

Article The Role of the Real Estate Sector in the Economy: Cross-National Disparities and Their Determinants

Wei Gao¹, Shan Wei¹, Chen Geng^{1,*}, Jing He¹, Xiuting Li¹ and Shuqin Liu^{2,*}

- ¹ School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China; gaowei17@mails.ucas.ac.cn (W.G.); weishan24@mails.ucas.ac.cn (S.W.); hejing_95@163.com (J.H.); lixiuting@ucas.ac.cn (X.L.)
- ² School of Management, Minzu University of China, Beijing 100081, China
- * Correspondence: gengchen21@mails.ucas.ac.cn (C.G.); sqliuqd@163.com (S.L.)

Abstract: A scientific understanding of the real estate sector's role in the national economy is essential for facilitating reasonable and effective regulation and promoting economic development. By analyzing panel data from a sample of 67 countries between 2010 and 2018, we examine the role of the real estate sector in different countries and its determinants. This empirical study yields three main findings. Firstly, there is a strong correlation between the real estate sector and the financial services sector, the construction industry, as well as wholesale and retail trade. Notably, China's real estate sector exhibits relatively high direct consumption of financial service activities compared to other major countries. Secondly, there is a transition trend in both the input and output of the real estate sector from primary and secondary industries towards service-oriented industries. Lastly, key determinants influencing the economic effects of the real estate sector in a country include economic growth, current national income level, expense structure of the economy, aging population, as well as urbanization speed.

Keywords: real estate sector; inter-sectoral linkage; economic effects; input–output analysis; panel data model

1. Introduction

Real estate plays a pivotal role in the socio-economic development of all countries worldwide. Several empirical studies have demonstrated that the progress of the real estate market is closely linked to economic development and social stability [1–5]. A housing boom has the potential to stimulate household consumption and drive GDP growth [6,7]. In addition, as typical collateral, housing commodities largely determine the credit constraints of various industries and play an important role in economic development [8].

In the context of globalization and open markets, the real estate market is inevitably influenced by external factors, which in turn have ripple effects on other sectors of the economy [9]. Governments typically view real estate regulation as a crucial policy tool for driving economic growth due to the strong interdependence between the real estate sector and other sectors of the economy [10,11]. Therefore, it is imperative to accurately comprehend the linkages between the real estate sector and other sectors within national economies and to explore the core drivers of industrial linkage effects in the real estate sector.

Reaching a comprehensive understanding of the linkages is essential for gaining a competitive advantage in the real estate sector as the rapid growth of sectors with high linkages will stimulate real estate development. Furthermore, when these sectors enter foreign markets, it will be easier for the real estate sector to gain access to those markets [12]. Additionally, identifying the determinants of the economic effects of the real estate sector is crucial for systematically examining its role. Internationally comparative studies on the role of real estate within economics are of great importance for policymaking and economic

Citation: Gao, W.; Wei, S.; Geng, C.; He, J.; Li, X.; Liu, S. The Role of the Real Estate Sector in the Economy: Cross-National Disparities and Their Determinants. *Sustainability* **2024**, *16*, 7697. https://doi.org/10.3390/ su16177697

Academic Editors: Colin Jones and Rui Cunha Marques

Received: 28 April 2024 Revised: 10 August 2024 Accepted: 2 September 2024 Published: 4 September 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). development, providing comprehensive information on the impacts of the real estate sector on the economy.

Input–output analysis, established by Leontief in 1936 [13], is a widely utilized method for examining the industrial structure, which holds significance in shaping industry policies and business strategies [14]. The input–output technique offers a quantitative approach to analyzing sectoral linkages and proposing policy implications [15–17]. While many researchers have investigated the macroeconomic impacts of the real estate sector using input–output analysis, most have focused solely on horizontally comparing the related effects of real estate across different regions or countries without specifically analyzing the key factors influencing its economic effects.

For instance, Pagliari et al. has conducted an analysis of the input-output relationship between commercial real estate in Australia, Canada, the United Kingdom, and the United States from 1985 to 1995, focusing on U.S. investors [18]. The empirical study by Song et al. revealed that the correlation effect of the real estate sector in Australia, France, and the United States consistently ranked in the top five during the study period, and as the sample countries' economies developed, the total correlation effect of the real estate industry gradually increased [19]. Bielsa and Duarte assessed inter-sectoral linkage effects of Spain's construction industry based on Spain's input-output table and compared results with OECD countries such as Belgium, Denmark, Finland, France, and Germany [20]. Ren et al. examined the significance of China's real estate construction sector through input-output analysis, which showed a strong final demand for this sector, with the regional economies highly dependent on it being particularly vulnerable to falling demand [21]. Chan et al. investigated real and financial linkages between China's real estate sector and other sectors using input-output analysis, which indicated strengthened linkages between them while also highlighting that credit risk in the real estate sector has a larger spillover effect on other sectors, suggesting that turmoil in this market may have a greater impact on China's economy than previously reported [22]. Using data from the World Input–Output Database, Liu and Zhu conducted a detailed analysis of changes in output structure within various countries' construction sectors from 1995 to 2011, demonstrating that real estate activities are one of the main outputs for most countries' construction sectors [23].

While researchers have examined the linkages between the real estate sector and other sectors in various countries, there has been a lack of focus on the input and output structures as well as the key factors that influence the economic effects of the real estate sector. Utilizing the Inter-Country Input–Output Tables (ICIO) from the OECD Input–Output Database, we conduct an analysis of the inter-sectoral linkage effects of real estate sectors in various countries and undertake a comprehensive investigation into the key factors influencing real estate economic effects.

The major contributions of this study lie in two aspects. Firstly, it presents new evidence on the push and pull effects of the real estate sector, as well as its changes in input and output structure. Secondly, this study empirically demonstrates the determinants of development using a panel dataset containing annual data from 63 countries (regions) between 2010 and 2018.

The rest of this paper is organized as follows. Section 2 analyzes the economic effects of the real estate sector in the economy using the input–output approach. Section 3 investigates the key factors that affect the real estate's economic effects by using the panel data model, to deeply understand the real estate sector's impact on the national economy. Section 4 presents the discussion, and Section 5 provides the conclusion. The technical roadmap for this paper is as follows (Figure 1):

Figure 1. Research technical roadmap.

2. Analysis of the Role of the Real Estate Sector in Different Countries

2.1. Methods

A typical input–output table can be divided into three parts: the intermediate demand table, the final demand table, and the value-added table. The intermediate demand table describes the mutual input–output relationships between departments. Rows indicate the flow of output from one department to other departments, while lists indicate the input received by one department from other departments. The final demand table displays the demand for final goods and services that are not intended for further production, including household consumption, government consumption, investment, and exports. The value-added table records the value added by each department in the production process, including labor remuneration, capital income, and taxes.

It is widely accepted that input–output analysis within a country's economy can be categorized into two forms: a physical input–output analysis and monetary input–output analysis. The former primarily examines the flow of intermediate goods between sectors, excluding monetary factors, while the latter considers fluctuations arising from relative price changes across various economic sectors. Unlike traditional industries, real estate commodities are quintessential investment products, whose economic significance is more contingent on their monetary attributes than their physical characteristics. Fluctuations in real estate value directly influence a company's financing capacity and asset valuation. Therefore, relying solely on physical intermediate goods flow analysis can lead to significant biases. Indeed, the predominant research on the economic impact of the real estate sector often employs monetary input–output analysis [18,24]; this approach acknowledges that changes in the monetary value of real estate assets not only affect enterprise asset valuation but also inform production decisions, making it inseparable from the input–output analysis process.

The method to investigate inter-sectoral linkages and economic effects is based on two types of indicators derived from input–output analysis. The indicators to measure the linkages between the real estate sector and other sectors include the direct requirement coefficient and direct distribution coefficient; the former represents the direct backward linkage and the latter represents the direct forward linkage. The indicators to measure the economic effects of the real estate sector include the index of power of dispersion (IPD) and index of sensitivity of dispersion (ISD), which represent the pull effect and push effect on the economy, respectively.

In this paper, the direct requirement (technical coefficient) coefficient is used to measure the direct backward linkage between the real estate sector and other sectors, which presents the influence of the real estate sector on other sectors due to direct consumption in the process of production and operation. The formula for the direct consumption coefficient is as follows:

а

$$_{ij} = x_{ij}/x_j \tag{1}$$

where x_{ij} represents the intermediate demand of products or services of sector *i* by sector *j*; and x_j denotes the gross input of sector *j*. The greater the value of a_{ij} , the greater the demand of sector *j* for sector *i*, which means a stronger direct backward linkage. The direct distribution coefficient is used to indicate the direct forward linkage of the real estate sectors with other sectors, which is denoted as follows:

$$h_{ii} = x_{ii} / x_i \tag{2}$$

where x_i denotes the gross output of sector *i*. The greater the value of h_{ij} , the stronger the direct forward linkage, which means more output of sector *i* flow to sector *j*.

Leontief's Inverse Matrix is used to measure the total demand effects between sectors within an economy, derived from the Intermediate Input Matrix. Assuming Z as the Intermediate Input Matrix, the relationship between total output X and intermediate inputs and final demand Y can be denoted as X = Z X + Y. Solving for X, we can finally obtain the relationship between total output and final demand: $X = (I - Z)^{-1}Y$, where *I* is the identity matrix and $(I - Z)^{-1}$ is Leontief's Inverse Matrix. In this paper, IPD and ISD are used to measure the pull and push effects of the real estate sector on the macro-economy, respectively. The IPD and ISD were introduced by Rasmussen [25], the former reflects the extent of the production demand generated by various sectors of the national economy when a sector adds one unit for final use in a national economy, measuring to what extent the development of other economic sectors has driven the growth of the real estate industry. The latter presents the amount of output that the sector needs to provide for the production of other sectors for an increase in one unit for final use in each sector of the national economy, measuring to what extent the development of the real estate sector contributes to the growth of other industries. According to its description, we provide graphical representation of the IPD and ISD (Figure 2):

Figure 2. Graphical representation of IPD and ISD.

IPD and ISD actually measure the pull and push effects of the real estate sector in the economy. We can imagine that within an economy, the development of other sectors will require more factories and collateral, thereby creating demand for real estate products, "pulling" the development of real estate. With the further prosperity of the real estate industry, more diverse housing products and diversified development models have provided support for the further development of other industries, thereby "pushing" the development of other sectors. The larger the value of IPD, the stronger the pull effect for economic development is, indicating the sector is a leading sector. The larger the value of ISD, the stronger the push effects for economic development are, implying the sector plays a key role in an economy [26]. We use the method improved by Liu (2002) to calculate IPD and ISD [27]. The IPD is calculated as follows:

$$\delta_j = \sum_{i=1}^n c_{ij} / \left[\sum_{j=1}^n \left(\sum_{i=1}^n c_{ij} \right) \times \partial_j \right], j = 1, 2, \cdots, n$$
(3)

where c_{ij} is Leontief's inverse coefficient; $\partial_j = X_j / \sum_k X_k$ is the final product composition coefficient; X_j is the final product quantity of sector j; $\sum_j X_j$ is the total output of the national economy. The ISD is calculated as follows:

$$\theta_i = \sum_{i=1}^n \omega_{ij} / \left[\sum_{i=1}^n \left(\sum_{j=1}^n \omega_{ij} \right) \times \beta_j \right], i = 1, 2, \cdots, n$$
(4)

where ω_{ij} is the fully supplied matrix element, namely $W = (I - H)^{-1}$; H is the matrix of direct distribution coefficient. Finally, $\beta_i = X_i / \sum_k X_k$ is the constituent coefficient of initial input, where X_i is the initial input of sector i; $\sum_i X_i$ is the total initial input of the national economy.

