically
(m2)

Gaps Closed Laterally
(m2)

Gaps Remain Open
(m2)

2013 13,061 21,583 48,664
2014 8754 6922 32,988
2015 7365 3917 21,706
2017 6770 4493 10,443
Sum 35,950 36,915 -

The lateral ingrowth process subsequently shrank gaps over time as illustrated by a
selected gap in the study area (Figure 3). Between each LiDAR acquisition, the size of the
gap is sequentially reduced by the edges of the forest. This is also displayed for each time
period individually, where the gap closes over time through the lateral ingrowth eventually
splitting up into multiple smaller gaps. These smaller split gaps are likely not considered
as gaps by the static gap definition due to the requirements of both height and minimum
areas, which can contribute to the quick disappearance of the gap. The creation of a new
gap was also observed in 2017 to the west of the original gap area.
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Figure 3. Visual representation of the gap closure process dominated by lateral ingrowth over time
within an example gap of the study area. The left and bottom panels show a summary of all the
ingrowth laid on top of the original 2011 gap outline. Each color band represents the time interval
between LiDAR data acquisitions that partially closed the gap.

The vertical height growth exponentially decreased from 0 to 50 m (Figure 4), consid-
ering all data extracted from the LiDAR acquisitions and filtering for values less than the
maximum vertical height growth. Overall, the model’s explanatory power was relatively
low but significant (close to R2 = 0.15). Trees growing inside gaps had lower starting heights
and, thus, experienced higher growth rates than the surrounding canopy. Although the
model’s explanatory power is limited, the estimated trends in tree growth align with the
expectation from the secondary succession process, of pioneer trees growing fast in the
understory due to the increase of light. For example, a tree with a starting height of 20 m
would be expected to grow an average of 0.5 m in a year, whereas a tree with a height of
5 m, and, therefore, classed as a gap, would see an average vertical growth of 1.2 m yr−1.
In order to close a gap through vertical growth (reaching 10 m above ground by our defi-
nition), our model estimated a period of seven years considering 0 m as the initial height.
Height gain was similar in gaps classified as logged or natural (average of 1.5 m yr−1)
(Supplementary Figure S1). The average increase in height in neighboring undisturbed
(non-gap) forest canopy over the four time intervals corresponded to 0.7 ± 0.8 m yr−1. This
denotes the high variability of height growth in the undisturbed old-growth trees of the
1 × 1 km study area.
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3.3. Gap Contagiousness

Figure 5 presents a series of graphs illustrating the spatial relationship between dif-
ferent types of gaps in a forested area over various time periods. Figure 5A demonstrates
the cumulative distribution of nearest neighbor distances between all static gaps present in
2011 and the dynamic gaps created from 2011 to 2013. The solid black line represents the
observed cumulative distribution, while the dashed lines delineate the complete spatial
randomness (CSR) envelope, indicating the expected distribution under random conditions.
If the observed line falls within the CSR envelope, it suggests no significant deviation from
random spatial distribution. Conversely, if the observed line surpasses the CSR envelope,
it indicates a clustered spatial relationship, implying gaps are closer together than random
chance would predict. Figure 5B focuses specifically on static gaps resulting from logging
activities in 2011, akin to Figure 5A’s setup. Figure 5C mirrors Figure 5A but concentrates
on static gaps occurring naturally in 2011, excluding those attributed to logging. Figure 5D
examines the spatial relationship between dynamic gaps from 2011 to 2013 and newly
created dynamic gaps from 2013 to 2014, following the same interpretation guidelines as
in Figure 5A–C. Figure 5E,F follow the pattern of Figure 5D, focusing on dynamic gaps
created in subsequent periods and their spatial relationship with newly formed dynamic
gaps. In general, each graph elucidates the spatial dependence of various gap types (static
and dynamic) over distinct time spans. The solid black line represents observed spatial
distributions, while the CSR envelope serves as a benchmark for random distribution.
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Figure 5. Gaps and their spatial dependence on pre-existing gaps. Cumulative distribution of nearest
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(A) all static gaps of 2011 and newly created dynamic gaps for 2011–2013; (B) logged static gaps of
2011 and newly created dynamic gaps for 2011–2013; (C) natural static gaps of 2011 and newly created



