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Abstract: Marine sediments are a sink for antibiotic resistance genes (ARGs) and antibiotic-resistant
microbes (ARMs). Wastewater discharge into the aquatic environment is the dominant pathway
for pharmaceuticals reaching aquatic organisms. Hence, the characterization of ARGs is a priority
research area. This baseline study reports the presence of ARGs in 12 coastal sediment samples
covering the urban coastline of Kuwait through whole-genome metagenomic sequencing. The
presence of 402 antibiotic resistance genes (ARGs) were recorded in these samples; the most prevalent
were patA, adeF, ErmE, ErmF, TaeA, tetX, mphD, bcrC, srmB, mtrD, baeS, Erm30, vanTE, VIM-7, AcrF,
ANT4-1a, tet33, adeB, efmA, and rpsL, which showed resistance against 34 drug classes. Maximum
resistance was detected against the beta-lactams (cephalosporins and penam), and 46% of genes
originated from the phylum Proteobacteria. Low abundances of ESKAPEE pathogens (Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumanii, Pseudomonas aeruginosa,
Enterobacter sps., and Escherichia coli) were also recorded. Approximately 42% of ARGs exhibited
multiple drug resistance. All the ARGs exhibited spatial variations. The major mode of action was
antibiotic efflux, followed by antibiotic inactivation, antibiotic target alteration, antibiotic target
protection, and antibiotic target replacement. Our findings supported the occurrence of ARGs in
coastal marine sediments and the possibility of their dissemination to surrounding ecosystems.

Keywords: shotgun metagenomics; marine sediments; antibiotic resistance genes; antimicrobial
resistance microbes

1. Introduction

About 40% of the world’s population lives within 100 km of the coast. The highly
developed coastline of Kuwait is known to have drained land-based pollutants into the
coastal environment [1–16]. Metals, organic contaminants, naturally occurring radioactive
material (NORMs), pharmaceutical compounds, microplastics, and others are discharged,
leaked, and leached from ports, shipping, oil refineries, desalination plants, wastewater
treatment plants, and other industries into the aquatic environment. In addition, contami-
nants are also transported over a long range with dust, which is a chronic problem in arid
regions [17–19]. The coastal environment is one of the most productive ecosystems and
harbors a rich microbial community. Recent investigations have suggested that there are
1.7 × 1028–5.4 × 1029 microbial cells present in the top 10–50 cm of the sediment pro-
file [20,21]. The presence of pharmaceutical compounds, along with antibiotics in Kuwait’s
coastal waters [22] and wastewater effluent [23], has raised concerns regarding antibiotic
resistance in microbes. Some recent reports have reaffirmed that sediments are reservoirs of
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antibiotic resistance genes (ARGs) that can be disseminated in marine environments [24–27].
The aquatic sediments are known to represent an important environmental matrix within
which genetic transfer of antimicrobial resistance (AMR) can take place [27,28]. Antibiotic
resistance in microbes is reported in estuaries, sediments in coastal areas, and deep marine
sediments [29–32].

Twelve bacterial families have been listed by the World Health Organization (WHO)
as a threat to human health [33]. Quantitative microbial risk assessment (QMRA) is
recommended as an efficient tool for evaluating and quantifying human health risks
associated with ARGs [24]. This study attempted to establish the baseline of the ARGs in
the microbial community within Kuwait’s marine sediments. The DNA samples extracted
from the marine sediments were subjected to shotgun metagenomic profiling, taxonomic
distribution, and calculation of the abundance of antibiotic resistance genes (ARGs).

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

A total of 12 surface sediment samples were collected from the Kuwait Marine area
(Figure 1) during September–October 2021 (Table 1). These sampling locations were in
proximity to stormwater outfalls, which often fugitively discharge wastewater. A grab
sample was collected in sterile 50 mL centrifuge tubes covering a 10–15 cm deep sediment
profile. Two sites (S4 and S12) that were relatively pristine and free from waste discharges
were also sampled. The samples were packed and transported on ice to KISR laboratories.
Sample aliquots were stored at −20 ◦C until DNA extraction. The total DNA from each
0.25 g sample was extracted using a PowerSoil DNA Extraction Kit (QIAGEN, Germantown,
MD, USA) [34]. Multiple aliquots from the same site were used for DNA extraction and
pooled to reach the desired concentration. The quantity and quality of isolated DNA
were evaluated using a Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA, USA)
and agarose gel electrophoresis (Bio-Rad, Darmstadt, Germany), respectively. The DNA
recoveries from the pristine sites were lower compared to those from other sites. We
further estimated the bacterial cell counts at each location through quantitative polymerase
chain reaction (qPCR). Universal 16S rRNA primers were employed for this purpose [35].
The PCR reaction was assembled in a volume of 20 µL as per the method described in
Habibi et al. [36]. The Ct values were used for the estimation of cells per gram of sediment
samples [37]. The DNA concentrations and cell counts are presented in Table 1. Relative to
the lowest DNA yield at S4, the cell counts were also minimum. The highest cell counts
were obtained at S8, followed by S9 and S10.

