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Abstract: Ma bamboo (Dendrocalamus latiflorus Munro) is a fast-growing woody grass that offers
significant economic benefits, including materials for construction, furniture, biofuel, food, and
handicrafts. It also provides ecological benefits like soil conservation, wildlife habitats, and carbon
sequestration. However, its species distribution patterns are influenced by various factors, including
climate (mainly temperature and precipitation), soil attributes, and landscape characteristics such as
topography, land use, and vegetation. Understanding these impacts is essential for the sustainable
management of D. latiflorus resources and fostering related economic activities. To address these
challenges, we developed a comprehensive habitat suitability (CHS) model that integrates climate,
soil, and landscape variables to simulate the distribution dynamics of D. latiflorus under different
shared socio-economic pathway (SSP) scenarios. An ensemble model (EM) strategy was applied to
each variable set to ensure robust predictions. The results show that the current potential distribution
of D. latiflorus spans 28.95 × 104 km2, primarily located in South China and the Sichuan Basin. Its
distribution is most influenced by the annual mean temperature (Bio1), the cation exchange capacity
of soil clay particles in the 20–40 cm soil layer (CECc 20–40 cm), vegetation, and elevation. Under
future climate scenarios, these habitats are projected to initially expand slightly and then contract,
with a northward shift in latitude and migration to higher elevations. Additionally, the Sichuan
Basin (Sichuan–Chongqing border) is identified as a climatically stable area suitable for germplasm
development and conservation. To conclude, our findings shed light on how climate change impacts
the geographic distribution of D. latiflorus, providing key theoretical foundations for its sustainable
cultivation and conservation strategies.

Keywords: ensemble model; comprehensive habitat suitability; geographic distribution; species
distribution models; Dendrocalamus latiflorus Munro

1. Introduction

In the face of climate change’s escalating effects, the demand for sustainable ma-
terials has become paramount. Bamboo, with its unique characteristics such as rapid
growth, swift forest formation, prolonged usability, brief production cycles, high yield,
and strong carbon absorption capacity, represents a viable alternative to environmentally
detrimental and resource-intensive materials, offering a glimmer of hope amidst this global
crisis [1]. Moreover, bamboo forests offer considerable carbon sink potential [2]. For
example, Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau) forests can capture
4.91–5.45 t C ha−1 yr−1, which is 1.41–1.57 times greater than the capture rate of fast-
growing Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations [3]. In China, the
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bamboo industry creates 8 million jobs and generates USD 28 billion in output annually,
aiding poverty reduction, enhancing human livelihoods, promoting sustainable economic
growth, and addressing climate change [4]. Despite the diversity of bamboo species, only a
few, including Moso bamboo (P. edulis), Ma bamboo (Dendrocalamus latiflorus Munro), and
Lei bamboo (Phyllostachys violascens ’Prevernalis’ S.Y.Chen et C.Y.Yao) meet the criteria for
industrial utilization [5]. Accurate spatial distribution data inform government policies,
optimize industrial layout, and ensure efficient resource allocation, thereby supporting
sustainable cultivation practices, maximizing productivity, and balancing economic growth
with ecological sustainability. Therefore, predicting their potential spatial distribution
is crucial for the sustainable management of eco-friendly and economically significant
bamboo resources.

Bamboo is highly susceptible to climate change due to its rapid growth rate, which
is dependent on high rates of photosynthesis and water uptake, making it sensitive to
variations in temperature and precipitation [6,7]. Moreover, bamboo species exhibit un-
usual sexual reproduction intervals ranging from 10 to 120 years [8], coupled with limited
seed dispersal capabilities [9]. The vegetative dispersal ability of bamboo also varies sig-
nificantly; for instance, many understory species have restricted spread, such as Bashania
fargesii (E. G. Camus) Keng f. et Yi, which disperses only about 0.2–0.35 m yr−1 [10]. These
constraints collectively hinder bamboo’s capacity to adjust its geographical distribution in
response to the rapid climate changes projected for this century. In China, climate change
is expected to lead to global warming, more heatwaves, uneven rainfall distribution, and
monsoon variability, causing bamboo forests to potentially migrate northward in South-
eastern China and southward in Southwestern China for refuge [4,11]. Despite favorable
climatic conditions, bamboo growth can be significantly restricted without appropriate
soil and landscape conditions, including topography, land use, and vegetation. To address
the impact of complex environmental filtering on bamboo resources, species distribution
models (SDMs) are frequently employed [12]. These models help predict the potential dis-
tribution of bamboo species under varying environmental conditions, providing valuable
insights for conservation and sustainable management.