2.2. Data

The data employed to analyze the inter-sectoral linkages and economic effects were the Inter-Country Input–Output Tables (ICIO) published by the OECD Input–Output Database in 2020 [28]. The latest edition of the OECD Inter-Country Input–Output (ICIO) has 45 unique industries based on ISIC Revision 4. Tables are provided for 76 countries (and the Rest of the World) from 1995 to 2018. Considering the integrity of the data used for better understanding the real estate sector, other sectors, and change trends in various countries, a 45 \times 45 input–output table of 67 countries and regions (excluding Cypress, Melta, Mexico, etc.) over the past 9 years was used. The sector we investigate is the real estate activities sector (D68), which encompasses the buying and selling of own real estate, renting, operating own or leased real estate, real estate agencies, and the management of real estate on a fee or contract basis. In this paper, we consider the real estate activities sector as the real estate sector to perform analysis.

Backward linkages are those that occur with other industrial sectors through demand linkages. For example, for the real estate industry, its relationship with the construction industry is a backward correlation. The direct consumption coefficient is an index to measure the backward direct correlation between industries. The backward perfect correlation degree reflects the complete driving effect of an industry on other industries through direct and indirect ways to consume the products or services provided by the industry in the production operation. In Section 3.2, the backward correlation degree is expressed by the direct consumption coefficient, namely a_{ij} in Equation (1).

The direct distribution coefficient is an index to measure the forward direct correlation between industries. The forward correlation degree reflects the promotional effect of an industry on other industries by directly or indirectly providing products or services to other industries during production and operation. In Section 3.2, the forward correlation degree is expressed by the direct allocation coefficient, namely h_{ij} in Equation (2).

2.3. Results

(1) Comparison of inter-sectoral linkages

Financial service activities, construction, and real estate activities are the main sectors which the real estate sector has direct backward linkages with in most countries (shown in Appendix A). The development of real estate requires large amounts of capital, and business development and consumers need assistance from financial systems. Therefore, the real estate sector has strong direct backward linkages with the financial sector. The construction sector also plays an important input role for the real estate sector. A variety of real estate products including housing, offices, and industry are built by the construction sector. Therefore, the construction sector is strongly connected with the real estate sector. In line with Liu, the top rank of output from the construction sector is real estate activities, and the high rank indicates the close linkage between the real estate sector and construction sector [23]. What is more, the real estate sector has a direct relationship with itself.

Table 1 lists the top five sectors that the real estate sector has direct backward linkage with in China from 2010 to 2018. Financial services activities and administrative and support services are most closely linked with China's real estate sector. After the reform in 1998, China's private property management and brokerage business was promoted. The role of the real estate sector as a service sector has been strengthened. As can be seen from Table 1, most of the sectors promoted by the real estate sector are service-oriented sectors, such as real estate activities, administrative and support services, and accommodation and food service activities. The reason for this is probably the growing demand for services in China [29].

Table 1. Ranked sectors of the backward linkage of the real estate sector in China: 2010–2018.

	2010		2014		2018	
Kank	Sector	Value	Sector	Value	Sector	Value
1	Financial and insurance activities	0.0430	Financial and insurance activities	0.0937	Financial and insurance activities	0.0700
2	Administrative and support services	0.0328	Real estate activities	0.0390	Administrative and support services	0.0259
3	Professional, scientific, and technical activities	0.0282	Professional, scientific, and technical activities	0.0303	Professional, scientific, and technical activities	0.0222
4	Accommodation and food service activities	0.0158	Administrative and support services	0.0293	Real estate activities	0.0201
5	Construction	0.0144	Electricity, gas, steam, and air conditioning supply	0.0268	Construction	0.0062

Figure 3 shows the changes in the input indicator of four main sectors. From 2010 to 2012, the direct input indicator between financial service activities and the real estate sector exhibits an upward trend, indicating a gradual increase in the demand for financial services. In 2012, the value reached 0.1027. Subsequently, the demand began to decline, reaching 0.0700 by 2018. Notably, the financial sector maintained the top rank over the 9-year period, underscoring the close relationship between real estate development and the financial sector in China. The real estate activities sector demonstrated a gradual upward trend until 2015, after which the demand for this sector decreased to 0.0201 by 2018. The demand for administrative and support services and the professional, scientific, and technical activities sector both fluctuate around 0.0300, indicating a stable pull effect of the real estate sector on these two sectors. Analyzing the changing input indicators of the four sectors reveals a gradual decrease in their linkages with the real estate sector after 2015.

The input indicator of the financial sector in selected countries (regions) in 2010 and 2018 is displayed in Figure 4. The requirements of the financial sector of real estate in China were relatively high among those countries. In 2010, the value was 0.1407 in Australia, which was the highest among the ten selected countries during the same period. The value in the UK was 0.1250, which was larger than Korea (0.0986), Denmark (0.0933), Japan (0.0746), and Germany (0.0556). In 2018, the input indicator of the financial sector of real estate in Australia was 0.1418 and China had a value of 0.0700, which was larger than the UK (0.0632), USA (0.0628), and Germany (0.0466).

The input indicator of the administrative sector in selected countries in 2010 and 2018 is displayed in Figure 5. In 2000, the value for China was 0.0328, which was the highest

among the ten countries. In 2018, Korea (0.0399) and the USA (0.0347) had higher values than China (0.0259).

 → Financial and insurance activities

 → Administrative and support services

 → Professional, scientific and technical activities

Figure 3. The changes in input indicator of real estate in China.

Figure 4. The input indicator of financial sector in 2010 and 2018.

Figure 5. The input indicator of administrative sector in 2010 and 2018.

Wholesale trade and retail trade, IT and other information services, and telecommunications are the major three sectors that the real estate sector has direct forward linkage with (shown in Appendix B). Table 2 displays the top five sectors that real estate distributes to directly from 2010 to 2018. It shows that the real estate sector mainly directly flows to the wholesale and retail trade in China, which also implies the strong push effect of real estate to this sector.

 Table 2. Ranked sectors of the forward linkage of the real estate sector in China: 2010–2018.

n 1	2010		2014		2018	
Kank	Sector	Value	Sector	Value	Sector	Value
1	IT and other information services	0.0341	Wholesale and retail trade	0.0571	Other service activities	0.0624
2	Telecommunications	0.0340	Other service activities	0.0405	Wholesale and retail trade	0.0464
3	Other service activities	0.0236	Real estate activities	0.0390	IT and other information services	0.0335
4	Professional, scientific, and technical activities	0.0177	Financial and insurance activities	0.0305	Postal and courier activities	0.0320
5	Wholesale and retail trade	0.0150	Telecommunications	0.0241	Professional, scientific, and technical activities	0.0306

Figure 6 further illustrates the changing push effects of the real estate sector on wholesale trade and retail trade, IT and other information services, and the telecommunications sectors from 2010 to 2018 in China. The push effect on wholesale trade shows an increasing trend before 2015 (0.0624), but it decreased to 0.0410 in 2017. Similarly, the push effects on the other two sectors follow a comparable trend, fluctuating between 0.0200 and 0.0400, indicating an increase in the demand for real estate to a certain extent.

The output indicator of the wholesale trade sector in selected countries (regions) in 2010 and 2018 is displayed in Figure 7. Among the selected countries (regions), the demand of the wholesale trade sector for real estate is relatively large, which implies that a large proportion of Chinese real estate products and services are distributed to the wholesale trade sector. Compared to other countries such as Korea, Japan, and the UK, Chinese real estate's push effect on wholesale trade is much greater.

Figure 6. The changes in output indicator of real estate in China.

Figure 7. The output indicator of wholesale trade sector in 2010 and 2018.

The linkage of the real estate sector with other sectors shows a transition to serviceoriented sectors. Appendix D shows the changes in the input structure and output structure of the real estate sector. We calculate the ranking of 45 sectors in the input and output structure of China's real estate industry in 2010 and 2018, respectively, and summarize the comparison results of the two years in Table 3 to demonstrate the changes in the input structure and output structure of China's real estate industry during the sample period.

	Classification	٨	D	C	n	Б	Б	C
Trend		A	D	C	D	Е	Г	G
	uptrend	0	1	9	1	1	1	6
Input structure	downtrend	1	2	8	0	0	0	12
	unchanging	1	0	0	0	0	0	2
	uptrend	1	2	8	0	1	0	10
Output structure	downtrend	0	1	9	0	0	0	6
	unchanging	1	0	0	1	0	1	4

Table 3. Statistics of input and output structure change.

Columns A–G represent the seven classifications of the forty-five sectors according to the ISIC Revision 4 standard: A represents agriculture, forestry, animal husbandry, and fishery; B stands for mining; C denotes manufacturing; D refers to electricity, gas, steam, and air conditioning supply; E pertains to water supply, sewerage, waste management, and remediation activities; F indicates construction; G represents services.

Regarding the related sectors of mining (column B), in the input structure, two mining sectors experienced a decrease in their ranking for input to real estate, while one mining sector increased its ranking. In the output structure, two mining sectors increased their ranking for the consumption of real estate, while one mining sector decreased its ranking.

From the perspective of the service industry (column G), compared with 2010, in the input–output of the real estate industry in 2018, 12 sectors of the service industry ranked lower in the input structure and 10 sectors ranked higher in the output structure, indicating that the real estate industry's demand for the service industry has decreased but the products and services flowing from the real estate industry to the service industry have increased significantly.

At the same time, in the input and output structure of the real estate industry to the manufacturing industry (column C), the rise and fall in all sectors of the manufacturing industry are almost equal, indicating a stable linkage between the manufacturing industry and the real estate industry.

(2) Comparison of pull and push effects on the economy

In most countries, the push effects of real estate are less than the average social impact. As shown in Appendix C, real estate in Austria, the Czech Republic, Denmark, Estonia, Finland, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, The Netherlands, Norway, Russia, the Slovak Republic, Sweden, and the USA has a pull effect stronger than the average social impact, which implies real estate in these countries plays a leading role in their economic development. Only the push effects of The Netherlands's real estate remain greater than 1.0000, which implies that real estate in The Netherlands is a key industry. The push effects of the real estate sector in the USA, Japan, and China are relatively weak, with

Figure 8 illustrates the trend of the push effect of China's real estate sector. Analyzing the changes in the push effects of China's real estate activities over the past 9 years, the value of the push effect demonstrates a decreasing trend over time, decreasing from 0.6466 in 2011 to 0.5294 in 2018. This indicates a gradual weakening of the significant role that the real estate sector plays in economic development.

China showing a lower value compared to the USA and Japan.

Figure 9 displays the pull and push effects of selected countries (regions) in 2018. Real estate in Germany has the strongest pull effect, with a value of 1.3347. Real estate in Denmark has the strongest push effects, and the value is 0.9474.

Table 4 lists the rank of pull and push effects of selected countries (regions) in 2010 and 2018. Taking the example of China, the pull effect of real estate in 2010 (rank 27) fell to rank 29 in 2018 and is expressed using the symbol " \downarrow " to represent the downward trend. On the other hand, the push effects of real estate in 2010 (rank 36) moved to 29 in 2018 and is expressed using " \uparrow " for the upward trend. Where there was no difference between 2010 and 2018, "-" is used to express the same number. It reflects that in the USA, real estate plays an increasingly leading and supporting role in the economy. In contrast, real estate's push effects in most countries on the economy are sliding down, except in Denmark, Korea, and the USA.

Figure 8. The push effects of China's real estate sector from 2010 to 2018 (the OECD's input–output table does not report final demand data for China so pull effects of China cannot be measured. The same below).

Figure 9. Pull and push effects of selected countries in 2018.

Country/Rogion	Pull I	Effects	Push Effects	
Country/Region	2010	2018	2010	2018
UK	34	32 (†)	13	24 (↓)
Denmark	4	5 (↓)	7	5 (†)
Germany	3	3 (-)	19	19 (-)
Korea	27	29 (↓)	36	29 (†)
China	-	-	39	40 (↓)
Japan	30	28 (†)	32	37 (↓)
Italy	18	17 (†)	37	38 (↓)
Australia	25	18 (†)	20	23 (↓)
Brazil	28	27 (†)	38	39 (↓)
USA	7	6 (†)	18	14 (↑)

Table 4. Rank of real estate's pull and push effects in 2010 and 2018.

3. Empirical Study on the Determinants of the Role of the Real Estate Sector

In this section, we conduct an empirical analysis of determinants of the economic effects of the real estate sector using a panel regression model. Also, the approaches of lagging terms and removing control variables are employed to make the test robust.