2.2. Metagenomic Sequencing

A total of 12 metagenomes were sequenced. The NEBNext® UltraTM DNA library
preparation kit (Illumina, San Diego, CA, USA) was used to construct DNA libraries. Briefly,
1000 ng of qualified DNA was sonicated to produce 350 bp fragments. These short DNA
segments were then end-repaired, A-tailed, and subjected to index PCR [38]. Amplified
libraries were purified through Agencourt AMPure XP magnetic beads (Beckman Coulter
Genomics, Brea, CA, USA) and quantified through qPCR [39]. The average library size
was determined using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA) [40]. Sequencing was performed on the Illumina NovaSeq 6000 platform using
2 × 150 bp paired-end read chemistry. The base percentage composition and quality dis-
tribution of the base for each library is provided in Supplementary S1. The raw reads
with low-quality bases (Q-value ≤ 38 and N nucleotides) were trimmed and aligned using
Bowtie2 v2.2.4 [41]. Clean reads were assembled using MEGAHIT v1.0.4 into scaftigs.
Scaftigs (≥500 bp) were used for open reading frame (ORF) prediction using MetaGene-
Mark v2.10 [42]. The CD-HIT software v4.5.8, (Weizhongli Lab, J Craig Venter Institute, La
Jolla, CA, USA) was used to obtain the gene catalog from the filtered ORFs (>100 nt) [43].
Gene catalogs (Unigenes) of the predicted ORFs were obtained by mapping using Bowtie2
v2.2.4 [44].
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2.3. Analysis of Antibiotic Resistance Genes

The Resistance Gene Identifier (RGI) software was used to align the Unigenes to
the Comprehensive Antibiotic Research Database (CARD). The BLASTP values were set
as per the standard parameters (e value ≤ 1× 10−5) to filter antibiotic resistance genes
(ARGs) [45]. Metastats were used for differential abundance testing at different taxonomic
levels by applying the Benjamini and Hochberg false-discovery rate (FDR-q < 0.05) [46].
DIAMOND (v0.9.9) was used to align the Unigenes to MicroNR (v2018-01-02; blastp;
e value ≤ 1× 10−5) to filter bacterial taxa associated with the ARGs [47]. The Circos plot
was drawn using RCircos [48]. The hierarchical clustering was performed on Euclidean
distances using the Ward algorithm [17]. The double-doughnut charts were created in
Microsoft Excel® for Mac v16.62, and the Venn diagrams were created in Lucid charts.



Sustainability 2022, 14, 8029 4 of 15

Table 1. Details of sampling sites, DNA recoveries, and bacterial cell counts.

Site/Sample Code Site Description GPS Coordinates Date of Sample
Collection

DNA Yield
(µg g−1

Mean ± SD

Cells g−1

Sediment
Mean

S1 KISR Outfall 29.334824 N,
47.902379 E 16.09.2021 3.63 ± 0.80 4.07 × 104

S2 Sharq Fisherman’s village 29.390016 N,
47.987360 E 16.09.2021 2.22 ± 0.98 6.28 × 104

S3 Kuwait towers 29.391912 N,
47.998332 E 16.09.2021 0.72 ± 0.25 3.49 × 107

S4 Marina Beach 29.346564 N,
48.080955 E 16.09.2021 0.03 ± 0.00 1.34 × 103

S5 Fahaheel 29.085652 N,
48.140467 E 16.09.2021 0.53 ± 0.24 3.75 × 106

S6 Mahboula 29.144615 N,
48.131618 E 16.09.2021 0.67 ± 0.28 6.03 × 106

S7 Fintas/Eaigila 29.172970 N,
48.124410 E 16.09.2021 0.96 ± 0.38 1.08 × 107

S8 KPC beach 29.355843 N,
47.942600 E 01.10.2021 2.02 ± 0.38 8.03 × 109

S9 Kuwait free-trade zone 29.356870 N,
47.908080 E 01.10.2021 3.05 ± 0.66 7.64 × 108

S10 Marina Main Outfall 29.347422 N,
48.083147 E 01.10.2021 1.96 ± 0.46 4.88 × 108

S11 Khairan Fisherman’s village 28.643537 N,
48.360438 E 13.10.2021 2.24 ± 0.57 3.52 × 106

S12 Khairan inlet 28.664389 N,
48.389889 E 13.10.2021 0.11 ± 0.06 3.12 × 106

Means are average of five subsamples used for DNA isolation from each site.

