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Abstract: According to current studies, the thermal effects of global warming will affect urban areas
more intensely. In the face of this situation, strategies for the improvement and management of
urban green spaces are becoming increasingly important in sustainable landscape design. These
strategies promote social sustainability by positively affecting individuals’ physical and psychological
well-being, taking into consideration ecological sustainability. Projections regarding global warming
emphasize that the density of hardscapes and green spaces, the selection of plant species, and the
distribution of plants considered within the scope of this study should be taken into account. This
research was conducted in the Görükle neighborhood of Bursa, focusing on the role of temperature-
regulating elements in 14 neighborhood parks. Systematic temperature measurements were carried
out in the research area on the 10th, 20th, and 30th of July and August, specifically between 12:00
and 13:00, during peak temperature hours. The presence of parks that are close to each other and
relatively far away from each other in the study area was seen as advantageous to filter the effects
of plant differences in similar conditions. Furthermore, evaluating these various factors together
highlights the multifaceted nature of thermal comfort. Designated temperature measurement points
included three points (hard surfaces and hard surfaces surrounded by vegetation and planted green
spaces) in each park. An analysis utilizing SPSS and the RayMan program revealed that parks with
a softscape to hardscape ratio of approximately two to one experienced temperature reductions of
2.5 to 3 ◦C. Furthermore, the findings indicate that coniferous trees have a more significant impact
on thermal comfort compared to deciduous trees. The significant differences identified in this study
underscore essential considerations for urban design processes aimed at achieving sustainability.

Keywords: landscape design; neighborhood parks; thermal comfort; plants; sustainability

1. Introduction

Thermal environment and thermal comfort have a significant impact on human
health [1–4]. In the 1980s, the term thermal comfort was added to the design criteria
at the climatic comfort level. This term, which was initially used only for interior spaces,
has become used almost exclusively for exterior spaces over time. Today, the term thermal
comfort indicates that the majority of individuals must be at a certain comfort level in terms
of climatic conditions such as temperature, humidity, and air flow while continuing their
physical and mental activities indoors or outdoors. The factors influencing outdoor comfort
are numerous and complex [5]. Research shows that if people’s living environments do
not have thermal comfort conditions, it first causes distress and then a very significant
discomfort [6–9]. Thermal comfort is a critical factor for individuals in a particular region to
live their lives in health and peace. If individuals in an open or closed space do not mention
any thermally disturbing elements in that space, thermal comfort is provided [10,11].

Thermal comfort achieved in outdoor areas is fundamentally linked to sustainability.
In sustainable landscape design, the strategic planning of green spaces in accordance with
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climatic conditions enhances users’ thermal comfort while simultaneously reducing energy
consumption. Elements such as plantation and shading play a crucial role in improving
the microclimate, mitigating the urban heat island effect and thereby facilitating thermal
comfort. Furthermore, the thermal comfort experienced in outdoor environments positively
impacts individuals’ physical and psychological well-being, fostering social interaction as
the usage of these spaces increases. This increased engagement, in turn, promotes social
sustainability. Consequently, ensuring thermal comfort in outdoor areas emerges as a
strategy that provides both environmental and social benefits to urban settings.

Thermally disturbing effects will affect cities more intensely with global warming. In
addition, the increase in the rate of urbanization will cause these effects to be felt more
strongly [12]. Since the 1980s, every decade experienced has been warmer than the previous
decade. This situation is emphasized in the report published by the IPCC 1st Working
Group in August 2021. As emphasized in the report, climate change will show its adverse
effects faster, more widely, and more severely in the upcoming period [13,14]. According
to the future climate scenarios of the Turkish Ministry of Environment and Urbanization,
it is predicted that temperatures in the western parts of Turkey will increase by 2 to 3 ◦C,
especially in the summer months, and up to 6 ◦C. According to a projection study, a
temperature increase of 2–3 degrees is predicted in the summer period between 2016 and
2040 and another 4 degrees between 2041 and 2070 in our research area [15]. These values
were also confirmed in the study titled “Intercomparison of the expected change in the
temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A
Mediterranean hot spot case” by Bağçacı et al., using different projection scenarios [16].

The results obtained with the database and projection tool provided by the World
Bank are given below (Figure 1) [17].
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August, it has been observed that the average surface temperature will not be below the
reference previous years in any period in the future (Figure 1b). Again, starting from 2050,
the daily maximum temperature level for August is predicted to increase by close to 2 SD
compared to the reference years (Figure 1c). Considering four different generally accepted
scenarios, it is predicted that the average maximum surface temperature for Bursa will
increase by a minimum of 2 and a maximum of 6 degrees in the next 75 years, starting
from 2025 (Figure 1d). Based on these projections, this situation should be taken into
consideration in land use during the urban design process.