Remote Sens. 2024, 16, 2319 12 of 18

dynamic gaps for 2011–2013; (D) dynamic gaps created between 2011 and 2013 and newly created
dynamic gaps between 2013 and 2014; (E) dynamic gaps created between 2013 and 2014 and newly
created dynamic gaps between 2014 and 2015; and (F) dynamic gaps created between 2014 and 2015
and newly created dynamic gaps between 2015 and 2017. When the observed solid line in black falls
within the CSR envelope, the spatial relationship is not different from random at a 1% significance
level. In contrast, when the observed line lies above the CSR, the nature of the spatial relationship
is clustered.

Regarding the relationship between static and subsequent dynamic gaps (first experi-
ment), we observed that only the static gaps from the 2011 period had a spatial relationship
different from random (p < 0.01 at distances closer than 20 m) with the newly created
dynamic gaps of the subsequent 2011–2013 period (Figure 5A). The nature of this relation-
ship was clustered due to the cumulative distribution lying above the CSR envelope. The
remaining static gaps visible in each time period did not differ from random with their
subsequent dynamic gaps (Figure 6). When stratifying the static gaps between logged and
natural gaps (second experiment), only the logged static gaps from 2011 showed a spatial
relationship different from random and of clustered nature in relation to the dynamic
gaps created in the subsequent period of 2011–2013 (p < 0.01 closer to 20 m of distance)
(Figure 5B). The natural static gaps did not show a spatial relationship with newly created
gaps different from random (p > 0.01) (Figure 5C). Finally, the comparison between dynamic
gaps from one period with the subsequent periods (third experiment) showed a spatial
relationship different from random between all analyzed time periods (p < 0.01 closer
than 20 m) (Figure 5D–F). Therefore, all dynamic gaps (new gaps) affected the creation of
new gaps up to 20 m of distance. This means that the gap contagious effect has a limited
range around the gaps being created, where gaps may affect trees nearby to have a higher
likelihood of felling, but not farther away than 20 m than the initial gaps.

Remote Sens. 2024, 16, 2319 13 of 19 
 

 

created dynamic gaps for 2011–2013; (D) dynamic gaps created between 2011 and 2013 and newly 
created dynamic gaps between 2013 and 2014; (E) dynamic gaps created between 2013 and 2014 and 
newly created dynamic gaps between 2014 and 2015; and (F) dynamic gaps created between 2014 
and 2015 and newly created dynamic gaps between 2015 and 2017. When the observed solid line in 
black falls within the CSR envelope, the spatial relationship is not different from random at a 1% 
significance level. In contrast, when the observed line lies above the CSR, the nature of the spatial 
relationship is clustered. 

 
Figure 6. Dynamic gaps (new gaps) of each time period and their spatial dependence on static gaps 
visible in the previous time period. Cumulative distribution of nearest neighbor distances alongside 
a complete spatial randomness (CSR) envelope of 1% significance for (A) all static gaps of 2011 and 
newly created dynamic gaps for 2011–2013; (B) all static gaps of 2013 and newly created dynamic 
gaps for 2013–2014; (C) all static gaps of 2014 and newly created dynamic gaps for 2014–2015; (D) 
all static gaps of 2015 and newly created dynamic gaps for 2015–2017. When the observed solid line 
in black falls within the CSR envelope, the spatial relationship is not different from random at a 1% 
significance level. In contrast, when the observed line lies above the CSR, the nature of the spatial 
relationship is clustered. 