3. Results

Twelve libraries were constructed to study the metagenomes of environmental DNA
isolated from Kuwait’s marine sediments. The sequences were annotated against the CARD
database, and the relative abundance of ARGs was analyzed. Common bacterial phyla,
ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter
baumanii, Pseudomonas aeruginosa, Enterobacter sps., and Escherichia coli) pathogens, and ARG
drug classes and their mode of action were classified. Spatial variations in the predominant
ARGs were also studied.

3.1. Metagenomic Sequencing and Assembly

The sequenced reads were between 5938 and 6875 (Phred > Q20 for 97% of bases),
with an average of 6441 reads per sample. Quality filtering and trimming retained 5933 to
6846 reads, with an average of 6432 reads processed per sample. Each sample was de novo
assembled into scaftigs ranging from 63,498,148 to 283,332,790 bp (Table 2). The N50 of the
assembled genomes ranged from 681 to 1096, and the lengths of the smallest and largest
scafftig were 11,228 and 564,351 bp, respectively.
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Table 2. Metagenome assembly statistics of the marine sediment samples of Kuwait.

Sample ID
Total

Length
(bp)

Number
Average
Length

(bp)

N50
Length

(bp)

N90
Length

(bp)

Max
Length

(bp)

S1 273,079,570 292,818 932.59 930 553 65,370
S2 283,332,790 285,490 992.44 997 556 90,537
S3 144,882,306 175,136 827.26 782 535 64,264
S4 170,434,411 206,843 823.98 776 533 118,582
S5 188,487,038 215,400 875.06 835 538 49,103
S6 248,200,658 234,528 1058.30 1096 561 564,351
S7 126,649,852 162,005 781.77 739 529 33,109
S8 162,644,191 194,236 837.35 797 536 30,935
S9 137,440,619 166,332 826.3 784 533 28,815
S10 128,300,180 159,858 802.59 755 530 29,166
S11 63,498,148 87,889 722.48 681 523 32,735
S12 75,920,164 105,385 720.41 683 523 11,228

Total length—length of all scafftigs; Number—total number of scafftigs; average length—average length of all
the scafftigs; N50—shortest sequence length at 50% of the genome; N90—shortest sequence length at 90% of the
genome; Max length—maximum length of the scafftigs.

3.2. Antibiotic Resistance Gene Profiles

In total, 402 ARGs (Table S1) were detected in the sediment samples from Kuwait,
of which the top 20 are shown in Figure 2. The mean relative abundance (RA%) was
highest for patA (3.05 ± 3.6), followed by adeF (mean 2.59 ± 5.5), rpsL (mean 1.80 ± 1.4),
TaeA (mean 1.39 ± 2.3), AcrF (mean 1.35 ± 1.7), ErmF (mean 1.14 ± 3.2), mphD (mean
0.98 ± 2.1), vanTE (mean 0.92 ± 1.7), adeB (mean 0.81 ± 1.2), bcrC (mean 0.80 ± 1.4),
baeS (mean 0.77 ± 1.6), tetX (mean 0.72 ± 2.2), ErmE (mean 0.71 ± 2.5), Erm30 (mean
0.68 ± 1.7), tet33 (mean 0.66 ± 1.1), srmB (mean 0.65 ± 1.8), mtrD (mean 0.65 ± 1.7), VIM-7
(0.51 ± 1.3), ANT4-la (mean 0.40 ± 1.4), and efmA (mean 0.39 ± 1.3). These genes belonged
to 13 AMR gene families, such as ATP-binding cassette, resistance–nodulation–cell division,
Erm23S ribosomal RNA methyltransferase, tetracycline inactivation enzyme, macrolide
phosphotransferase, undecaprenyl pyrophosphate related proteins, ABC-F ATP-binding
cassette, glycopeptide resistance gene cluster-vanT, VIM beta-lactamase, ANT (4′), and the
major facilitator superfamily.