3.1. Model

The development of a country's real estate sector is generally affected by the country's economic fundamentals, financial development, and demographics, as well as urbanization level [26,30–35].

Accordingly, the basic empirical models are constructed as the following equations.

$PULL_{it} = c + \alpha_i + \beta_1 GDPY_{it} + \beta_2 LnPGDP_{it} + \beta_3 INDUSTRY_{it} + \beta_4 INVESTRATIO_{it}$	(5)
$+\beta_5 PRIVATE_{it} + \beta_6 STOCK_{it} + \beta_7 URBANIZATION_{it} + \beta_8 OLDRATIO_{it} + \varepsilon_{it}$	(3)

$$PUSH_{it} = c + \alpha_i + \beta_1 GDPY_{it} + \beta_2 LnPGDP_{it} + \beta_3 INDUSTRY_{it} + \beta_4 INVESTRATIO_{it} + \beta_5 PRIVATE_{it} + \beta_6 STOCK_{it} + \beta_7 URBANIZATION_{it} + \beta_8 OLDRATIO_{it} + \varepsilon_{it}$$
(6)

 $PULL_{it}$ and $PUSH_{it}$ are the dependent variables that, respectively, represent the pull effects (IPD mentioned in Section 2) and push effects (ISD mentioned in Section 2) of the real estate sector on economy in country *i* at the period *t*. Eight factors are incorporated as the explanatory variables, including $GDPY_{it}$, $PGDP_{it}$, $INDUSTRY_{it}$, $INVESTRATIO_{it}$, $PRIVATE_{it}$, $STOCK_{it}$, $URBANIZATION_{it}$, and $OLDRATIO_{it}$.

The first four factors represent the economic fundamentals of a country. Among which, $GDPY_{it}$ and $PGDP_{it}$ are, respectively, the annual growth of GDP and per capita GDP of country *i* in the period *t*, measuring the level of the country's economic development. $INDUSTRY_{it}$ and $INVESTRATIO_{it}$ measure the structural features of the country's economic development. $INDUSTRY_{it}$ is the share of industry value added to GDP of country *i* in the period *t*, representing the country's industrial structure. $INVESTRATIO_{it}$ is the ratio of fixed capital formation and final consumption of country *i* in the period *t*, representing the expense structure of country *i* in the period *t*.

 $PRIVATE_{it}$ and $STOCK_{it}$ are used to measure a country's financial development. $PRIVATE_{it}$ is the share of domestic credit to the private sector in the GDP of country *i* in the period *t*. $STOCK_{it}$ is the share of the total value of stocks traded in the GDP of country *i* in the period *t*.

 $URBANIZATION_{it}$ is the share of urban population in the total population of country *i* in the period *t*, representing the country's urbanization level. The demographic factor considered is $OLDRATIO_{it}$, which refers to the elderly dependency ratio of country *i* in the period *t*.

Finally, *c* is the intercept; α_i denotes the individual fixed effect; ε_{it} indicates error terms. The definition of variables is listed in Table 5.

Table 5. Definition of variables.

Variables	Specification
Push	The push effects of the real estate sector in the economy (ISD)
Pull	The pull effects of the real estate sector in the economy (IPD)
Gdpy	The annual growth of GDP
Lnpgdp	The logarithm of real gross domestic product (GDP) per capita
Industry	The share of industry value added to GDP
Investratio	The ratio of fixed capital formation to final consumption, namely fixed capital formation divided by final consumption
Private	The share of domestic credit to the private sector in GDP
Stock	The share of the total value of stocks traded in GDP
Urbanization	The share of the urban population in the total population
Oldratio	The elderly dependency ratio, i.e., population ages 65 and above divided by population ages 15–64.

3.2. Descriptive Analysis

There are 63 countries used in Section 2 selected as the sample in the empirical analysis; some countries (regions) are excluded due to missing data of some key variables. All the data for the sample countries over the period from 2010 to 2018 were collected from the World Bank database. The descriptive statistics for variables used in this study are presented in Table 6. The means, medians, standard deviations, and maximum and minimum values are summarized for all variables. In Table 7, we present the correlations of the variables. As shown in the table, most of the selected explanatory variables are significantly associated with the dependent variables. All variables are then standardized for regression analysis.

Table 6. Descriptive statistics, N = 63 cross-country; T = 2010–2018.

Variables	Mean	Median	Maximum	Minimum	Std. Dev.	Unit of Measurement
Push	0.973	0.986	1.683	0.305	0.263	-
Pull	0.806	0.804	1.085	0.615	0.0890	-
Gdpy	3.090	2.779	24.48	-10.15	2.908	%
Pgdp	26.33	26.41	30.65	22.69	1.618	US\$ Current Price
Industry	2633	2519	7367	647.9	935.5	% of GDP
Investratio	0.359	0.325	1.176	0.142	0.141	-
Private	89.13	69.75	524.5	4.767	68.33	% of GDP
Stock	44.81	14.66	668.6	0.0100	86.41	% of GDP
Urbanization	71.63	74.43	100	20.29	17.92	%
Oldratio	19.97	20.59	49.10	3.132	9.077	%

Variables	Pull	Push	Gdpy	Lnpgdp	Industry	Investratio	Private	Stock	Urbanization	Oldratio
Pull	1									
Push	0.272 ***	1								
Gdpy	0.087 **	-0.296 ***	1							
Lnpgdp	-0.272 ***	0.144 ***	-0.140 ***	1						
Industry	-0.154 ***	-0.320 ***	0.213 ***	-0.0360	1					
Investratio	0.071 *	-0.245 ***	0.241 ***	-0.145 ***	0.486 ***	1				
Private	0.138 ***	0.0570	-0.260 ***	-0.0290	-0.356 ***	-0.127 ***	1			
Stock	0.0540	-0.175 ***	0.000	0.242 ***	-0.222 ***	0.126 ***	0.209 ***	1		
Urbanization	0.0170	0.413 ***	-0.320 ***	0.272 ***	-0.314 ***	0.0250	0.146 ***	0.254 ***	1	
Oldratio	0.178 ***	0.498 ***	-0.408 ***	0.200 ***	-0.478 ***	-0.321 ***	0.303 ***	0.0680	0.374 ***	1

Table 7. Correlations.

*** p < 0.01, ** p < 0.05, * p < 0.1.

3.3. Empirical Results

(1) Regression Analysis

According to the basic models (1) and (2), we implemented regression analysis, respectively, for the pull and push effects of the real estate sector based on the cross-country panel data from 2010 to 2018. Several models are estimated including the pooled ordinary least squares (OLS), the random effects regression model (RE), and fixed effects regression model (FE). In addition, Hausman tests are carried out, which suggest the fixed effect model should be adopted for both regressions for the pull and push effects.

The empirical results of the pull effect using the fixed effect model are presented in Table 8. As shown in the table, two models are estimated for the pull effects, among which model (1) and model (2) are, respectively, the estimation results of the single fixed effects model and double fixed effects model. The results indicate the significant positive effects of INVESTRATIO, GDPY, and OLDRATIO on PULL and the significant negative effects of INPGDP and INDUSTRY on PULL. The effects of PRIVATE, STOCK, and URBANIZATION are not significant.

Table 8. Re	egression	results	of	PULL	effect.
--------------------	-----------	---------	----	------	---------

Variables	(1) Pull	(2) Pull
Gdpy	0.477 ***	0.504 ***
	(0.139)	(0.144)
Lnpgdp	-1.664 ***	-1.666 ***
	(0.245)	(0.247)
Industry	-0.000907 *	-0.000931 *
	(0.000527)	(0.000532)
Investratio	8.299 ***	8.420 ***
	(3.171)	(3.213)
Oldratio	0.283 ***	0.292 ***
	(0.0490)	(0.0501)
Private	0.00737	0.00705
	(0.00583)	(0.00588)
Stock	0.00660	0.00660
	(0.00532)	(0.00537)
Urbanization	-0.00179	-0.00152
	(0.0241)	(0.0242)
Constant	115.7 ***	115.5 ***
	(6.551)	(6.604)
Time	No	Yes
Observations	545	545
R-squared	0.180	0.182
Number of ID	63	63

Standard errors in parentheses, *** p < 0.01, * p < 0.1. The coefficient of PULL is increased by a hundredfold to enhance the visibility of the influence coefficient.

Based on the above analysis, we find that the pull effects of the real estate sector are significantly affected by a country's economic fundamentals and expense structure of the economy. The per capita GDP has a substantial negative impact on the pull effects, while the annual growth of GDP has a positive impact on the pull effects. It means that for a country with rapid economic growth, the real estate sector has more inter-sectoral linkages with other sectors, which then has stronger pull effects on the economy. However, when an economy becomes more developed, the pull effects of the real estate sector are weaker. These might be attributed to the role change of the real estate sector in a country. In a rapidly growing economy, the real estate sector often plays a pivotal role within the economy. As an asset that combines both consumption and investment attributes, real estate products typically have strong collateral properties, acting as a financial accelerator in economic development. This leads to a higher return rate for the real estate sector in fast-growing economies, further enhancing its driving effect. However, as the economy matures and housing price growth begins to slow, this driving effect gradually diminishes.

The relative amount of fixed capital formation exhibits a positive coefficient in our regression model. As production capacity increases, the expansion needs of enterprises grow, leading to higher demand for industrial real estate and office space, further driving the real estate market, resulting in a higher pull effect on the real estate sector.

The regression results of the push effect are reported in Table 9. As it shows, three models are also estimated for the push effects, among which model (1) and model (2) are, respectively, the estimation results of the single fixed effects model and double fixed effects model. The results indicate the significant positive effects of URBANIZATION and OLDRATIO on PUSH as well as the significant negative effects of STOCK, PRIVATE, and INDUSTRY on PUSH. Except for these five variables, the effects of other explanatory variables are not significant.

Variables	(1) Push	(2) Push
Industry	-0.00361 ***	-0.00379 ***
-	(0.00132)	(0.00133)
Private	-0.0340 **	-0.0359 **
	(0.0146)	(0.0147)
Stock	-0.101 ***	-0.102 ***
	(0.0133)	(0.0134)
Urbanization	0.455 ***	0.452 ***
	(0.0603)	(0.0606)
Oldratio	0.964 ***	0.993 ***
	(0.123)	(0.125)
Gdpy	-0.386	-0.395
	(0.348)	(0.360)
Lnpgdp	0.894	0.936
	(0.615)	(0.619)
Investratio	-7.572	-6.001
	(7.947)	(8.038)
Constant	42.94 ***	41.72 **
	(16.42)	(16.52)
Time	No	Yes
Observations	545	545
R-squared	0.327	0.400
Number of ID	63	63

Table 9. Regression results of PUSH effect.

Standard errors in parentheses, *** p < 0.01, ** p < 0.05. The variable push is increased by a hundredfold to enhance the visibility of the influence coefficient.

Urbanization has a positive impact on the PUSH effect of the real estate sector. In the early stage of urbanization, the speed of urbanization is accelerating, and the real estate sector's role in the economy is mainly reflected in its direct contribution to investment

growth in the economy, while the inter-sectoral role in other sectors is relatively weak. When the country enters the latter stage of urbanization and the process of urbanization slows down, the real estate sector is amazingly embedded in the interaction of different sectors in the progress of economic development, strengthening its supportive role in development.

The coefficient of PRIVATE and STOCK is significantly negative. The former is because when the proportion of private sector credit to GDP is too high, the risk within the financial system also increases. To address potential financial risks, financial institutions may adopt tighter credit policies, reducing support for the real estate market. This would further suppress the development of the real estate sector and its push effect on other industries. The latter is probably due to the crowding-out effect of the stock market. With the prosperity of the stock market and the increasing proportion of investors investing in the stock market, the inflow of funds into the real estate sector—which is also an important investment product—has decreased, leading to a weakening of the push effect of real estate commodities on the economy.

Industrialization has significantly suppressed the importance of the real estate sector, resulting in the negative coefficient both in the push and pull effects. This is because as industrialization deepens, resources (including capital, human resources, and land) increasingly shift towards the industrial sector. The development of the industrial sector requires substantial capital investment, leading to a transfer of investment funds from the real estate sector to the industrial sector, thereby reducing the capital available for the real estate sector and suppressing its output growth.