When urban design studies are examined, innovative suggestions have started to be
presented by considering thermal comfort. During these studies, solution-oriented methods
targeting sustainable and ecological cities are followed. In this solution process, natural
and artificial landscape elements play a significant role in ensuring sustainability in urban
studies, considering thermal dissipation and thermal conductivity [9,18–21]. The more
perpendicularly the sun’s rays come to a horizontal surface, the greater the absorption
by the surface and therefore the higher the surface temperature. Thermal dissipation,
thermal conductivity, and heat islands due to albedo in urban areas have the highest values
compared to other land covers (Figure 2) [22,23]. Therefore, people in urban areas spend
their leisure time in green spaces and especially parks.
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Within the scope of green spaces, neighborhood parks are the places most used by
urban users. It is known that neighborhood parks have essential effects on both reducing
emerging problems and the climate [9,25,26]. To provide spatial comfort in the design
process of neighborhood parks, climatic data and thermal comfort levels should be consid-
ered [27,28]. In urban green spaces where thermal comfort is provided, people can spend
more extended time, and their stress levels can be reduced [28–30]. Urban green spaces offer
a multitude of social and ecological benefits, promoting physical activity, social interaction,
and recreational pursuits across different age groups. Consequently, they exhibit high
exposure and vulnerability characteristics [31,32]. In order to reduce stress levels, designs
should be made to prevent the formation of heat islands in urban areas or to alleviate
them. In this direction, it is necessary to ensure the continuity of green space systems in
cities with nature-based solutions. The importance of natural landscape elements emerges
at this stage. Simultaneously, they offer extensive ecosystem services, including climate
regulation, alleviation of urban heat islands, and enhancement of air quality, making them
an indispensable and valuable resource within urban settings for sustainability [33,34].
However, Guo et al. note in their research that, at the human scale, the health risks to
individuals are more significant due to the characteristics of green spaces, which tend to be
more open, allowing for greater exposure to direct radiation on the ground. In this study,
they found that the main risks for 33.3% of urban green areas and squares were hazards,
exposure, and vulnerability [35].

Results similar to the above studies are also stated in The Sixth Assessment Report
(AR6) of the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC)
(Figure 3) [36].
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In light of all these data, this research aims to determine the temperature-regulating
elements in neighborhood parks in Görükle District and to reveal data that can increase
thermal comfort. Although the selected area is relatively comfortable in terms of thermal
comfort today, future projections show that there will be serious temperature increases in
this region and similar regions. In this study, it is especially aimed to reveal the differences
in the effects of plant choices on the thermal comfort level. In this research, surface material
(hard ground density, green space density), and plantation and plant characteristics are
taken as the basis for thermal comfort and stress levels. By evaluating these factors, it is
aimed to create a basis for the preparation of datasets in regions with similar geographical
characteristics. At the same time, it is aimed to determine the importance of plant charac-
teristics in the processes to be carried out to reduce the effects of urban heat islands for
sustainability.

In this context, the hypotheses of the study have been formulated as follows:

1. The balance between the density of impervious surfaces and the density of green
spaces has either a positive or negative impact on thermal comfort levels in neighbor-
hood parks.

2. The selection of different plant species can significantly alter the thermal comfort
levels within neighborhood parks.

3. The distribution of plants can influence thermal stress levels, thereby enhancing users’
comfort within neighborhood parks.

Examining these hypotheses together will contribute to understanding the importance
of plant species, spatial/land use, and distributions in the design of neighborhood parks,
providing valuable data for sustainable neighborhood park solutions.

2. Materials and Methods
2.1. Materials

The research area consists of neighborhood parks in the Görükle Neighborhood in the
Nilüfer District of Bursa Province, which is located in the Marmara Region of Turkey. There
are a total of 14 neighborhood parks in Görükle District and their locations are indicated on
the Google Earth satellite image (Figure 4) [37].