The RA and dominance of these genes varied at each site (Figure 3). The genes mtrD,
patA, ErmF, and mphD were predominant at S1. At S2, adeF and TaeA were more common.
The sampling site of S3 harbored more of patA, TaeA, bcrC, ErmF, and adeF. The abundant
ARGs at S4 were patA, srmB, bcrC, and adeF. Genes such as tetX, TaeA, patA, bcrC, and
adeF were prevalent at S5. The genes mphD, srmB, mtrD, adeF, tetX, adeF, patA, and TaeA
were commonly found at S6. The site S7 exhibited the domination of adeF, TaeA, patA,
and tetX. S8 showed a prevalence of patA, bcrC, and TaeA. S9 was richer in ErmF, TaeA,
patA, and adeF. Site S10 was a reservoir of patA, mphD, adeF, and bcrC. The site S11 more
commonly housed TaeA, adeF, patA, and ErmE genes. The relatively pristine site of S12
also possessed ARGs such as patA, bcrC, and mtrD.

3.3. Major Contributing Phyla

The major phyla identified in the bottom sediments were Proteobacteria, Bacteroidetes,
Actinobacteria, Cyanobacteria, Firmicutes, Acidobacteria, Balneolaeota, Thaumarchaeota,
and others, contributing 53%, 12%, 4%, 4%, 1%, 1%, 1%, 1%, and 23% respectively. Figure 4
presents the relative abundance of ARGs in each phylum.
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Figure 2. Relative abundance (RA%) of predominant ARGs in the marine sediments of Kuwait’s
coast. For each ARG, a box-and-whisker plot is shown. Each box represents the interquartile range
(25–75%), upper and lower whiskers are −10–90%, and dashed blue lines mean RA%. The blue dots
denote the RA at 12 sampling points. The x-axis shows the relative abundance, and the corresponding
ARGs are plotted on the y-axis.

The Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter bau-
manii, Pseudomonas aeruginosa, Enterobacter sps., and Escherichia coli (ESKAPEE) pathogens,
known for their multidrug-resistant nature, were also detected in the collected samples
(Figure 5). Their relative abundances were very low (>0.01%). The highest average abun-
dances were recorded for E. coli, followed by P. aeruginosa > A. baumanii > E. faecium,
> K. pneumonia, S. aureus, and Enterobacter sps.

The ESKAPEE pathogens also comprised the coliforms (Enterobacter sps., K. pneumonia,
and E. coli) and the enterococci (E. faecium). The absolute abundance of these genera in terms
of the OTU counts was examined in the sediments from each location. The OTUs of fecal
coliform (E. coli) were detected all across Kuwait’s coast (mean = 696). Comparatively higher
counts (>1000 OTUs) were recorded at S1 and S9. The lowest counts were documented
from S2 and S12 (~60 OTUs). Among the nonfecal coliforms, the OTUs of Enterobacter
sps. (mean = 96) and K. pneumonia (mean = 94) were also found at all the locations. The
former had the maximum at S12 (n = 841) and the minimum (n = 0) at S2, S6 and S9. K.
pneumonia had the maximum at S12 (n = 362) and the minimum at S10 (n = 16). The average
count of E. faecium (Enterococci) was 107. The corresponding OTU counts of the fecal and
non-fecal coliforms, enterococci, and the ESKAPEE pathogens are presented in Table 3. The
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OTUs of genera critically acclaimed by WHO such as S. aureus (mean = 85), A. baumanii
(mean = 334), and P. aeruginosa (mean = 832) were also found across all the marine sediments
of Kuwait. Intriguingly, detection of the highest counts of P. aeruginosa (n = 5590), K.
pneumonia (n = 362), and Enterobacter sps. (n = 841) at S12 warrants further investigations at
this location and adjoining areas. It would also be interesting to examine the ARGs hosted
within these pathogens.
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Figure 3. Circos plot showing the abundance of the dominant ARGs. The right side shows the
sampling locations, and the left side shows the ARGs. Different colors in the inner circle represent
different samples (RHS) and ARGs (LHS). Bar lengths at the LHS of the outer circle show the relative
percentage of ARGs, and at the RHS show the relative percentage of the sample in which the antibiotic
resistance gene was located.
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3.4. ARGs against Drug Classes