4. Discussion 
Using a time series of airborne LiDAR data, our research offers novel empirical in-

sights into gap closure rates and identifies the associated modes of closure. Additionally, 
we examine human-induced gap contagion effects, attributing them to various gap types 
(static and dynamic) and their origins (natural or logging activities). This study highlights 
the potential uncertainties and overestimation of the structure of regenerating degraded 
forests and old-growth vegetation based on remote sensing observations of the top of can-
opy height. First, we show that gaps created by logging activities, distinct from naturally 
occurring ones, contribute to the formation of additional gaps. Consequently, gaps result-
ing from logging may exacerbate the further occurrence of mortality in forest ecosystems, 
thereby establishing a lasting legacy effect. While trees are adapted to average wind loads 
in their environment [41], the additional disturbances may be explained due to the opened 
gaps creating conditions for winds to unload [42–44]. Second, although the canopy gap 
quickly closes within a few years after the disturbance when looking from the top of the 
canopy, we show that the actual tree growth takes much longer, such as an average of 
seven years to close a gap (using 10 m as threshold) or 21 years to reach 30 m of height. 
Therefore, we highlight that remote sensing-based estimates of aboveground biomass or 

Figure 6. Dynamic gaps (new gaps) of each time period and their spatial dependence on static
gaps visible in the previous time period. Cumulative distribution of nearest neighbor distances
alongside a complete spatial randomness (CSR) envelope of 1% significance for (A) all static gaps of
2011 and newly created dynamic gaps for 2011–2013; (B) all static gaps of 2013 and newly created
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(D) all static gaps of 2015 and newly created dynamic gaps for 2015–2017. When the observed solid
line in black falls within the CSR envelope, the spatial relationship is not different from random at a
1% significance level. In contrast, when the observed line lies above the CSR, the nature of the spatial
relationship is clustered.
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4. Discussion

Using a time series of airborne LiDAR data, our research offers novel empirical insights
into gap closure rates and identifies the associated modes of closure. Additionally, we
examine human-induced gap contagion effects, attributing them to various gap types (static
and dynamic) and their origins (natural or logging activities). This study highlights the
potential uncertainties and overestimation of the structure of regenerating degraded forests
and old-growth vegetation based on remote sensing observations of the top of canopy
height. First, we show that gaps created by logging activities, distinct from naturally
occurring ones, contribute to the formation of additional gaps. Consequently, gaps resulting
from logging may exacerbate the further occurrence of mortality in forest ecosystems,
thereby establishing a lasting legacy effect. While trees are adapted to average wind loads
in their environment [41], the additional disturbances may be explained due to the opened
gaps creating conditions for winds to unload [42–44]. Second, although the canopy gap
quickly closes within a few years after the disturbance when looking from the top of the
canopy, we show that the actual tree growth takes much longer, such as an average of
seven years to close a gap (using 10 m as threshold) or 21 years to reach 30 m of height.
Therefore, we highlight that remote sensing-based estimates of aboveground biomass or
carbon of regenerating forests that only consider the top of the canopy height metric can
potentially constitute an overestimate of the regenerating forest stand properties. Moreover,
this recovery does not consider other factors such as the basal area and wood density of
different species composition, which may increase even more the overestimate of recovery
of these forests solely based on the top of the canopy height.

The mechanisms for closing the canopy gaps involve a combination of year-to-year
lateral ingrowth and vertical growth with similar annual average rates of 16.7% yr−1. This
means that lateral ingrowth was found to be a key process for the gap closure having a
similar contribution compared to the vertical growth in this rainforest. The results may
differ in other forests with distinct environmental and climatological conditions, which
affect vertical growth rates. For example, a recent study observed a much lower relative
contribution of the lateral gap closure (20%) compared to vertical (80%) over a longer period
of time in a temperate forest [45], which is expected for a forest with a slower growth rate
than a rainforest. Previous studies in dense tropical forests found similar but slightly higher
values from 21 to 22% of annual rates of lateral ingrowth [26,46]. We estimated vertical
growth for vegetation within gaps to a range between 1.3 and 1.7 m yr−1, values which are
close to previous estimates of 1.6 m yr−1 in the same area [26]. However, in this study, the
estimates were done per time interval to obtain more details on the variability of height
growth. These values are within the range of growth rates of individuals from Cecropia
sp. (1.2 to 1.5 m yr−1), one of the common pioneer tree species found in canopy gaps [47].
The height growth outside of gaps, and over nominally undisturbed canopies, was lower
with an average of 0.7 m yr−1. We found that the number of static gaps in the forest
remained stable over time, whereas the total area of all the gaps has a negative trend of
steadily declining each year. Previous findings show that gaps created from logging events
have a larger area than naturally occurring gaps [48,49]. This aligns with our empirical
observations, i.e., large gap areas are prevalent right after logging, and as regeneration
occurs, gaps close over time and split up into smaller gaps; thus, the number of gaps
remains similar whereas the total combined area reduces.