The reason why Görükle was chosen as the study area is that it has an equally active
young and old population. At the same time, having very close and relatively distant parks
in the research area was considered an advantage in terms of filtering the effects of plant
differences in areas with similar conditions. In addition, the city of Bursa, in terms of its
geographical location, has features that can be an example for many similar cities with high
populations in the same zone (Figure 5).
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2.2. Climate

Although the climate of the region is under the influence of the Marmara climate,
it is very similar to the Mediterranean climate type. However, when compared to the
Mediterranean climate, the average temperature of the Marmara region is lower, and
the precipitation balance is more regular [38]. According to De Martonne’s aridity index
equation, summer months are dry, and autumn and spring months show less humid climate
characteristics [39].
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The annual average temperature in the region is 14.9 ◦C, and the average annual total
precipitation is 719.1 mm. While the rainiest months of the year are December, January,
February, and October, the driest months are July and August [40]. Summer wind blows
from the southwest (Figure 6).
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According to the data from the last 30 years in Görükle Neighborhood, the coldest
month is January, and the hottest month is July and August (Figure 7) [41].
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2.3. Methods

In this study, the document analysis method and observation technique were used [42].
The document analysis method was preferred in this study to obtain the necessary qualita-
tive and quantitative data to determine and detail the observations to be made. With this
method, the necessary bases for observational studies were created. Within the scope of the
document analysis method, studies on thermal comfort in parks [43–48] were examined
and field observation forms were created. Among the many studies examined, particular
attention was paid to those that most broadly covered the objectives of the research and
included the variables planned to be examined. Then, fieldwork was carried out by the
study team within the framework of the observation technique, which is a technique that
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records the researchers’ observations without any changes. Fieldwork was carried out
in two stages. The first stage is the measurement of temperatures in the parks. For this
purpose, temperature measurements were carried out by visiting parks in July and Au-
gust, when temperatures were high. The reason for choosing the periods with the highest
temperatures is the results obtained in previous ministry projections. According to these
results, periods with high temperatures appear to be the periods when possible temperature
increases will be most intense. At the same time, it is thought that high-temperature periods
will offer a broader perspective for researchers from different countries who will conduct
thermal comfort studies outside the selected study area. Simultaneously, the potential for
higher temperature variations within the research area will enhance the clarity with which
the effects of the evaluated factors can be understood. Temperature measurements were
systematically conducted on the 10, 20, and 30 of July and August, during peak tempera-
ture hours between 12:00 and 13:00. This timing was strategically chosen to capture the
highest temperature readings. Measurements were taken on three distinct days at various
predetermined locations, with the route illustrated in Figure 7 (according to the locations
given in Figure 2), using a Triplett EM300 thermometer, with data meticulously recorded
on standardized forms.

The designated temperature measurement points included (1) hard grounds, (2) hard
grounds surrounded by plantations, and (3) planted green spaces. To accurately identify
these locations, a preliminary assessment of active green spaces was performed in the field.
Following this, sketches and three-dimensional representations of the area were created to
facilitate a comprehensive understanding of the spatial layout. This process also involved
calculating the types and quantities of plants, as well as assessing the extents of soft and
hard ground areas.

During this phase, it was crucial to integrate specific criteria pertaining to the green
spaces when determining the measurement points. Special attention was given to ensuring
that the selected points were in close proximity to each other in each park, thereby allowing
for a more coherent analysis of the thermal conditions across different surface types and
vegetation arrangements. This methodological approach aims to provide a robust dataset
that reflects the intricate relationships between landscape elements and thermal comfort.

The evaluation of hard grounds with similar materials alongside green spaces featuring
comparable plant species is crucial in this study. This arrangement allows for meaningful
comparisons regarding the urban heat island effect. Furthermore, the proximity of the parks
is significant for conducting measurements during the hottest hours of the day, specifically
between 12:00 and 13:00. For these reasons, the neighborhood parks in Görükle have been
selected as the research area. This route was completed within 1 h by car on the 10th, 20th,
and 30th days of July and August, and measurements were taken with a Triplett EM300
thermometer from 3 different points in 14 parks.

Criteria such as hard ground, soft ground, grass area, planted area, etc., have been
kept as equivalent as possible. In measurements made in planted areas, care was taken to
take measurements from the points where the plants were most dense. The second stage is
the detection of existing plant material in the parks. To identify the plants, plant samples
were taken and photographed by visiting parks twice a week, starting from the beginning
of the spring vegetation period (March–April).

Content analysis was applied, which is based on defining the data obtained after
the field study, bringing together and interpreting the data that were found to be similar
and related to each other within the framework of certain concepts and themes. For this
purpose, the RayMan model was used to determine the thermal comfort level of the parks
according to the values obtained from temperature measurements. The PET index was used
through the RayMan model, which is a widely used model that calculates many factors
together to determine thermal comfort conditions. The PET (Physiological Equivalent
Temperature) index [49–51] calculates human thermal comfort depending on body heat
energy balance and meteorological conditions. The index takes into account all the effects of
the thermal environment on humans (short- and long-wave solar radiation, air temperature,
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relative humidity, and wind speed) and the thermo-physiological conditions of the human
body (clothing type and activity) as separate values [50,52,53]. In the calculation of the PET
index, a 35-year-old, 175 cm tall, 75 kg male, healthy individual with 0.9 clothing load, and
80 W workload was taken into account. Spatial or temporal distributions of the values
obtained as a result of PET can be easily made [54,55]. Before the PET index was selected
for the study, different thermal indices such as UTCI, SET, PMV, PPD, and WBGT were
evaluated. The data obtained were classified according to the study area and period [56–60].
As Zare et al. showed in their 12-month comparative study, all of the indices point to
highly correlated results. This index was preferred because it was seen that the highest
correlations among the studies for our study date ranges were in the PET index [61].