We observed that the genes were active against 34 drug classes. The majority were
resistant to the beta-lactams, cephalosporins (102), and penam (102). In addition, ARGs
resistant to tetracycline (93), aminoglycoside (63), fluoroquinolone (55), carbapenem (48),
lincosamide (40), cephamycin (35), phenicol (34), streptogramin (34), peptide antibiotics
(29), and monobactum (28) were also recorded (Figure 6). A total of 25 or fewer ARGs
were resistant to the drug classes of the glycopeptide, aminocoumarin, diaminopyrimidine,
penem, rifamycin, glycylcycline, acridine dye, triclosan, pleuromutilin, sulfonamide, fos-
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fomycin, nucleoside antibiotic, oxazolidinone, fusidic acid, mupirocin, sulfone, elfamycin,
nitroimidazole, antibacterial free fatty acid antibiotics, and nitrofuran. There were eight
ARGs not assigned to specific drug classes (unknown). Further investigations to identify
these cryptic drug classes are highly recommended. Approximately 42% of the ARGs were
resistant against two or more drug classes.

Table 3. Absolute OTU counts of ESKAPEE pathogens detected across Kuwait’s coast.

ESKAPEE
Pathogens

Absolute Abundance (OTUs)
Average

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Escherichia coli 3996 64 680 204 874 569 73 246 1044 268 278 61 696
Klebsiella

pneumoniae 161 18 18 147 46 88 46 32 183 16 17 362 94

Staphylococcus
aureus 0 22 5 16 1 42 83 807 5 0 37 1 85

Pseudomonas
aeruginosa 265 227 242 1067 439 277 320 234 754 228 343 5590 832

Acinetobacter
baumannii 835 13 398 102 314 437 9 68 0 1558 219 173 344

Enterococcus
faecium 74 34 67 157 89 120 16 134 125 151 207 112 107

Enterobacter sps. 11 0 28 67 26 0 10 26 0 8 15 841 86

Total 5343 377 1438 1759 1789 1534 558 1547 2112 2229 1116 7138 2245

Non-fecal coliform: Escherichia coli; fecal coliforms: Enterobacter sps., K. pneumonia; enterococci: E. faecium.
S. aureus, P. aeruginosa, and A. baumanii are on the WHO list of pathogens with multidrug resistance.
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3.5. Mode of Action of ARGs

Further assessment of the mode of actions corresponding to the predicted ARGs
revealed a majority of them were acting by antibiotic efflux, followed by antibiotic inactiva-
tion, antibiotic target alteration, antibiotic target protection, antibiotic target replacement,
and reduced permeability toward the antibiotics (Figure 7). A few of them also acted
through multiple modes such as antibiotic efflux and reduced permeability to the antibiotic,
antibiotic target alteration and antibiotic inactivation, and antibiotic target alteration and
antibiotic target replacement.
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3.6. Intersite Variability of ARGs

We compared the distribution of ARGs between Group A (S1, S2, S3, S5, S6, S7, S8, S9,
S10, and S11) and Group B (S4 and S12). Group A comprised locations that were near the
outfalls, whereas Group B included the pristine and clean sampling areas. An average of
120 ARGs were observed in Group A, which was almost 1.7 times higher than in Group B
(mean: 70) (Figure 8a). Analysis of unique and common ARGs revealed that approximately
80 genes were common between both groups. Group A possessed 290 unique ARGs, while
32 were included in Group B (Figure 8b). We believe the higher numbers of genes in
Group A were due to higher exposure of these microbes to dissolved antibiotics discharged
through the outfalls than in Group B, which were cleaner sites. The hierarchical clustering
also revealed that the prevalence of ARGs differed spatially (Figure 8c). The hierarchical
clustering also revealed that ARGs were spatially different (Figure 8c). The prevalence
of ARGs varied at each site within the same group. Metastats revealed vanHF to be
significantly different between Group A and Group B (q < 0.05).
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4. Discussion

The detection of pharmaceuticals, including antibiotics, in marine water draws atten-
tion to the risk of ARGs in marine biota living in close proximity to these outfalls. This
study highlighted the abundance of ARGs within different phyla found in the marine
sediments through shotgun metagenomic sequencing.