The aging population also positively contributes to the increasing role in economic development, which can be partially attributed to the diversity of real estate demand. As the population ages, the proportion of elderly individuals rises, leading to higher demand for age-friendly housing and communities, including an accessible design, medical facilities, and retirement homes, which drives rapid development in specific segments of the real estate market (such as senior housing), thereby boosting the status of the real estate sector in the economy.

(2) Robustness tests

In order to check the robustness of the estimation, we substitute all the explanatory variables with their one-order lagging term to deal with the endogeneity. The robustness test results of the pull effect are reported in columns (1) and (2) in Table 10; the results of the push effect are presented in columns (1) and (2) in Table 11. The robustness tests show that most of the results are consistent with the former estimation.

Moreover, we carry out regression with the control variables removed, The results of the pull effect without the control variable are reported in columns (3) and (4) in Table 12. The results of the push effect without the control variable are presented in columns (3) and (4) in Table 13. Compared to columns (1) and (2), it can be found from the results that the key factors are significant whether we remove the control variables or not in the regression, which proves that the empirical results are robust.

Table 10. Robustness test results of PULL effect with variables in lagging terms.

1) (2) ull Pull
14 *** 0.465 ***
142) (0.147)
712 *** -1.714 ***
256) (0.258)
0101 * -0.00103 *
00546) (0.000552)
89 ** 8.765 **
379) (3.420)

X7 · 11	(1)	(2)
Variables	Pull	Pull
L.oldratio	0.295 ***	0.302 ***
	(0.0524)	(0.0533)
L.private	0.00512	0.00494
-	(0.00602)	(0.00607)
L.stock	0.00832	0.00833
	(0.00566)	(0.00571)
L.urbanization	-0.00731	-0.00702
	(0.0249)	(0.0251)
Constant	117.6 ***	117.4 ***
	(6.817)	(6.871)
Observations	486	486
R-squared	0.188	0.189
Number of ID	63	63

Table 10. Cont.

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 11.	Robustness	test results	of PUSH	effect	with	variables	in laggiı	ng terms.

Variables	(1) Push	(2) Push
L.industry	-0.00356 **	-0.00374 ***
2	(0.00139)	(0.00140)
L.private	-0.0377 **	-0.0394 **
-	(0.0153)	(0.0154)
L.stock	-0.0981 ***	-0.0994 ***
	(0.0144)	(0.0145)
L.urbanization	0.446 ***	0.443 ***
	(0.0635)	(0.0638)
L.oldratio	0.992 ***	1.015 ***
	(0.134)	(0.136)
L.gdpy	-0.416	-0.440
	(0.361)	(0.373)
L.lnpgdp	0.879	0.916
	(0.653)	(0.657)
L.investratio	-5.731	-4.340
	(8.609)	(8.693)
Constant	43.26 **	42.32 **
	(17.37)	(17.47)
Time	No	Yes
Observations	486	486
R-squared	0.390	0.394
Number of ID	63	63

Standard errors in parentheses, *** p < 0.01, ** p < 0.05.

Table 12. Robustne	ss test results of PULL e	effect removing	control variable.

Variables	(1) Pull	(2) Pull	(3) Pull	(4) Pull
Gdpy	0.477 ***	0.504 ***	0.475 ***	0.502 ***
	(0.139)	(0.144)	(0.130)	(0.135)
Lnpgdp	-1.664 ***	-1.666 ***	-1.604 ***	-1.603 ***
	(0.245)	(0.247)	(0.219)	(0.220)
Industry	-0.000907 *	-0.000931 *	-0.00128 ***	-0.00129 ***
-	(0.000527)	(0.000532)	(0.000459)	(0.000461)
Investratio	8.299 ***	8.420 ***	9.350 ***	9.491 ***
	(3.171)	(3.213)	(2.838)	(2.865)

Variables	(1) Pull	(2) Pull	(3) Pull	(4) Pull
Oldratio	0.283 ***	0.292 ***	0.279 ***	0.288 ***
	(0.0490)	(0.0501)	(0.0468)	(0.0477)
Private	0.00737	0.00705		
	(0.00583)	(0.00588)		
Stock	0.00660	0.00660		
	(0.00532)	(0.00537)		
Urbanization	-0.00179	-0.00152		
	(0.0241)	(0.0242)		
Constant	115.7 ***	115.5 ***	115.8 ***	115.5 ***
	(6.551)	(6.604)	(5.938)	(5.985)
Control variables	Yes	Yes	No	No
Time	No	Yes	No	Yes
Observations	545	545	545	545
R-squared	0.180	0.182	0.174	0.176
Number of ID	63	63	63	63

Table 12. Cont.

_

Standard errors in parentheses, *** p < 0.01, * p < 0.1.

Table 13, Robustnes	s test results of PUSH	effect removing	control variable
Table 15. Robustics	s itst itsuits of i doff	chect removing	control variable.

Variables	(1) Push	(2) Push	(3) Push	(4) Push
Industry	-0.00361 ***	-0.00379 ***	-0.00399 ***	-0.00405 ***
5	(0.00132)	(0.00133)	(0.00113)	(0.00114)
Private	-0.0340 **	-0.0359 **	-0.0341 **	-0.0363 **
	(0.0146)	(0.0147)	(0.0143)	(0.0144)
Stock	-0.101 ***	-0.102 ***	-0.101 ***	-0.101 ***
	(0.0133)	(0.0134)	(0.0125)	(0.0125)
Urbanization	0.455 ***	0.452 ***	0.467 ***	0.466 ***
	(0.0603)	(0.0606)	(0.0563)	(0.0566)
Oldratio	0.964 ***	0.993 ***	1.050 ***	1.080 ***
	(0.123)	(0.125)	(0.117)	(0.119)
Gdpy	-0.386	-0.395		
	(0.348)	(0.360)		
Lnpgdp	0.894	0.936		
	(0.615)	(0.619)		
Investratio	-7.572	-6.001		
	(7.947)	(8.038)		
Constant	42.94 ***	41.72 **	61.05 ***	60.85 ***
	(16.42)	(16.52)	(6.136)	(6.163)
Control variables	Yes	Yes	No	No
Time	No	Yes	No	Yes
Observations	545	545	545	545
R-squared	0.327	0.400	0.389	0.394
Number of ID	63	63	63	63

Standard errors in parentheses, *** p < 0.01, ** p < 0.05.

(3) Heterogeneity tests

Depending on the strength of government regulation, real estate industries and related industries may develop differently, and this factor is a very important aspect influencing the establishment of a balance in the development of industries and their sustainability. Therefore, considering that the national legislation of a particular country may affect the relationship between real estate market development and the financial sector, based on the government regulation data of each country, this paper divides the sample into three groups—a low level of government regulation, medium level of government regulation, and high level of government regulation—using the time spent dealing with the requirements of government regulations provided by the World Bank as the proxy of government regulation, and conducts heterogeneity analysis by regression of the low government regulation group and high government regulation group.

In Table 14, the regression results of the samples with low government regulation are closest to the main test conclusions. Among the main influencing factors, gdpy and industry display great differences in their influence on the pull effects due to different levels of government regulation. In the samples with high government regulation, no matter how GDP increases, the government may adjust the development pace of the real estate industry through policy means to avoid excessive impact or dependence on other industries caused by its excessive expansion. At the same time, under the strict supervision of the government, the increase in the proportion of the output value of the real estate industry reflects the natural growth of the market scale rather than the unlimited expansion, so it is difficult for this growth to significantly weaken its role as an economic engine in driving other industries. To sum up, government regulation, as a regulator, balances the relationship between the real estate industry and other industries and ensures stable economic development.

In Table 15, the regression results of the samples with low government regulation are closest to the main test conclusions. However, in samples with high government regulation, most influencing factors fail to exert the original impact on the PUSH effect due to different levels of government regulation. In the environment of high government regulation, the government's strict supervision and regulation measures on the real estate industry may have weakened the role of the market mechanism in resource allocation. Therefore, even if the proportion of the output value of the real estate industry increases, the investment intensity increases, the private sector becomes more active, or the share circulation improves, it is difficult for these market factors to directly and significantly promote the development of other industries because the government's policy orientation and intervention become the key factors affecting the economic effect of the real estate industry.

Additionally, considering that the construction and financial sectors in different countries are at different stages of their development life cycle, the development of the real estate industry should be taken into account when it comes to comparisons of different states. Therefore, based on the proportion of the real estate industry output value in each country, this paper divides the sample into three groups—a low level of real estate development, medium level of real estate development, and high level of real estate development—and conducts heterogeneity analysis by regression of the low and high real estate development group in Tables 16 and 17.

In Table 16, the regression results of the samples with a moderate real estate development level are closest to the main test conclusions, while in Table 17, the regression results of the samples with a low real estate development level are closest to the main test conclusions. Most main influencing factors influence the pull and push effects differently due to various real estate development levels.

Therefore, countries with high real estate development have mature markets, and GDP growth no longer significantly stimulates the extraordinary expansion of the real estate industry, so it does not play an obvious role in driving other industries. For countries with a high degree of real estate development, an increase in the share of real estate output may attract and occupy more resources, squeezing other sectors and reducing the positive pull on other sectors. Even if the proportion of the real estate industry output value increases and the private economic activity rises, the marginal effect of promoting the development of other industries will not be significantly enhanced because other industries have already adapted to the existing industrial structure. In addition, when the development of the national real estate industry is successful, aging does not cause large-scale housing demand changes or policy adjustments, which is not enough to significantly change the role of real estate in promoting other economic sectors.

	(1)	(2)
Variables	(1) Low Covernment Regulation	(2) High Covernment Regulation
vallables	Pull	Pull
Gdpy	0.540 **	0.259
1.5	(0.242)	(0.236)
Lnpgdp	-0.733 **	-1.374 ***
	(0.363)	(0.424)
Industry	-0.00416 ***	0.00119
-	(0.00122)	(0.000849)
Investratio	19.09 **	16.07 ***
	(8.330)	(4.772)
Oldratio	0.178 **	0.498 ***
	(0.0879)	(0.0881)
Private	0.0108	-0.00223
	(0.0150)	(0.00627)
Stock	-0.0135 *	-0.00869
	(0.00803)	(0.0289)
Urbanization	-0.0164	-0.137 **
	(0.0396)	(0.0567)
Constant	100.0 ***	105.9 ***
	(9.685)	(11.92)
Time	Yes	Yes
Observations	170	0.259
R-squared	0.244	(0.236)

Table 14. Heterogene ity test results of *PULL* effect in different government regulation levels.

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 15. Heterogeneity test results of *PUSH* effect in different government regulation levels.

Variables	(1) Low Government Regulation Push	(2) High Government Regulation Push
Industry	-0.0177 ***	-0.00280
	(0.00390)	(0.00199)
Private	-0.195 ***	0.000766
	(0.0482)	(0.0147)
Stock	-0.148 ***	0.0904
	(0.0258)	(0.0679)
Urbanization	0.398 ***	0.150
	(0.127)	(0.133)
Oldratio	1.124 ***	0.387 *
	(0.282)	(0.207)
Gdpy	-2.616 ***	1.170 **
	(0.776)	(0.554)
Lnpgdp	3.107 ***	-2.628 ***
	(1.164)	(0.994)
Investratio	46.19 *	8.801
	(26.72)	(11.19)
Constant	28.67	150.6 ***
	(31.07)	(27.96)
Time	Yes	Yes
Observations	170	186
R-squared	0.673	0.157

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

Variables	(1) Low Real Estate Development Pull	(2) High Real Estate Development Pull
Gdpy	0.579 *	0.0480
	(0.313)	(0.238)
Lnpgdp	-2.199 ***	-1.374 ***
	(0.584)	(0.430)
Industry	-0.00131	0.00338 **
-	(0.00148)	(0.00143)
Investratio	16.03	3.680
	(11.60)	(4.171)
Oldratio	0.246 **	0.300 ***
	(0.101)	(0.103)
Private	0.0959 ***	0.00512
	(0.0292)	(0.00999)
Stock	-0.0539 *	0.0108 *
	(0.0312)	(0.00641)
Urbanization	-0.0119	0.155 ***
	(0.0538)	(0.0544)
Constant	127.6 ***	90.57 ***
	(13.22)	(11.40)
Time	Yes	Yes
Observations	188	178
R-squared	0.223	0.212

Table 16. Heterogeneity test results of *PULL* effect in different real estate development levels.