At this stage, the RayMan pro 2018 program was used in the analysis study. The pro-
gram was provided by interviewing Matzarakis. With the user manual sent by Matzarakis,
the thermal comfort level of Görükle Neighborhood (where neighborhood parks are located)
was determined. While this study was being carried out, the climate data for 365 days of
the year were processed into the RayMan program together with the data obtained by the
General Directorate of Meteorology (GDM). Personal characteristics, clothing, and activity
conditions were kept constant while processing in the RayMan program. However, the
results were obtained by entering the date, temperature, relative humidity, and wind speed
data separately for each day.

As a result of the calculation of the indexes in line with these studies, a single thermal
comfort value emerges. This result changes as a result of the changes in the entered
elements. A table has been prepared to evaluate this result. However, to evaluate the
resulting index value, it is necessary to create a chart in which each data point is classified
within itself (Table 1) [62].

Table 1. Thermal comfort levels of the data obtained in the RayMan program.

PMV (◦C) PET (◦C) Human Feeling Thermal Stress Level

(−3.4)–(−2.5) 4.1–8.0 Cold Strong cold stress

(−2.4)–(−1.5) 8.1–13.0 Cool Moderate cold stress

(−1.4)–(−0.5) 13.1–18.0 Slightly cool Mild cold stress

(−0.4)–0.5 18.1–23.0 Comfortable No thermal stress

0.6–1.5 23.1–29.0 Mild temperate Mild heat stress

1.6–2.5 29.1–35.0 Temperate Moderate heat stress

2.6–3.5 35.1–41.0 Hot Strong heat stress
Note: PMV: (Predicted Mean Vote), PET: (Physiologically Equivalent Temperature).

Accordingly, at this stage, thermal comfort levels were determined in the neighborhood
parks.

In the final stage of the method, the points with intense heat stress were determined
according to the thermal comfort levels in the neighborhood parks, and solution suggestions
were developed. At this stage, statistical analyses were performed to evaluate thermal
comfort between parks and to determine the effect of park plantings on thermal comfort.

Species identification for identifying plant species was carried out according to the
studies [63–72] and Bursa Uludağ University Faculty of Science Herbarium (BULU). The
identified plant species were examined under three groups: coniferous, deciduous, and
shrubs.

2.4. Statistical Analysis

The statistical evaluation of the data was conducted using SPSS version 28 [73]. To
compare the thermal comfort levels across different parks, a two-way analysis of variance
(ANOVA) was employed. This method allowed for the assessment of interactions between
the independent variables while controlling for other factors. Additionally, a one-way
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analysis of variance was utilized to examine the impact of various planted areas on thermal
comfort levels, facilitating a focused analysis of single-factor effects.

The results of the variance analysis were interpreted at a significance level of p ≤ 0.05,
indicating the threshold for statistical significance. To further analyze the differences
among the groups, the Duncan test was applied, which enabled the categorization of
significantly different groups through the use of letter notation. This approach ensures a
comprehensive understanding of the relationships between variables and their influence
on thermal comfort within the neighborhood parks [74].

3. Results

As a result of the measurements made in the field, the sizes of the neighborhood parks
and the amount of hard and softscape are given in Table 2.

Table 2. Sizes of neighborhood parks and amount of hard and softscape.

No Neighborhood Park Name Hardscape (m2) Softscape (m2) Total Area Size (m2)

1 Görükle Sport Park 13,661.71 6737.89 20,399.60
2 Zambak Park 1837.24 873.43 2710.67
3 Necmi Yazıcıoğlu Park 358.39 780.20 1138.59
4 Badem Park 838.77 1076.55 1915.32
5 75. Yıl Park 1241.17 1735.19 2976.36
6 Yıldız Park 870.46 2578 3448.46
7 Barış Park 759.50 1208 1967.50
8 Harmanlık Park 582.93 990.26 1573.19
9 Çınar Park 300 774.21 1074.21
10 Koca Park 1397.51 567.56 1965.07
11 Berrin Korkut Park 590 9.25 599.25
12 Taşpınar Park 1352.03 314.45 1666.48
13 Koza Park 719 1427.81 2146.81
14 Esinti Park 1091.40 1902.37 2993.77