In the present samples, a total of 402 ARGs were identified, which was significantly
less than the 819 ARGs found in sediments near coral reefs of Xisha Island [49], and the
2354 ARGs from the Gulf of Khambat, India [50]. On the other hand, a study of the Lonar
soda lake in India reported a mere 26 ARGs [51] in the surface sediments. The variation
in ARG abundance can be related to the type and scale of anthropogenic pollution, as it
can be a factor enhancing and disseminating ARGs in the surface sediments [52]. Chemical
pollutants and the different fractions of metals in the sediments are also significant drivers
of ARG accumulation in the sediments [25,53]. Some likely sources of ARGs in Kuwait’s
marine environment could be the chronic metal discharges from the shipping industry,
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desalination plants, and airborne input with dust, in addition to the pharmaceuticals in-
troduced through wastewater discharges. The AMR is also reported in the Yellow River
Delta [54], Yangtze river basin [55], Karst River [56], Xisha Island [49], and Ili River [57].
Proteobacteria (46%), Bacteroidetes (10%), and Actinobacteria (5%) were the main hosts
of ARGs in the Kuwait coastal area. The high abundance of Proteobacteria is likely be-
cause they are the most flexible metabolically and are capable of adapting to fluctuating
environments.

In agreement with previous studies, E. coli derived from Kuwait seawater and biota
sampled across seasons displayed high antibiotic resistance against ampicillin (70% and
69%, respectively) [4]. These samples were collected from three sites in Kuwait and Bahrain
and four sites from Oman and the United Arab Emirates between December 2018 and
May 2019; ampicillin resistance rates were 29.6% for E. coli isolated from seawater sam-
ples [58]. Light et al. [58] reported whole-genome sequencing on a subset of 173 E. coli
isolates, and high carriage rates of qnrS1 (60/173) and blaCTX-M-15 (45/173) were ob-
served, correlating with reduced susceptibility to the fluoroquinolones and third-generation
cephalosporins. E. coli was one of the genera detected among the other ESKAPEE pathogens
in the present study. In addition to this, lower abundances of coliforms and enterococci
in the coastal sediments of Kuwait cannot be ignored. Their contribution toward AMR
needs to be further investigated. The methicillin-resistant S. aureus, vancomycin-resistant
E. faecium, carbapenem-resistant A. baumanii, and P. aeruginosa are on the WHO global
priority pathogens list of antibiotic-resistant bacteria [59].

In the present samples, patA was the most dominant gene, followed by adeF, rpsL,
TaeA, ermF, and tetX. Our results were in partial agreement with a study conducted in
the deep sediments of the Mariana Trench, in which ermF, tetM, tetQ, cfxA2, PBP-2X,
and PBP-1A were common [52]. The most abundant gene in the Ili river was adeF [57].
The distribution of ARGs spatially was variably attributed to the differences in antibiotic
usage in those regions. The genes discovered in the present study exhibited resistance
against fluoroquinolone, tetracycline, streptogramin, macrolide, lincosamide, pleuromu-
tilin, glycylcycline, a peptide antibiotic, a phenicol antibiotic, an oxazolidinone antibiotic,
penam, aminocoumarin, aminoglycoside, cephalosporin, carbapenem, cephamycin, and
glycopeptide antibiotics. Many of these antibiotics were previously reported in Kuwait’s
coastal areas [22], as well in as the wastewater streams of Al Kabd and Umm ul Hayman in
Kuwait [23].

The predominant ARGs belonged to 13 AMR gene families; this could be related to
the prolonged antibiotic exposure resulting in an antibiotic resistome due to continuous
coevolution of small molecules in the environment and microbial genomes. This is almost
comparable to 17 gene families discovered at Tolo Harbour in the South China Sea [30]. The
RA of all the genes varied according to the sampling location [50,60,61]. In the present study,
the presence of ARGs was also recorded in sediments from sites S4 and S12 that were not in
proximity to outfalls. This could be supported by the view that bacteria naturally produce
antibiotics as a mechanism of defense [29] and that these ARGs can be metal-mediated,
which is dominant across the marine environment. The primary mechanism of action in
Kuwait was antibiotic efflux. The antibiotic resistome can also have cryptic resistance genes
that might occur due to chronic exposure to antibiotics, metals, and biocides [62]. This is
a highly preferred way of acquiring bacterial resistance, as the efflux pumps recognize a
variety of substrates that are expressed in a broad range of pathogens [63].

5. Conclusions

This baseline study underlined the occurrence of a diverse pool of ARGs in the coastal
sediments of Kuwait. How these ARGs influence the health of the marine ecosystem
needs to be systematically assessed on a larger spatial scale. Continuous monitoring and
sampling at additional sites at different depths and seasons need to be carried out to
ensure sustainability. To track the dissemination of ARGs in the marine ecosystem and
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their influence on human health, the mobile genetic elements and integrons should be
investigated in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14138029/s1, Table S1: ARGs found in marine sediments of
Kuwait, Supplementary S1. Figures S1–S12: Library QC of 12 marine sediment samples collected
from Kuwait Supplementary S2.
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