The growth model that was fitted with the LiDAR data from multiple years allowed for
the estimate of height growth based on the pre-existing height of vegetation as a predictor.
This empirical data and established relationship, although showing weak strength (close
to R2 = 0.15), allowed us to estimate the height growth of trees based on their current
height and to estimate a period of six years for gaps to fully close (reach 10 m height),
which comes close to what we observed empirically at the gap closure analysis. This model
can contribute to the future development of estimates of carbon accumulation and the
parametrization of ecosystem models leveraging remote sensing empirical data [50]. A
common approach from previous studies involved aggregating aboveground biomass data
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from forests of different ages to build growth curves [51–53], a method called space-for-time
substitution. There is a notable oversight concerning the intricate interplay between canopy
gap dynamics and carbon dynamics, due to the rapid closure of gaps after disturbance
potentially being perceived as a rapid increase in biomass as previously discussed. The use
of repeated LiDAR data, alongside the methodology presented herein, holds promise in
providing high-resolution empirical observations on height and height growth, thereby
facilitating enhancements or validation of these space-for-time approaches in future studies.
Examples of these approaches include quantifying the carbon accumulation in secondary
forests using space-for-time substitution and a static biomass map from ESA/CCI [51–53].
The repeated LiDAR data and the approach we show here can contribute to providing
high-resolution empirical observations on height and height growth to improve such
approaches in the future. More repeated LiDAR data should be collected and analyzed
over different environments to understand how they can affect these growth curves. Our
analysis, however, does not come without limitations. LiDAR data have sources of error in
vertical accuracy and geolocation, which affect the height-to-height growth relationships.
In our analysis, the height growth of tall old-growth forests (>30 m) can be as low as a few
centimeters, which is within the vertical error of ~0.15 m of the airborne LiDAR data.

Comparing height growth between the three different gap classes indicated no sig-
nificant difference in vertical growth between logged and natural gaps. This supports
previous findings showing statistically similar rates of recovery between different types
and intensities of disturbance in tropical forests [54]. Previous findings showed that heavily
logged forests experience faster growth rates than undisturbed forests [55]. This was not the
case with our study area, which had low logging intensity (2 trees ha−1 and 16.3 m3 ha−1).
When comparing growth within gaps to the undisturbed canopy, the data collected fol-
lowed the expected pattern of lower starting vegetation located within gaps having greater
annual growth than the taller non-gapped canopy. The gapped locations showed a signif-
icant increase in growth for all years when compared to nominally undisturbed canopy
cover, as expected due to the fast growth and colonization of pioneer species [49,56]. In our
study area, trees inside gaps grew on average 2.2 times faster (1.5 m yr−1) than trees at the
surrounding canopy (0.7 m yr−1) closing gaps over time.