According to Table 2, the neighborhood park with the largest area size is Görükle
Sport Park. The neighborhood park with the most softscape is also the Görükle Sport Park.
The neighborhood park with the least softscape is Berrin Korkut Park. The neighborhood
park with the most hardspace is Görükle Sport Park, and the least is Çınar Park. Soft and
hardscape status in all parks are given in Figure 8.
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Considering the climate data from the research area, no average of a month is perceived
as hot or very hot. However, this does not mean that this perception does not exist. On
some days, the temperature value exceeded 40 ◦C, but this situation affected the degree
of the average as a high value. Thermal stress levels of the Görükle Neighborhood were
determined in the Rayman program with climate data (Table 3).

Table 3. Thermal comfort levels of Gorukle Neighborhood.

Months PMV (◦C) PET (◦C) The Felt Temperature Thermal Stress Level

Jan −7.10 −2.6 Gelid Extreme cold stress
Feb −6.22 0.35 Gelid Extreme cold stress
Mar −6.81 0.58 Gelid Extreme cold stress
Apr −2.80 6.02 Cold Strong cold stress
May −0.72 13.8 Cool Mild cold stress
Jun 0.25 18.20 In comfort No thermal stress
Jul 2.3 31.17 Milder Moderate heat stress

Aug 1.13 25.47 Mild Mild heat stress
Sep 0.31 18.12 In comfort No thermal stress
Oct −1.82 12.45 Cool Moderate cold stress
Nov -3.30 7.77 Cold Strong cold stress
Dec -4.87 1.31 Gelid Extreme cold stress

When 14 parks in Görükle District were evaluated in terms of thermal comfort, it was
determined that the values found were significant at the p ≤ 0.05 level. When the thermal
stress level of the parks is evaluated, it is seen that all parks are in the medium temperature
stress group, the highest value was measured in Berrin Korkut Park at 33.16 ◦C and the
lowest values are 30.33 ◦C and 30.27 ◦C in Koza Park and Badem Park (Figure 9).
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However, it was determined that the measurement days and measurement locations
were significant at the p ≤ 0.05 level, while the months of measurement were not significant.
When different measurement days were evaluated, the highest temperature value was
measured on the 30th day with 32.89 ◦C, while the lowest temperature value was obtained
on the 10th day with 28.89 ◦C. In terms of measurement location, the highest temperature
value was obtained from measurements made on hard ground at 33.17 ◦C, while the lowest
value was obtained from measurements made in planted green spaces at 29.74 ◦C (Table 4).
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Table 4. Comparison of different days, months, and measurement locations.

Parameters Temperature (Avg. ◦C)

Month July 31.05

August 31.09
Significance n.s.

Day 10th 28.89 c
20th 31.45 b
30th 32.89 a*

Measurement location Hard ground surrounded by plants 30.32 b
Hard ground 33.17 a*

Planted green spaces 29.74 c
Significance *

(* Letters indicate different groups at p ≤ 0.05 level).

The relationship between different measurement locations within the parks was found
to be significant at the p ≤ 0.05 level, and it was determined that the temperature mea-
surements taken from the hard ground were at the highest values in terms of different
measurement locations and thermal comfort decreased at these points. The highest value
of 33.91 ◦C was obtained in Zambak Park. The lowest values were detected in planted
green spaces and thermal comfort was observed to increase at these points. Accordingly,
Yıldız Park, Koza Park, Necmi Yazıcıoğlu Park, and Zambak Park had the lowest values
with 28.41 ◦C, 28.58 ◦C, 28.66 ◦C, and 28.75 ◦C. It was observed that a relatively thermal
comfort level was achieved in hard ground areas surrounded by plants. While Koza Park
received the lowest temperature of 29.16 ◦C, Berrin Korkut Park received the highest value
of 33.33 ◦C (Figure 10).
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However, the relationship between different measurement days in different months
was found to be significant at the p ≤ 0.05 level, and when the measurements on different
days in different months were evaluated, the highest temperature value was 34.30 ◦C,
obtained from the measurement made on the 30th day of July, followed by 31.39 ◦C and
the measurement made on the 20th day of July. The lowest value was determined to be
26.50, measured on the 10th day of July (Table 5).
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Table 5. Comparison of measurements made in different months and days according to parks.

Temperature (Avg. ◦C)

M × D
July 10. Day 26.50 e

20. Day 32.39 b
30. Day 34.30 a*

August 10. Day 31.28 c
20. Day 30.52 d
30. Day 31.47 c

Significance *
(* Letters indicate different groups at p ≤ 0.05).