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

	(1)	(3)
Variables	Low Real Estate Development Push	High Real Estate Developmen Push
Industry	-0.0143 ***	-0.00115
-	(0.00286)	(0.00345)
Private	0.204 ***	0.0175
	(0.0565)	(0.0241)
Stock	-0.248 ***	-0.101 ***
	(0.0603)	(0.0155)
Urbanization	1.009 ***	0.510 ***
	(0.104)	(0.131)
Oldratio	0.452 **	0.0350
	(0.196)	(0.249)
Gdpy	0.167	-0.641
1,5	(0.604)	(0.574)
Lnpgdp	-5.542 ***	5.250 ***
101	(1.130)	(1.039)
Investratio	94.00 ***	15.46
	(22.44)	(10.07)
Constant	173.5 ***	-81.59 ***
	(25.57)	(27.52)
Time	Yes	Yes
Observations	188	178
R-squared	0.674	0.377

Table 17. Heterogeneity test results of *PUSH* effect in different real estate development levels.

Standard errors in parentheses, *** p < 0.01, ** p < 0.05.

4. Discussion

In most countries, the pull effect on the economy of the real estate sector ranks behind, which shows that the real estate sector in these countries has limited driving force for the development of the national economy compared with other sectors. However, in some

countries, including Norway, Sweden, Austria, and The Netherlands, the pull effects on the economy of the real estate sector are higher than the average social level, indicating that the more the economy develops, the greater the demand pressure of the real estate sector on the products of other sectors. The real estate sector may become a "bottleneck" industry for the development of other sectors, and unhealthy development of the real estate sector will affect the development of other sectors [22]. Therefore, the coordinated development of the real estate sector plays a crucial role in the healthy development of a national economy.

In terms of the dynamic development of the input and output structure of the real estate sector, in response to the changing trends of the world economy, the real estate sector in all countries has shifted from incremental development to stock development, presenting a service trend to some extent. On the one hand, the importance of the real estate sector has become increasingly prominent as the proportion of the tertiary sector in the social economy has gradually increased, and the role of related sectors has gradually increased. On the other hand, with the trend of a service economy in the world, the relative sectors of the real estate sector. The industrial structure has gradually shown a trend of "servitization", in other words, for the development of the real estate sector, the consumption of material resources has been relatively reduced, and the consumption of information and knowledge has increased.

However, real estate sectors in some countries rely too much on service sectors. Judging from the input structure, the real estate sector in China, Australia, and Singapore is highly related to the financial sector, and its relevance to the construction industry is relatively low. This unreasonable industrial structure may lead to a vicious change in the overall economy, which is not conducive to the long-term development of the real estate sector and the overall economy. Conversely, in Canada and Denmark, the financial sector and the construction sector are closely related to the real estate sector. The linkage between the real estate sector and the construction sector is greater than that of the financial sector. Over-reliance on the financial sector may lead to unregulated development, high market prices, and strong speculation, thus becoming a trigger for a financial crisis. In China and the USA, administrative and support service activities account for a large proportion of the input structure of the real estate sector, indicating the real estate sector has a close relationship with the government. Thus, the development of the real estate sector is strongly intervened by the government and the high housing price is inevitable. However, it is worth noting that the real estate sectors of these two countries have a different degree of correlation with themselves, and the real estate sector in the United States is closely linked with social welfare, which could promote the long-term development of the real estate sector and the overall economy. In contrast, China's real estate sector has a low degree of linkage with itself, indicating a low degree of specialization, industrial efficiency, and social service quality. In addition, when the proportion of the real estate output value in a country is at a high level, the driving force of its promotional effect on other national economic sectors will play a more significant role. However, its promotional effect is also more likely to weaken with a decrease in urbanization speed and slow industrial development, which to some extent explains the economic status change in the real estate industry from prosperity to decline. Hence, China should expand the circulation and service areas of the real estate sector and increase its own linkage in order to avoid an unregulated and unhealthy development of the real estate sector.

Compared with current research, this paper contributes to the dynamic evolution of the role of the real estate sector in economic development as well as the driving force of the push and pull effects in terms of the real estate sector. We find that such driving forces exhibit a significant heterogeneous trend among different government regulation levels and the life cycle of the real estate sector. We hope that our research can provide a more systematic perspective on measuring the role of the real estate market in the economy, uncovering key factors that affect the intrinsic development of the real estate sector, thereby improving the sustainability of the real estate sector in the national economy. However, there are some limitations in our study. A common concern about our research is that our research is mainly based on the input–output table, which cannot catch the relative change in prices between different economic sectors. Due to the dual attributes of investment and consumer goods in real estate products, the driving and stimulating role of the real estate sector may not only be due to its role in transforming its position in economic development but also to changes in its prices themselves. In addition, the push and pull effects proposed in this article focus more on the driving role of real estate commodities as intermediate goods between different sectors but there is relatively less involvement in the consumption of real estate commodities as final commodities. Therefore, in future research, we will shift our research approach and attempt to use a general equilibrium model based on the SAM table to strengthen the theoretical analysis of role transformation in the real estate market, in order to make up for the shortcomings of the current research.

In addition, we consider real estate activities as the real estate sector, this excludes the construction of housing, offices, etc.; this could lead to an underestimation of the real estate sector's effects to some extent. Future research could consider restructuring the national input and output tables, combining the real estate sector and the building part of the construction sector as a new sector and, based on this, could explore the role of the real estate sector.

5. Conclusions and Implications

Using data from a world input–output table database covering 67 countries from 2010 to 2018, we examine the role of the real estate sector in various countries and its determinants by using input–output analysis and a panel model. To be specific, we quantitatively explore the inter-sectoral linkages, economic effects, and key factors of real estate on a multinational level, shedding light on the changing trends in the economy by observing changes in economic effects. The research findings can provide useful information for both policymakers and enterprises in formulating policies that facilitate the development of the economy and relative production activities of real estate.

Results show that in most countries, the input of real estate is from financial services activities, construction, and real estate activities, and the services of the real estate sector mainly flow to wholesale trade and retail trade. Moreover, the requirement of financial activities in China's real estate sector is relatively high among major countries. In addition, the inputs and outputs of the real estate sector show a transition to serviced-oriented sectors. As in most countries, the push effects of the real estate sector are less than the average social impact, and the key industry role that China's real estate plays is decreasing.

The key determinants of the pull effects are a country's economic fundamentals and the expense structure of the economy. The per capita GDP has a substantial negative impact on the pull effects, while economic growth has a positive impact on the pull effects. The speed of urbanization has a positive impact on the role of the real estate sector. Additionally, the more a country's economic growth is driven by capital formation, the less of a role the real estate sector plays in the country's economy. Also, the push effects of the real estate sector are positively affected by a country's aging population and the degree of urbanization.

The results of this study lead to several policy implications. First, the findings imply that the development of real estate should decrease the dependence on financial activities and it is necessary to increase the flow of financial activities to the economy. Second, the government should pay more attention to the quality of urbanization as well as the speed of urbanization.

Author Contributions: Conceptualization, J.H.; Methodology, W.G.; Software, C.G.; Validation, C.G.; Formal analysis, W.G.; Resources, J.H.; Data curation, S.W.; Writing—original draft, J.H.; Writing—review & editing, S.W.; Supervision, X.L. and S.L.; Project administration, S.L.; Funding acquisition, X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 71974180; No. 72334006).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Direct Input Indicator of the Real Estate Sector from 2010 to 2018

No. Country/Region		2010		2014		2018	
NO.	Country/Region	Sector	Value	Sector	Value	Sector	Value
1		D41T43	0.0702	D41T43	0.0651	D41T43	0.05567
1	Switzerland	D64T66	0.0530	D64T66	0.0438	D69T75	0.04021
•	Türkiye	D41T43	0.0168	D41T43	0.0306	D41T43	0.04050
2		D23	0.0108	D23	0.0256	D23	0.03283
•	Terrer.	D64T66	0.0746	D64T66	0.0712	D64T66	0.08404
3	Japan	D41T43	0.0261	D41T43	0.0342	D68	0.03371
		D35	0.0513	D64T66	0.0395	D64T66	0.03917
4	Cambodia	D61	0.0283	D61	0.0289	D61	0.03028
_		D64T66	0.0702	D64T66	0.0835	D64T66	0.06453
5	Thailand	D35	0.0602	D35	0.0579	D35	0.04262
		D64T66	0.0411	D64T66	0.0536	D64T66	0.05853
6	Tunisia	D35	0.0126	D35	0.0090	D35	0.01086
_		D41T43	0.0437	D64T66	0.0489	D64T66	0.02529
7	Greece	D64T66	0.0321	D41T43	0.0265	D41T43	0.02260
	A	D41T43	0.0233	D41T43	0.0242	D41T43	0.02084
8	Argentina	D77T82	0.0133	D77T82	0.0138	D45T47	0.01355
		D16	0.0411	D68	0.0849	D68	0.05101
9	Lithuania	D45T47	0.0227	D77T82	0.0349	D77T82	0.02893
		D41T43	0.0983	D64T66	0.0654	D68	0.07392
10	Slovakia	D68	0.0580	D68	0.0571	D64T66	0.05415
11	Australia	D64T66	0.1407	D64T66	0.1420	D64T66	0.14179
		D41T43	0.0647	D41T43	0.0549	D41T43	0.05588
	Denmark	D41T43	0.0954	D64T66	0.0991	D41T43	0.10031
12		D64T66	0.0933	D41T43	0.0922	D64T66	0.09122
		D64T66	0.0510	D64T66	0.0359	D64T66	0.03844
13	Spain	D41T43	0.0350	D41T43	0.0246	D41T43	0.03707
		D35	0.0343	D41T43	0.1045	D41T43	0.15955
14	Vietnam	D41T43	0.0190	D23	0.0244	D69T75	0.02405
		D64T66	0.0725	D68	0.0700	D68	0.06804
15	New Zealand	D68	0.0626	D64T66	0.0659	D41T43	0.06309
		D64T66	0.0580	D64T66	0.0558	D64T66	0.08456
16	Brunei Darussalam	D41T43	0.0441	D41T43	0.0397	D41T43	0.01507
		D41T43	0.0493	D41T43	0.0654	D41T43	0.06780
17	Malta	D68	0.0459	D69T75	0.0294	D69T75	0.03204
		D35	0.1337	D41T43	0.1055	D35	0.11195
18	Poland	D41T43	0.0950	D35	0.0878	D41T43	0.09533
		D64T66	0.1246	D64T66	0.0507	D19	0.05428
19	Malaysia	D68	0.0670	D41T43	0.0362	D64T66	0.04909
		D64T66	0.2525	D64T66	0.2845	D64T66	0.16119
20	The Netherlands	D41T43	0.0956	D41T43	0.0947	D41T43	0.11371
		D41T43	0.0631	D64T66	0.0726	D64T66	0.06400
21	Belgium	D64T66	0.0573	D41T43	0.0529	D68	0.04031
		D64T66	0.0468	D45T47	0.0510	D45T47	0.04621
22	The Philippines	D45T47	0.0257	D01T02	0.0234	D01T02	0.02126
		D41T43	0.0882	D68	0.0922	D68	0.04967
23	Latvia	D35	0.0499	D35	0.0336	D35	0.02743