Our findings partially supported the spatial contagiousness of disturbance hypothesis
(gap contagiousness). We show that this effect is dependent on gap type, meaning only
recently created gaps were positively associated with the creation of new gaps (dynamic
vs. dynamic gaps). This supports a legacy effect of logging causing increased tree damage
even after six years post-disturbance. However, overall, the findings did not support the
hypothesis when considering pre-existing gaps (static) versus new gaps (dynamic). An
exception can be made when considering the origin of gaps. Recently opened gaps in 2011
due to logging activities showed a small but significant (p < 0.01 in 10–20 m distance) signal
of spatial dependence with newly created gaps. Newly created gaps are more likely to
cause gaps to be located nearby (<20 m of distance), with this most likely being related to
tree damage (e.g., branch or crown fall) or mortality due to snapping or uprooting [57]. This
further explains the absence of any spatial pattern when comparing static gaps, as the static
definition includes all gaps below the threshold, including older gaps and those that may
not represent mortality. This finding also supports the understanding that not all gaps are
connected to mortality [13,16]. Compared to previous studies, we expect that the analysis
of Jansen et al. (2008) [29] did not confirm any spatial dependence between gaps, because
they were looking at all the gaps within the forest, whereas our study was able to stratify
and attribute gaps to different types (static or dynamic) and origins (natural or logging).
A previous study suggests the increased treefall rates in logged forests related to canopy
openings [58]. This in part corroborates with our findings explaining why logged static
gaps from 2011 showed contagiousness with newly created gaps. This phenomenon should
still be tested in other regions to bring more evidence of its occurrence and further tests are
required to determine the magnitude of the potential increased mortality after logging.
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The results presented here have implications for the understanding of the impacts of
forest degradation due to logging in tropical forests. Through the time series of LiDAR
remote sensing observations, we show that gaps close very fast in a matter of two to
seven years and the ones associated with felled trees may induce the occurrence of other
gap openings associated with tree damage or mortality until six years post-disturbance.
Through this increase in tree mortality post-logging, our findings support that logging can
be the driver of forest degradation in the Brazilian Amazon forests, contributing to carbon
emissions [6,59–61]. The magnitude of this increase in mortality remains to be tested in
future studies. It remains an open question as to whether the doubled rate of regeneration
of vegetation inside gaps, in comparison to non-gaps, can offset the losses in carbon (of
felled trees and legacy effects); this is beyond the scope of this paper but is an important
question to be answered regarding the fate of logged forests of the Brazilian Amazon. We
further suggest that the observation of these regenerating degraded forests using remote
sensing techniques should be made with caution. Overestimating the structure and carbon
stocks in degraded forests can occur when considering only the top of the canopy height
because of the quick occlusion of gaps by lateral ingrowth after disturbance. Alternative
methods considering metrics that also look beneath the top of the canopy and inside the
understory should be considered. The approach applied here has the potential to extract
empirical data to help improve the understanding of regenerating forests and to be used for
better parametrization of ecosystem models that explicitly consider gap-phase dynamics.

5. Conclusions

The process by which gaps open and close was investigated using a time series of
airborne LiDAR data in the Brazilian Amazon’s Jamari National Forest. Lateral ingrowth
was found to be a key process for gap closure having a similar contribution compared to
vertical growth when consolidated over time. Closing gaps at an average of 16.7% of gap
area per year, our growth model indicated that it might take up to seven years on average
to close a gap (10 m of height) solely through vertical growth. There was no significant
difference between natural and logged gaps in terms of mean growth. However, vegetation
inside gaps grew significantly faster than the surrounding undisturbed canopy.

Our study extends the understanding of the spatial contagiousness of disturbances
supporting the hypothesis for certain gap types and origins. Newly created gaps tend to
be clustered around older logged static gaps, but not necessarily with natural static gaps.
This fact suggests a legacy effect of the logging activities on the dynamics of these forests,
characterized by boosted post-logging mortality. Further evidence of gap contagion was
only found between sets of dynamic gaps in different time periods, which reinforces the
idea that gap contagion is related to tree mortality as opposed to the presence of any gap
that might not be related to mortality.

This study demonstrated the use of multi-temporal airborne LiDAR for monitoring
changes in the canopy after logging activities. The approach proposed here was particularly
beneficial for mapping growth within the gaps, something that would not be possible
without using multitemporal LiDAR observations. Further research venues should look
at the growth models, using them to calculate aboveground biomass and estimate carbon,
specifically measuring how gap closure modes (lateral and vertical) affect carbon balance
in an ecosystem model.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16132319/s1, Figure S1: Height growth (m yr−1) estimated between
LiDAR acquisitions over gaps classed as logged or natural, and over non-gap locations, Table S1:
Summary of vertical height growth within dynamic gaps between each LiDAR acquisition.

https://www.mdpi.com/article/10.3390/rs16132319/s1
https://www.mdpi.com/article/10.3390/rs16132319/s1
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