The Effect of the Presence of Planted Green Spaces in Parks on Thermal Comfort

One-way analysis of variance was used to determine the effect of planted green spaces
on thermal comfort. The measurements made in planted green spaces in parks were
considered and were found to be significant at the p ≤ 0.05 level. The measurement values
in planted green spaces and the plant taxa and numbers found around the measurement
point are shown in Table 6. Accordingly, it was observed that the thermal comfort level was
highest in Yıldız Park with a temperature value of 28.41 ◦C, and it was determined that
there were especially coniferous taxa in this park and that there were three Pinus pinea and
one Thuja occidentalis taxa. The lowest value in terms of thermal comfort was measured
in Berrin Korkut Park at 32.66 ◦C, and there are only two Ailanthus altissima trees in this
park. It can be said that it has a relative impact on the thermal comfort level, with values of
28.58–28.66–28.75–29.41 ◦C in Necmi Yazıcıoğlu, Koza, Zambak, and Barış parks. While
the number of different taxa is high in Necmi Yazıcıoğlu and Koza parks, the presence of
coniferous taxa in Zambak and Barış parks is noteworthy. In addition, it was determined
that shrub taxa were used in Taşpınar, Çınar, and 75. Yıl parks, and this reduced thermal
comfort (Figure 11).

Table 6. Measurements and taxa in planted green spaces.

Park Temperature (Avg. ◦C) Total Number of
Plants (Pieces) Taxa

Yıldız Park 28.41 d 5
Pinus pinea

Thuja occidentalis
Robinia pseudoacacia

Necmi Yazıcıoğlu
Park 28.58 bc 5

Prunus cerasifera
Magnolia grandiflora

Acer negundo
Pistacia lentiscus

Koza Park 28.66 bc 6

Quercus cerris
Robinia pseudoacacia

Liquidambar orientalis
Prunus domestica

Zambak Park 28.75 bc 5 Robinia pseudoacacia
Juniperus horizontalis

Barış Park 29.41 bc 4
Acer negundo

Prunus cerasifera
Cupressus macrocarpa

Harmanlık Park 29.50 bc 4 Robinia pseudoacacia
Prunus cerasifera

75.Yıl Park 29.66 bc 3 Ficus carica
Euonymus japonica
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Table 6. Cont.

Park Temperature (Avg. ◦C) Total Number of
Plants (Pieces) Taxa

Görükle Sport Park 29.75 bc 3 Robinia pseudoacacia
Carpinus betulus

Taşpınar Park 30.00 bc 3
Ailanthus altissima

Acer platanoides
Yucca flamentosa

Çınar Park 30.08 bc 3 Populus nigra
Euonymus japonica

Koca Park 30.25 bc 2 Robinia pseudoacacia
Acer negundo

Esinti Park 30.33 b 3 Prunus cerasifera
Liquidambar orientalis

Badem Park 30.33 b 4 Prunus cerasus

Berrin Korkut Park 32.66 a* 2 Ailanthus altissima
(* Letters indicate different groups at p ≤ 0.05).
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4. Discussion

The effects of thermal discomfort are expected to become more pronounced in urban
areas as global warming intensifies [34,75–77]. Based on the importance of these effects,
in this research, temperature measurements were made in neighborhood parks in order
to determine the elements regulating thermal comfort. Thermal comfort in green spaces
is gaining significance in the context of climate change. Consequently, the specifics of
planting and structural features within these green spaces will be increasingly crucial in the
forthcoming period. In line with the measurements obtained, the thermal comfort level was
determined with the data entered into the RayMan program, and the results obtained were
evaluated statistically. This process is based on a systematic analysis process to increase the
reliability of the data obtained.

As a result of the data obtained as a result of document analysis, temperature mea-
surements were made between 12:00 and 13:00 (the hottest hours) on the specified days
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(10th, 20th, and 30th days) in July and August 2021. These measurements were determined
as a critical period for understanding the climatic impacts relevant to the research.

In the study conducted by Koçman (1991), it was stated that a temperature value
between 17 and 24.9 ◦C is considered the appropriate temperature value in terms of
comfort for countries in a mild temperate zone. In the study, results were obtained that
confirm this information [78]. In this study, the comfort temperature values in the RayMan
program are in the range of 18.1–23.0 ◦C while obtaining the data results. This provides
concrete data supporting the effect of climatic conditions on thermal comfort.