24	Colombia	D64T66	0.0452	D77T82	0.0264	D77T82	0.02519
-1	Coloniona	D77182	0.0216	D41T43	0.0262	D41T43	0.02253
25	Saudi Arabia	D64166	0.0307	D41143	0.0496	D41143	0.04495
		D41143	0.0252	D64166	0.0118	D64166	0.00955
26	France	D64166	0.0642	D64166	0.0680	D64166	0.04581
		D68	0.0291	D68	0.0241	D68	0.02424
27	Kazakhstan	D68	0.1183	D41143	0.0287	D41143	0.04484
		D01102	0.0552	D//182	0.0154	D49	0.02913
28	Finland	D41143	0.0614	D41143	0.0599	D41143	0.05633
		D64166	0.0396	D64166	0.0394	D64166	0.04742
29	Peru	D64100	0.0369	D64100	0.0412	D64100	0.03190
		D09175	0.0170	D09175	0.0172	D64T66	0.01443
30	China Non-Processing	D04100	0.0430	D04100	0.0937	D04100	0.00999
		D64T66	0.0328	D64T66	0.0390	D//102	0.02394
31	Chinese Taipei	D04100	0.0730	D04100	0.0590	D41145 D64T66	0.03300
		D41143	0.0400	D41143	0.0675	D04100	0.04000
32	India	D41145 D64T66	0.0020	D41145 D64T66	0.0075	D41145 D64T66	0.00004
		D64T66	0.1208	D64T66	0.1250	D64T66	0.12498
33	Myanmar	D41T43	0.0506	D41T43	0.0356	D41T43	0.03231
		D41T43	0.0600	D41T43	0.0561	D41T43	0.07944
34	Iceland	D64T66	0.0379	D64T66	0.0383	D64T66	0.03170
		D41T43	0.0524	D41T43	0.0552	D41T43	0.08130
35	Estonia	D64T66	0.0506	D64T66	0.0372	D64T66	0.04036
	* 1	D64T66	0.0656	D64T66	0.0408	D64T66	0.06971
36	Luxembourg	D41T43	0.0229	D41T43	0.0280	D41T43	0.04826
		D64T66	0.0530	D64T66	0.0632	D64T66	0.06276
37	The United States	D68	0.0449	D41T43	0.0435	D41T43	0.04258
20		D64T66	0.0917	D64T66	0.0938	D64T66	0.08073
38	Morocco	D68	0.0035	D69T75	0.0047	D69T75	0.00357
20	The Russian	D68	0.0500	D68	0.0414	D68	0.05503
39	Federation	D35	0.0293	D35	0.0276	D35	0.03533
40	Incland	D64T66	0.1764	D64T66	0.0558	D69T75	0.04008
40	Ireland	D41T43	0.0283	D41T43	0.0174	D41T43	0.02818
41	Israel (2)	D64T66	0.0374	D69T75	0.0274	D69T75	0.03283
41	151401 (2)	D69T75	0.0355	D64T66	0.0264	D64T66	0.02481
12	Chile	D41T43	0.1577	D41T43	0.1185	D41T43	0.10594
74	Clinic	D69T75	0.0268	D64T66	0.0414	D64T66	0.03776
43	Germany	D41T43	0.0760	D41T43	0.0709	D41T43	0.07856
10		D64T66	0.0556	D64T66	0.0582	D64T66	0.04656
44	Bulgaria	D41T43	0.0727	D64T66	0.0644	D64T66	0.06928
	0	D64166	0.0714	D41T43	0.0558	D41143	0.06456
45	Slovenia	D41143	0.0331	D41143	0.0280	D64166	0.03400
		D64166	0.0173	D69175	0.0167	D41143	0.02640
46	Costa Rica	D64166	0.0633	D04100	0.0527	D64166	0.05889
		D41143	0.0350	D41143 D64T66	0.0394	D69175	0.02724
47	South Africa	D04100	0.0441	D04100	0.0008	D04100 D45T47	0.00020
		D43147 D64T66	0.0209	D4J147 D64T66	0.0200	D4J147 D64T66	0.02970
48	Hungary	D69T75	0.0047	D04100	0.0035	D04100	0.03587
		D64T66	0.0271	D41145 D64T66	0.0204	D41145	0.05507
49	Norway	D04100	0.0049	D04100	0.0071	D04100	0.05338
		D41145	0.1250	D41145	0.0858	D41145	0.06322
50	The United Kingdom	D41T43	0.0631	D41T43	0.0607	D41T43	0.05257
		D41T43	0.0993	D41T43	0.0745	D41T43	0.03609
51	Cyprus (1)	D64T66	0.0782	D64T66	0.0482	D68	0.01947
		D64T66	0.0911	D64T66	0.1046	D64T66	0.08129
52	Singapore	D69T75	0.0489	D69T75	0.0408	D69T75	0.04449
	*/	D64T66	0.0986	D64T66	0.1253	D64T66	0.10517
53	Korea	D35	0.0211	D41T43	0.0296	D77T82	0.03990
	Itala	D64T66	0.0410	D64T66	0.0339	D64T66	0.02653
54	italy	D69T75	0.0289	D69T75	0.0214	D69T75	0.01574

FF	Deet of the Mould	D64T66	0.0390	D64T66	0.0331	D41T43	0.03980
55	Rest of the world	D41T43	0.0249	D41T43	0.0255	D64T66	0.03669
E6	Creatia	D45T47	0.0270	D45T47	0.0239	D41T43	0.05734
36	Croatia	D35	0.0210	D35	0.0207	D35	0.03070
57	Carada	D64T66	0.0682	D64T66	0.0687	D64T66	0.06609
57	Canada	D41T43	0.0538	D41T43	0.0533	D41T43	0.05844
FO	Hong Kong China	D64T66	0.1227	D64T66	0.1275	D64T66	0.15151
58	Tiong Kong, China	D68	0.0534	D68	0.0572	D68	0.05334
50	Annalation	D41T43	0.0848	D41T43	0.0928	D41T43	0.09489
59	Austria	D36T39	0.0525	D68	0.0451	D68	0.05331
(0)		D41T43	0.1240	D41T43	0.1311	D41T43	0.12666
60	Sweden	D64T66	0.0615	D64T66	0.0696	D64T66	0.05518
(1	Mexico Non-global	D68	0.0320	D68	0.0399	D68	0.02896
61	manufacturing	D69T75	0.0137	D69T75	0.0131	D69T75	0.01084
()	Portugal	D64T66	0.0390	D64T66	0.0289	D64T66	0.03465
62	Fortugai	D41T43	0.0214	D41T43	0.0197	D41T43	0.01705
(2)	Demonstra	D64T66	0.0312	D64T66	0.0453	D64T66	0.04394
63	Komania	D41T43	0.0238	D68	0.0188	D68	0.02303
()	r 1 ·	D41T43	0.0799	D41T43	0.0826	D41T43	0.07438
64	Indonesia	D64T66	0.0249	D64T66	0.0187	D64T66	0.01422
		D41T43	0.0715	D64T66	0.0778	D41T43	0.07066
65	Czechia	D64T66	0.0706	D41T43	0.0736	D64T66	0.06289
	Lao (People's	D41T43	0.1651	D41T43	0.2114	D41T43	0.24825
66	Democratic Republic)	D68	0.0241	D68	0.0221	D68	0.01296
	- · ·	D64T66	0.0513	D64T66	0.0546	D64T66	0.04594
67	Brazil	D41T43	0.0068	D69T75	0.0065	D69T75	0.00664

Appendix B. Direct Output Indicator of the Real Estate Sector from 2010 to 2018

NL	Country/Pagion	2010		2014		2018	
NO.	Country/Region	Sector	Value	Sector	Value	Sector	Value
1		D52	0.0324	D61	0.0215	D61	0.0214
1	Switzerland	D55T56	0.0319	D68	0.0209	D68	0.0188
2	Türlino	D53	0.0557	D53	0.0588	D53	0.0638
2	тигкіуе	D45T47	0.0544	D45T47	0.0533	D45T47	0.0513
2	Iaman	D50	0.1083	D50	0.1095	D52	0.0413
3	Japan	D52	0.0381	D52	0.0416	D68	0.0337
		D07T08	0.0278	D68	0.0218	D68	0.0255
4	Cambodia	D16	0.0240	D62T63	0.0157	D62T63	0.0188
5		D64T66	0.0077	D64T66	0.0072	D58T60	0.0040
	Thailand	D62T63	0.0053	D58T60	0.0058	D64T66	0.0036
6	Tunisia	D90T93	0.0196	D90T93	0.0158	D90T93	0.0195
		D94T96	0.0157	D94T96	0.0108	D94T96	0.0110
_	Greece	D61	0.2276	D61	0.2426	D61	0.2000
7		D69T75	0.1440	D45T47	0.1408	D45T47	0.1139
	Argentina	D52	0.0335	D52	0.0258	D52	0.0229
8		D45T47	0.0210	D45T47	0.0164	D45T47	0.0144
<u>_</u>		D29	0.1159	D68	0.0849	D62T63	0.0676
9	Lithuania	D03	0.1074	D90T93	0.0658	D90T93	0.0661
10		D49	0.1338	D55T56	0.0850	D68	0.0739
10	Slovakia	D55T56	0.0584	D68	0.0571	D90T93	0.0666
		D77T82	0.0427	D77T82	0.0492	D77T82	0.0541
11	Australia	D45T47	0.0407	D45T47	0.0451	D45T47	0.0453
10	5	D55T56	0.0850	D55T56	0.0881	D55T56	0.0899
12	Denmark	D45T47	0.0743	D45T47	0.0735	D45T47	0.0663
10	Constant and the	D45T47	0.0474	D45T47	0.0462	D45T47	0.0436
13	Spain	D50	0.0401	D50	0.0462	D50	0.0390
	T <i>T</i>	D53	0.0368	D45T47	0.0228	D45T47	0.0242
14	Vietnam	D68	0.0179	D68	0.0214	D68	0.0231

15	New Zealand	D52	0.0781	D52	0.0777	D52	0.0789
		D68	0.0626	D68	0.0700	D68	0.0680
16	Brunei Darussalam	D90195	0.0430	D90195	0.0376	D90195	0.0243
		D94190	0.0171	D94190	0.0170	D94190	0.0105
17	Malta	D45T47	0.0439	D45T47	0.0168	D51 D68	0.0290
		D90T93	0.0257	D40147	0.0103	D00 D90T93	0.0285
18	Poland	D90195	0.0278	D90193	0.0272	D90195	0.0336
		D68	0.0210	D60100	0.0217	D60100	0.0320
19	Malaysia	D00	0.0070	D00	0.0207	D00 D77T82	0.0404
		D52	0.0585	D52	0.0137	D55T56	0.0133
20	The Netherlands	D55T56	0.0535	D55T56	0.0342	D50150	0.0446
		D52	0.0391	D45T47	0.0433	D68	0.0440
21	Belgium	D45T47	0.0371	D52	0.0322	D55T56	0.0403
		D51	0.0444	D21	0.0322	D21	0.0393
22	The Philippines	D62T63	0.0338	D07T08	0.0105	D07T08	0.0095
		D45T47	0.0744	D55T56	0.1153	D55T56	0.1316
23	Latvia	D90T93	0.0671	D68	0.0922	D45T47	0.0826
		D45T47	0.0639	D52	0.0659	D52	0.0576
24	Colombia	D61	0.0549	D45T47	0.0567	D45T47	0.0531
		D45T47	0.0231	D45T47	0.0308	D45T47	0.0307
25	Saudi Arabia	D31T33	0.0172	D31T33	0.0280	D31T33	0.0237
		D45T47	0.0458	D45T47	0.0430	D45T47	0.0418
26	France	D77T82	0.0337	D77T82	0.0318	D77T82	0.0281
		D68	0.1183	D94T96	0.2798	D94T96	0.1683
27	Kazakhstan	D10T12	0.0348	D62T63	0.0511	D64T66	0.1003
		D55T56	0.0719	D55T56	0.0714	D55T56	0.0654
28	Finland	D51	0.0631	D45T47	0.0608	D45T47	0.0606
•	7	D94T96	0.1018	D94T96	0.0886	D94T96	0.0850
29	Peru	D85	0.0601	D85	0.0494	D61	0.0492
•	China Nan Buassaina	D62T63	0.0341	D45T47	0.0571	D94T96	0.0624
30	China Non-Processing	D61	0.0340	D94T96	0.0405	D45T47	0.0464
01	Chinasa Tainai	D90T93	0.0357	D90T93	0.0399	D55T56	0.0469
31	Chinese Taipei	D45T47	0.0335	D45T47	0.0333	D90T93	0.0415
20	T. 1.	D41T43	0.0185	D41T43	0.0223	D49	0.0191
32	India	D61	0.0128	D49	0.0122	D41T43	0.0185
22	Myanmar	D68	0.0364	D68	0.0302	D68	0.0273
33	wiyaninai	D62T63	0.0255	D62T63	0.0226	D62T63	0.0254
34	Icoland	D94T96	0.0274	D94T96	0.0261	D94T96	0.0258
54	icelatic	D68	0.0200	D68	0.0220	D68	0.0222
35	Fetonia	D55T56	0.0844	D55T56	0.0936	D55T56	0.1230
55	LStorna	D45T47	0.0721	D45T47	0.0764	D45T47	0.0882
36	Luxembourg	D41T43	0.0594	D77T82	0.0453	D94T96	0.0354
00	0	D77182	0.0463	D94196	0.0349	D77182	0.0341
37	The United States	D94196	0.0847	D94196	0.0923	D94196	0.0826
0.		D90193	0.0799	D52	0.0776	D55156	0.0817
38	Morocco	D52	0.0380	D52	0.0292	D52	0.0256
		D51 D04T06	0.0291	D58160	0.0239	D51	0.0237
39	The Russian	D94196	0.0637	D55156	0.0589	D55156	0.0755
	Federation	D55156	0.0606	D49 DEETEC	0.0551	D45147	0.0573
40	Ireland	D55156	0.0675	D55156	0.0659	D55156	0.0729
		D45147	0.0657	D45147	0.0404	D90193	0.0708
41	Israel (2)	D5Z	0.0669	D54	0.0804	D33136	0.0728
		DSS130	0.0000	D00100	0.0739	D02	0.0709
42	Chile	D00100	0.0554	D90193	0.0542	D01	0.0708
		D4314/ D61	0.0340	D43147 D61	0.0362	D43147 D61	0.0040
43	Germany	D45T47	0.0779	D55T56	0.0703	D01 D/1T/2	0.0712
		D4014/	0.0700	D67T62	0.0013	D41143 D69T62	0.0509
44	Bulgaria	D61	0.0733	D52103	0.0070	D02105	0.0575
		D45T47	0.0215	D36T39	0.0324	D45T47	0.0575
45	Slovenia	D52	0.0157	D45T47	0.0209	D55T56	0.0075
			0.0107	- 10 1 1/	0.0200	200100	0.0070