According to Altunkasa (1990), a comfort zone is provided by optimum temperature
and humidity conditions (21–27 ◦C temperature and 30–65% relative humidity). At the
same time, it is easier to reach the thermal comfort level when the temperature and relative
humidity are supported by the wind speed, especially in summer [79].

Yücekaya (2017), based on the thermal comfort evaluation study handled by Olgyay
(1973) in the city of Gaziantep, revealed the seasonal differences in the thermal comfort
balance that change throughout the year. In this study, it has been determined that the
temperature data obtained from the field, the effects of the plant species used in the
landscape design, and the amount of hard ground play essential roles in the thermal
comfort balance. In line with this result, the data obtained by Yücekaya (2017) coincides
with the data obtained in this study. In this study, it was determined that the temperature
value of neighborhood parks with dense green spaces is closer to the comfort level. This
result has similar characteristics to this study carried out in Görükle Neighborhood [80,81].
Such similarities underscore the critical role of plantations in moderating temperature and
enhancing thermal comfort in urban environments.

In the study by Aksu et al. (2020), there is a linear relationship between green spaces
and the decrease in air temperature. In another study, it was determined that the heating
and cooling demands decrease with the increase in the number of trees near the structures.
This research results support the results of Aksu et al. (2020). It has been determined that
plants reduce the temperature during the summer months [82]. In this context, it is of
significant importance from a sustainability perspective.

In the study conducted by Tzu-Ping et al. (2012), it was determined that the intensity
of using neighborhood parks where shading elements are used is high. As a result of the
observations and measurements made in this study, it has been determined that shading
elements (trees, pergolas, etc.) increase the use of neighborhood parks, especially in hot
times. Since the temperature reduction is achieved with the shading element, the thermal
comfort level is approached. This function should also be taken into account in landscape
design [83].

In the study by Aksu et al. (2020), the factors affecting people’s thermal comfort balance
were mentioned. They include environmental factors (air temperature, wind, relative
humidity of the air, solar radiation), personal factors (metabolic heat, skin temperature,
wetness, enveloping effect of clothing), and additional factors (climate acclimatization,
body height/weight ratio, subcutaneous fat, presence of layers, age, and gender). In this
study, personal and additional factors were kept constant [82].

The table showing the thermal stress level of PMV and PET indices, which Toy and
Yılmaz (2008) included in their study, was also used for this study. These indices were
derived following data processing with the RayMan program, thereby providing a robust
framework for evaluating thermal comfort [62].

In the study by Gaspari and Fabri (2017), the difference between the average thermal
sensation (ATS) index data was revealed by making comparisons in simulation models. In
the study, ATS data and thermal comfort levels were hot (+1.50, +2.00), very hot (+3.50,
+4.00), and ultrahot (+4.50). In this study, these ATS values were used to determine the ther-
mal comfort level. Based on these values, thermal comfort levels were also determined in
this study [84]. Therefore, the incorporation of these various factors and indices highlights
the multifaceted nature of assessing thermal comfort.
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5. Conclusions

According to the literature review, studies within this scope have primarily con-
centrated on assessing the thermal comfort conditions of specific spaces in relation to
their environmental factors and contextual relationships, thereby making design recom-
mendations that align with sustainability principles. Landscape design works should be
progressed by considering the thermal comfort balance. Green space density, plant species,
and characteristics of plant species should also be taken into account. All these factors
should be evaluated considering user thermal comfort.

This research has established that hardscape areas retain significantly more heat
compared to grass-covered regions. Consequently, it was concluded that the proportion
of green spaces should exceed that of hardscape to effectively enhance thermal comfort.
In neighborhood parks where the softscape-to-hardscape ratio approaches two to one,
temperature values were found to be 2.5 to 3 ◦C lower than the overall ambient temperature.
While similar design strategies are present in various neighborhood parks, this study
indicates that those with a higher green space ratio experience more pronounced reductions
in temperature compared to others. Furthermore, measurements taken at specific points
within the neighborhood parks revealed that temperature values in areas dominated by
hardscape were consistently higher than the average temperature readings. These findings
underscore the necessity for landscape design studies in neighborhood parks to be informed
by such data, highlighting the critical importance of integrating ample green spaces to
mitigate heat retention and enhance thermal comfort.

In this study, it is seen that there is strong heat stress in the last days of July. To
prevent strong heat stress, it is possible to approach the comfort level with landscape
design studies. Reducing the strong heat stress will also be effective in terms of increasing
the quality of urban life, reducing air pollution, providing balanced energy consumption,
and establishing a cost balance by establishing a thermal comfort balance [85].

As a result of the analysis made in the RayMan program, when the climate data from
2021 is examined, no average of a month is perceived as very hot or ultrahot. However,
this does not mean that this perception does not exist. Since the average of all days of
the month was taken in the study, such a result could not be reached. However, on some
days, the temperature value exceeded 40 ◦C, but this situation affected the degree of the
average as a high value. However, it can be asserted that areas within planted green spaces
in neighborhood parks offer a higher level of thermal comfort in comparison to hardscape
environments.

The study revealed that the temperature difference between the GDM data and mea-
surements taken exclusively from points with grass areas was −1.5 ◦C. In areas adjacent to
grass areas and deciduous trees, the temperature difference ranged from −1 ◦C to −2.5 ◦C.
For points located near grass areas and coniferous trees, the temperature difference var-
ied between −1.5 ◦C and −3 ◦C. In locations adjacent to both evergreen coniferous and
deciduous trees, the temperature difference ranged from −1.5 ◦C to −3 ◦C. Additionally,
measurements obtained near grass areas and shrubs or deciduous trees exhibited tempera-
ture differences spanning from −2 ◦C to −3 ◦C. Based on these findings, it can be asserted
that coniferous trees exert a more substantial influence on thermal comfort compared to
deciduous trees. Nevertheless, when considering all plant types within the research area,
it was concluded that during the hottest periods, taller plants provide a greater cooling
effect than shorter plants. Moreover, the presence of broad-leaved trees contributes to an
enhanced level of thermal comfort in comparison to shrubs.

All these meaningful differences were considered important in terms of landscape
design. Landscape design, which is the intersection of art and functionality, has to offer
solutions that will provide both aesthetics and comfort for users at the same time [86,87].
Furthermore, design solutions should be developed in alignment with the natural char-
acteristics of the area in which they are to be implemented, as this approach promotes
sustainability by minimizing environmental impact. The utilization of these plant species,
which exhibit a broad range of applicability, in accordance with the data obtained from our
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research, will expand the options available to designers across various domains, particularly
in enhancing thermal comfort.

Climate data plays a crucial role in urban planning and design studies; however, it
is essential to maintain a balanced thermal comfort level to mitigate global warming and
reduce the effects of urban heat islands. To support these sustainability goals, efforts should
focus on monitoring temperature changes and providing a solid foundation for landscape
design initiatives, as in this research.
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Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Wu, J.; Hou, Z.; Shen, J.; Lian, Z. Quantitative effect on work performance considering interactions among multiple indoor

environmental factors. Build. Environ. 2020, 185, 107286. [CrossRef]
2. Xu, X.; Lan, L.; Shen, J.; Sun, Y.; Lian, Z. Five hypotheses concerned with bedroom environment and sleep quality: A questionnaire

survey in Shanghai city, China. Build. Environ. 2021, 205, 108252. [CrossRef]
3. Du, H.; Lian, Z.; Lai, D.; Duanmu, L.; Zhai, Y.; Cao, B.; Hou, Z. Comparison of thermal comfort between radiant and convective

systems using field test data from the Chinese Thermal Comfort Database. Build. Environ. 2022, 209, 108685. [CrossRef]
4. Liu, C.; Tang, L.; Yan, J.; Ouyang, J. Direct and indirect effects of multisensory modalities on visitor’s thermal comfort in an urban

park in a humid-hot climate. Int. J. Sustain. Dev. World Ecol. 2023, 30, 319–328. [CrossRef]
5. Cheng, C.Y.; Lin, T.P. Decision Tree Analysis of Thermal Comfort in the Courtyard of a Senior Residence in Hot and Humid

Climate. Sustain. Cities Soc. 2024, 101, 105165. [CrossRef]
6. Toksoy, M. Isıl Konfor; TMMOB Makine Mühendisleri Odası Bildiriler Kitabı: Ankara, Türkiye, 1993.
7. Santamorius, M. Energy and Climate in the Urban Built Environment; James & James: London, UK, 2011.
8. Yeang, K. Ekotasarım: Ekolojik Tasarım Rehberi; YEM Yayın: İstanbul, Türkiye, 2012.
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87. Ender Altay, E.; Pirselimoğlu Batman, Z.; Acaray, S. Urban Squares within the Framework of Urban Design: Kadıköy Square,
Turkey. Landsc. Archit. Art. 2023, 22, 22. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.21597/jist.635503
https://doi.org/10.1080/13504509.2023.2255562
https://doi.org/10.1016/j.landurbplan.2012.05.011
https://doi.org/10.1016/j.egypro.2017.03.212
https://doi.org/10.26835/my.1127471
https://doi.org/10.22616/j.landarchart.2023.22.02

	Introduction 
	Materials and Methods 
	Materials 
	Climate 
	Methods 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