16	Costa Pica	D35	0.0751	D35	0.0648	D35	0.0276
40	COSta Rica	D58T60	0.0521	D58T60	0.0511	D45T47	0.0155
47	South Africa	D55T56	0.0452	D45T47	0.0393	D45T47	0.0423
47	South Africa	D45T47	0.0407	D69T75	0.0327	D69T75	0.0337
19	Hungary	D90T93	0.0531	D90T93	0.0563	D94T96	0.0661
40		D94T96	0.0492	D94T96	0.0553	D90T93	0.0525
40	Norway	D55T56	0.0754	D55T56	0.0759	D55T56	0.0369
49	Worway	D45T47	0.0632	D45T47	0.0607	D45T47	0.0367
50	The United Kingdom	D45T47	0.0300	D45T47	0.0340	D45T47	0.0318
50	The Officer Kingdom	D52	0.0183	D52	0.0252	D55T56	0.0229
51	$C_{VDTUS}(1)$	D45T47	0.0599	D45T47	0.0693	D45T47	0.0436
51	Cyprus (1)	D58T60	0.0275	D51	0.0359	D53	0.0299
52	Singapore	D94T96	0.0787	D55T56	0.0916	D55T56	0.0852
52	Singapore	D55T56	0.0541	D94T96	0.0735	D94T96	0.0661
52	Karaa	D55T56	0.0479	D55T56	0.0473	D45T47	0.0311
33	Korea	D69T75	0.0334	D69T75	0.0350	D55T56	0.0273
54	Italy	D45T47	0.0469	D45T47	0.0476	D55T56	0.0464
54	Italy	D55T56	0.0425	D55T56	0.0474	D45T47	0.0462
FF	Rest of the World	D94T96	0.0293	D94T96	0.0362	D94T96	0.0374
55		D55T56	0.0257	D62T63	0.0243	D55T56	0.0285
56	Creatia	D45T47	0.0524	D45T47	0.0487	D53	0.0202
50	Croatia	D69T75	0.0264	D53	0.0292	D45T47	0.0198
57	Canada	D94T96	0.0575	D94T96	0.0525	D94T96	0.0513
37		D45T47	0.0375	D45T47	0.0353	D45T47	0.0364
59	Hong Kong China	D52	0.1338	D94T96	0.1292	D52	0.1329
38	Tiong Rong, China	D94T96	0.1205	D52	0.1175	D94T96	0.1223
50	Austria	D84	0.0475	D50	0.0520	D68	0.0533
39	Austria	D68	0.0444	D84	0.0458	D84	0.0454
60	Swodon	D55T56	0.0874	D90T93	0.0883	D84	0.0543
00	Sweden	D90T93	0.0846	D85	0.0805	D55T56	0.0521
61	Mexico Non-global	D52	0.0915	D62T63	0.0871	D58T60	0.0733
01	manufacturing	D58T60	0.0644	D58T60	0.0843	D62T63	0.0722
62	Portugal	D45T47	0.0295	D45T47	0.0242	D45T47	0.0161
02	Torragai	D53	0.0265	D58T60	0.0224	D90T93	0.0121
62	Pomonia	D45T47	0.0591	D45T47	0.0644	D45T47	0.0561
03	Komama	D68	0.0173	D68	0.0188	D68	0.0230
61	Indonasia	D45T47	0.0223	D94T96	0.0410	D94T96	0.0366
04	muonesia	D62T63	0.0146	D45T47	0.0176	D45T47	0.0177
65	Czashia	D90T93	0.0694	D55T56	0.0754	D55T56	0.0650
05	Czechia	D68	0.0670	D68	0.0613	D68	0.0601
66	Lao (People's	D85	0.0274	D85	0.0390	D85	0.0413
00	Democratic Republic)	D68	0.0241	D45T47	0.0357	D45T47	0.0366
67	Brozil	D90T93	0.0948	D90T93	0.1149	D90T93	0.1267
07	DIAZII	D45T47	0.0376	D45T47	0.0417	D45T47	0.0356

Appendix C. Pull and Push of the Real Estate Sector from 2000 to 2018

2010		2014		2018	
Pull Effects	Push Effects	Pull Effects	Push Effects	Pull Effects	Push Effects
0.7240	0.6623	0.6816	0.6631	0.6547	0.6635
0.9719	0.8184	1.0419	0.8054	1.0618	0.7859
1.1660	0.9042	1.1861	0.9056	1.2188	0.9178
1.0132	0.8483	0.9695	0.8234	1.0276	0.8090
0.9174	0.7672	0.9977	0.7876	1.0568	0.8353
0.9240	0.6356	0.9206	0.6250	0.9301	0.6222
0.5022	0.7342	0.5220	0.7348	0.4592	0.7285
0.9805	0.8403	0.9525	0.8397	0.9557	0.8463
0.8162	0.8396	0.6737	0.8081	0.6882	0.7892
1.0710	0.8509	1.0720	0.7890	1.1512	0.7836
	2010 Pull Effects 0.7240 0.9719 1.1660 1.0132 0.9174 0.9240 0.5022 0.9805 0.8162 1.0710	2010Pull EffectsPush Effects0.72400.66230.97190.81841.16600.90421.01320.84830.91740.76720.92400.63560.50220.73420.98050.84030.81620.83961.07100.8509	20102014Pull EffectsPush EffectsPull Effects0.72400.66230.68160.97190.81841.04191.16600.90421.18611.01320.84830.96950.91740.76720.99770.92400.63560.92060.50220.73420.52200.98050.84030.95250.81620.83960.67371.07100.85091.0720	20102014Pull EffectsPush EffectsPull EffectsPush Effects0.72400.66230.68160.66310.97190.81841.04190.80541.16600.90421.18610.90561.01320.84830.96950.82340.91740.76720.99770.78760.92400.63560.92060.62500.50220.73420.52200.73480.98050.84030.95250.83970.81620.83960.67370.80811.07100.85091.07200.7890	201020142018Pull EffectsPush EffectsPull EffectsPush EffectsPull Effects0.72400.66230.68160.66310.65470.97190.81841.04190.80541.06181.16600.90421.18610.90561.21881.01320.84830.96950.82341.02760.91740.76720.99770.78761.05680.92400.63560.92060.62500.93010.50220.73420.52200.73480.45920.98050.84030.95250.83970.95570.81620.83960.67370.80810.68821.07100.85091.07200.78901.1512

China	-	0.6244	-	0.5958	-	0.5294
Colombia	1.1883	0.6829	1.1704	0.6653	1.1335	0.6571
Costa Rica	1.1362	0.8303	1.1558	0.8190	0.8336	0.8188
Cyprus (1)	0.8884	0.8841	0.9352	0.8466	0.9109	0.7485
Czechia	1.2871	0.9612	1.3162	0.9824	1.2969	0.9703
Germany	1.4208	0.8224	1.3567	0.8082	1.3347	0.8174
Denmark	1.3937	0.9189	1.3542	0.9289	1.3293	0.9474
Spain	0.9620	0.7005	0.9709	0.6764	1.0015	0.7139
Estonia	1.2085	0.8741	1.2922	0.8780	1.4380	0.8668
Finland	1.1814	0.8112	1.1845	0.8047	1.1778	0.8104
France	1.0367	0.7396	1.0105	0.7442	0.9911	0.7335
The United Kingdom	0.7914	0.8596	0.8386	0.8061	0.8452	0.7817
Greece	1.5648	0.7383	1.6828	0.7316	1.4925	0.7302
Hong Kong, China	0.4505	0.8196	0.5332	0.8367	0.6030	0.8488
Croatia	0.9750	0.7904	0.9846	0.8036	0.8205	0.9023
Hungary	1.2386	0.9210	1.1698	0.8934	1.2175	0.9288
Indonesia	0.6116	0.7217	0.6950	0.7446	0.6991	0.7179
India	0.5393	0.6819	0.5473	0.6816	0.5903	0.7047
Ireland	1.1166	0.9513	1.0432	0.8187	1.1893	0.8353
Iceland	0.8158	0.8300	0.8072	0.8408	0.8159	0.8775
Israel (2)	1.1326	0.7659	1.1742	0.7536	1.1770	0.7564
Italy	1.0799	0.6643	1.0952	0.6575	1.0822	0.6502
Japan	0.8948	0.6959	0.9192	0.7068	0.8988	0.7002
Kazakhstan	0.8641	0.9678	1.0446	0.7674	1.2353	0.8185
Cambodia	0.7380	0.9282	0.7609	0.9284	0.7544	0.9202
Korea	0.9414	0.6759	0.9523	0.7141	0.8518	0.7500
Lao (People's	0.4522	0.0000	0.6445	0.000	0 (454	0.9770
Democratic Republic)	0.4555	0.8828	0.6445	0.8929	0.6454	0.8779
Lithuania	1.2074	0.8591	1.2568	0.9355	1.2912	0.9194
Luxembourg	1.1059	0.7891	0.9784	0.8082	1.1262	0.8615
Latvia	1.1303	0.8621	1.3012	0.7862	1.3313	0.7571
Morocco	0.9187	0.7590	0.9084	0.7834	0.9160	0.7853
Malta	0.9195	0.8613	0.8241	0.8655	0.8777	0.8828
Myanmar	0.3555	0.8344	0.3331	0.8319	0.3265	0.8345
Malaysia	0.6711	0.8398	0.6997	0.7757	0.6401	0.7854
Mexico	-	0.7027	-	0.7017	-	0.7185
The Netherlands	1.1446	1.0431	1.1010	1.0619	1.0343	1.0153
Norway	1.2357	0.8861	1.2243	0.8767	1.0253	0.8769
New Zealand	1.2664	0.8181	1.2788	0.8123	1.2875	0.8151
Peru	1.2119	0.7283	1.1519	0.7298	1.1563	0.7262
The Philippines	0.5193	0.7800	0.4080	0.7704	0.4187	0.7828
Poland	0.7483	0.9749	0.7945	0.9453	0.8514	0.9907
Portugal	0.8601	0.6919	0.8351	0.7042	0.7460	0.7131
Romania	0.6951	0.6807	0.7452	0.6975	0.7792	0.7538
The Russian	1.0469	0 7470	1.0((7	0 7452	1 1 (0 2	07(20
Federation	1.0468	0.7470	1.0667	0.7455	1.1693	0.7629
Saudi Arabia	0.8141	0.7544	0.9364	0.7509	0.8299	0.7056
Singapore	1.0927	0.8953	1.0778	0.9012	1.0872	0.8989
Slovakia	1.3515	0.8647	1.2512	0.8913	1.1554	0.8685
Slovenia	0.8104	0.7506	0.8238	0.7644	0.6908	0.7736
Sweden	1.4561	0.9852	1.4617	0.9930	1.2941	0.9834
Thailand	0.5703	0.7515	0.5918	0.7529	0.5896	0.7186
Tunisia	0.8372	0.7640	0.8129	0.7739	0.8264	0.7791
Türkiye	0.9826	0.6149	0.9798	0.7426	1.0025	0.8446
Chinese Taipei	0.7439	0.7131	0.7925	0.7193	0.8504	0.7451
The United States	1.2636	0.8262	1.2679	0.8238	1.3262	0.8588
Vietnam	0.6766	0.7142	0.6655	0.7675	0.6155	0.8200
South Africa	1.1385	0.7319	1.0368	0.7878	1.0719	0.7947
Rest of the World	0.9078	0.7627	0.8858	0.7680	0.8917	0.7705

N .		a <i>i</i>	Change in	Input Struc	ture		Change in	Change in Output Structure			
No.	Classification	tion Sector	1	\downarrow	-	Total	↑	\downarrow	-	Total	
1		D01T02	23	23	25	-	37	21	13	↑	
2	А	D03	21	25	25	\downarrow	17	11	43	-	
3		D05T06	25	25	21	1	25	22	24	\uparrow	
4	В	D07T08	25	34	12	Ļ	30	18	23	1	
5		D09	26	31	14	Ļ	10	34	27	\downarrow	
6		D10T12	29	30	12	\downarrow	35	27	9	\uparrow	
7		D13T15	25	31	15	Ļ	27	26	18	1	
8		D16	31	27	13	1	27	26	18	\uparrow	
9		D17T18	34	28	9	1	22	39	10	\downarrow	
10		D19	24	25	22	Ļ	24	31	16	\downarrow	
11		D20	21	37	13	Ļ	24	36	11	\downarrow	
12		D21	28	25	18	1	36	19	16	1	
13		D22	28	32	11	Ļ	31	28	12	1	
14	С	D23	29	26	16	1	23	29	19	Ļ	
15		D24	34	17	20	\uparrow	27	31	13	Ļ	
16		D25	36	26	9	1	25	28	18	Ļ	
17		D26	35	29	7	↑	30	34	7	Ļ	
18		D27	29	29	13	\uparrow	23	36	12	Ļ	
19		D28	30	28	13	\uparrow	25	25	21	\uparrow	
20		D29	27	30	14	Ļ	27	30	14	Ļ	
21		D30	29	30	12	Ļ	29	20	22	\uparrow	
22		D31T33	29	33	9	Ļ	33	27	11	\uparrow	
23	D	D35	34	23	14	1	24	18	29	-	
24	Е	D36T39	36	24	11	1	30	24	17	\uparrow	
25	F	D41T43	30	25	16	1	14	13	44	-	
26		D45T47	18	23	30	-	14	17	40	-	
27		D49	24	35	12	\downarrow	27	29	15	\downarrow	
28		D50	23	34	14	Ļ	34	24	13	1	
29		D51	28	30	13	Ļ	37	22	12	1	
30		D52	21	34	16	Ļ	35	23	13	\uparrow	
31		D53	29	32	10	Ļ	28	29	14	\downarrow	
32		D55T56	31	21	19	1	34	22	15	1	
33		D58T60	34	23	14	1	22	37	12	\downarrow	
34		D61	32	26	13	1	15	43	13	\downarrow	
35	0	D62T63	18	39	14	\downarrow	45	14	12	\uparrow	
36	G	D64T66	33	25	13	\uparrow	13	13	45	-	
37		D68	24	31	16	\downarrow	19	24	28	-	
38		D69T75	26	27	18	\downarrow	25	16	30	-	
39		D77T82	19	31	21	Ļ	30	18	23	\uparrow	
40		D84	27	29	15	\downarrow	28	25	18	\uparrow	
41		D85	25	30	16	\downarrow	35	22	14	\uparrow	
42		D86T88	30	22	19	\uparrow	31	25	15	\uparrow	
43		D90T93	23	30	18	\downarrow	30	24	17	\uparrow	
44		D94T96	27	22	22	\uparrow	24	30	17	\downarrow	
45		D97T98	0	0	71	-	0	0	71	-	

Appendix D

The changes in the input and output structure of the real estate sector. Notes: The numbers in columns 4,5,6,8,9,10 represent the number of countries whose input and output structures change in a certain direction. For example, in the first row, number 23 in the fourth column represents there are 14 countries whose consumption of sector D01T02 for the real estate sector is increasing (\uparrow), and 23 countries decreasing (\downarrow), 25 countries have no change (-). Overall, it shows a downward trend.

References

- 1. Miller, N.; Peng, L.; Sklarz, M. House prices and economic growth. J. Real Estate Financ. Econ. 2011, 42, 522–541. [CrossRef]
- 2. Jacob, B.A.; Ludwig, J. The effects of housing assistance on labor supply: Evidence from a voucher lottery. *Am. Econ. Rev.* 2012, 102, 272–304. [CrossRef]
- Strauss, J. Does housing drive state-level job growth? Building permits and consumer expectations forecast a state's economic activity. J. Urban Econ. 2013, 73, 77–93. [CrossRef]

- 4. Glaeser, E.; Gyourko, J. The economic implications of housing supply. J. Econ. Perspect. 2018, 32, 3–30. [CrossRef]
- 5. Apergis, N. The role of housing market in the effectiveness of monetary policy over the COVID-19 era. *Econ. Lett.* **2021**, 200, 109749. [CrossRef] [PubMed]
- 6. Campbell, J.Y.; Cocco, J.F. How do house prices affect consumption? Evidence from micro data. J. Monet. Econ. 2007, 54, 591–621. [CrossRef]
- 7. Glaeser, E.L.; Gottlieb, J.D.; Tobio, K. Housing booms and city centers. Am. Econ. Rev. 2012, 102, 127–133. [CrossRef]
- 8. Iacoviello, M. House prices, borrowing constraints, and monetary policy in the business cycle. *Am. Econ. Rev.* **2005**, *95*, 739–764. [CrossRef]
- 9. Squires, G.; Heurkens, E. Methods and models for international comparative approaches to real estate development. *Land Use Policy* **2016**, *50*, 573–581. [CrossRef]
- 10. Chambers, M.; Garriga, C.; Schlagenhauf, D.E. Housing policy and the progressivity of income taxation. *J. Monet. Econ.* **2009**, 56, 1116–1134. [CrossRef]
- 11. Floetotto, M.; Kirker, M.; Stroebel, J. Government intervention in the housing market: Who wins, who loses? J. Monet. Econ. 2016, 80, 106–123. [CrossRef]
- 12. Hoen, A.R. Identifying linkages with a cluster-based methodology. Econ. Syst. Res. 2002, 14, 131–146. [CrossRef]
- 13. Leontief, W.W. Quantitative input and output relations in the economic systems of the United States. *Rev. Econ. Stat.* **1936**, *18*, 105–125. [CrossRef]
- 14. Cai, J.; Leung, P. Linkage measures: A revisit and a suggested alternative. Econ. Syst. Res. 2004, 16, 63–83. [CrossRef]
- 15. San Cristobal, J.R.; Biezma, M.V. The mining industry in the European Union: Analysis of inter-industry linkages using inputoutput analysis. *Resour. Policy* **2006**, *31*, 1–6. [CrossRef]
- 16. Hauknes, J.; Knell, M. Embodied knowledge and sectoral linkages: An input–output approach to the interaction of high-and low-tech industries. *Res. Policy* **2009**, *38*, 459–469. [CrossRef]
- 17. Yuan, R.; Behrens, P.; Rodrigues, J.F. The evolution of inter-sectoral linkages in China's energy-related CO₂ emissions from 1997 to 2012. *Energy Econ.* **2018**, *69*, 404–417. [CrossRef]
- Pagliari, J.; Webb, J.; Canter, T.; Frederich, S.S.R. A fundamental comparison of international real estate returns. *J. Real Estate Res.* 1997, 13, 317–347. [CrossRef]
- 19. Song, Y.; Liu, C. An input–output approach for measuring real estate sector linkages. J. Prop. Res. 2007, 24, 71–91. [CrossRef]
- 20. Bielsa, J.; Duarte, R. Size and linkages of the Spanish construction industry: Key sector or deformation of the economy? *Camb. J. Econ.* **2010**, *35*, 317–334. [CrossRef]
- 21. Ren, H.; Folmer, H.; Van der Vlist, A.J. What role does the real estate–construction sector play in China's regional economy? *Ann. Reg. Sci.* **2014**, *52*, 839–857. [CrossRef]
- 22. Chan, S.; Han, G.; Zhang, W. How strong are the linkages between real estate and other sectors in China? *Res. Int. Bus. Financ.* **2016**, *36*, 52–72. [CrossRef]
- 23. Liu, C.; Zhu, R. Measuring output structures of multinational construction industries using the World Input—Output Database. *Int. J. Constr. Manag.* 2017, 17, 1–12. [CrossRef]
- 24. Weisz, H.; Duchin, F. Physical and monetary input–output analysis: What makes the difference? *Ecol. Econ.* **2006**, *57*, 534–541. [CrossRef]
- 25. Rasmussen, P.N. Studies in Inter-Sectoral Relations; Einar Harck: Copenhagen, Denmark, 1956.
- 26. Li, X.T.; Liu, F.; Wu, D.; Dong, J.C.; Gao, P. Exploring the role of the real estate sector in the Chinese economy: 1997–2007. *Syst. Eng. Theory Pract.* 2014, 14, 279–297.
- 27. Liu, Q.Y. The research on the method of structural analyses regarding the input output coefficients. Stat. Res. 2002, 2, 40-42.
- OECD. STAN Input Output Database, OECD Inter-Country Input-Output (ICIO) Tables. Available online: https://www.oecd. org/sti/ind/inter-country-input-output-tables.htm (accessed on 28 April 2024).
- 29. Hu, B.; McAleer, M. Input–output structure and growth in China. Math. Comput. Simul. 2004, 64, 193–202. [CrossRef]
- 30. Lieser, K.; Groh, A.P. The determinants of international commercial real estate investment. *J. Real Estate Financ. Econ.* **2014**, 48, 611–659. [CrossRef]
- 31. Eichholtz, P.; Lindenthal, T. Demographics, human capital, and the demand for housing. J. Hous. Econ. 2014, 26, 19–32. [CrossRef]
- 32. Wang, Z.; Zhang, Q. Fundamental factors in the housing markets of China. J. Hous. Econ. 2014, 25, 53-61. [CrossRef]
- 33. Füss, R.; Zietz, J. The economic drivers of differences in house price inflation rates across MSAs. *J. Hous. Econ.* **2016**, *31*, 35–53. [CrossRef]
- 34. Steegmans, J.; Hassink, W. Financial position and house price determination: An empirical study of income and wealth effects. *J. Hous. Econ.* **2017**, *36*, 8–24. [CrossRef]
- 35. Cao, Y.; Chen, J.; Zhang, Q. Housing investment in urban China. J. Comp. Econ. 2018, 46, 212–247. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.