SDMs, also known as ecological niche models (ENMs), are widely employed to pre-
dict the potential spatial and temporal distribution of species on a large scale [12–15].
By linking species occurrence data to environmental variables and employing statistical
techniques, SDMs are able to map and predict species distributions across various spa-
tial and temporal dimensions [13,16]. The emergence of new statistical algorithms and
software applications has made the description and prediction of distribution patterns
more reliable [17–20]. Popular algorithms include artificial neural networks (ANNs) [21],
classification tree analysis (CTA) [22], flexible discriminant analysis (FDA) [23], general-
ized additive models (GAMs) [24], generalized boosting models (GBMs) [25], generalized
linear models (GLMs) [26], multiple adaptive regression splines (MARS) [27], maximum
entropy (MaxEnt) [28], MaxEnt over glmnet (MaxNet) [29], random forest (RF) [30], surface
range envelope (SRE, i.e., BIOCLIM) [31], and extreme gradient boosting training (XG-
BOOST) [32]. However, the selection of optimal algorithms for particular species under
designated spatio-temporal contexts varies due to niche properties, habitat complexity, and
data resolution and precision [14,33]. Therefore, ensemble models (EMs), which combine
the relative importance of individual models built with different algorithms, have been pro-
posed to address this issue [34,35]. The EM strategy avoids the model bias that arises from
the selection of a single optimal algorithm, thereby providing more robust and accurate
predictions [36,37].

Ma bamboo (Dendrocalamus latiflorus Munro) is a fast-growing, evergreen, giant,
semitropical clumping bamboo species native to Southeast China, known for its widespread
distribution across the region. It holds high biological, ecological, industrial, culinary, and
medicinal value [5,6,38–42]. D. latiflorus significantly contributes to carbon sequestration,
with its aboveground carbon storage (48.94 ± 41.06 Mg ha−1) exceeding that of Moso
bamboo and Makino bamboo [39]. Its complex rhizome–root system prevents soil ero-
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sion and promotes water percolation, outperforming both broad-leaved and coniferous
forests [38]. Understorey D. latiflorus forest are an essential component in many forest
ecosystems [43], enhancing species composition and structural complexity, and providing
vital resources for wildlife [6]. Additionally, bamboo is used in paper making, tool crafting,
rafts, handicrafts, and building materials. Bamboo shoots are edible, its leaves are used for
wrapping zongzi and making wine, and both the flowers and shoots can treat coughs [44].
Our field investigations reveal that, beyond the influences of temperature and precipita-
tion, as demonstrated by previous studies [4,45], the growth of D. latiflorus is significantly
constrained by the absence of suitable soil and landscape conditions, including topography,
land use, and vegetation. Specifically, D. latiflorus thrives in regions with a subtropical or
temperate climate, characterized by annual average temperatures of 8–26 ◦C and annual
precipitation of 800–3300 mm. It flourishes on gentle slopes up to 1000 m in shrubland
and woodland environments, where the soil consists of reddish and brownish loams. The
soil moisture content in these habitats typically ranges between 20% and 40%. To address
the cumulative environmental impacts on the species, previous studies [14–16,46,47] have
developed a comprehensive habitat suitability (CHS) model to more precisely evaluate
a species’ suitable habitat, incorporating climate variables along with soil, topography,
vegetation, and land-cover factors.

Previous studies on D. latiflorus have primarily focused on its sequence, purification
and structural identification, cultivation, biomass and carbon storage, and industrializa-
tion [48–54]. Nonetheless, the projected current and future distribution of D. latiflorus, as
well as the effects of environmental factors on its range, have rarely been investigated within
the framework of climate change. Although previous studies [4,55,56] have examined the
potential distribution of Chinese bamboo forests, detailed information on individual bam-
boo species remains scarce. Accordingly, we applied the CHS model, combining climate,
soil, and landscape attributes, to project the potential distribution of D. latiflorus across
different climate change scenarios. Species distribution data were obtained from both field
surveys and online databases. The aims of this research are threefold: (1) to assess how
climatic, soil, and landscape variables influence the geographic distribution of D. latiflorus
and to identify the primary constraints on its distribution; (2) to build a CHS model that
predicts the potential distribution of D. latiflorus, incorporating the cumulative effects of
climate, soil, and landscape conditions; and (3) to quantify and compare the spatial pattern
differences under current and future climate change scenarios, specifically across three
periods (2021–2040, 2041–2060, and 2061–2080) with four CMIP6 shared socio-economic
pathways (SSPs: SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0, and SSP5-RCP8.5).

2. Materials and Methods

Figure 1 illustrates the workflow for the habitat suitability assessment. The specific
steps are as follows:

2.1. Data Preparation and Processing
2.1.1. Species Occurrence and Pseudo-Absence Data

Over the last five years, from March 2018 to October 2023, extensive field surveys were
conducted in the provinces of Fujian, Jiangxi, Guangdong, Guangxi, Sichuan, Chongqing,
Guizhou, and Yunnan. These regions encompass the most recorded distributions according
to the Flora of China (http://www.efloras.org, accessed on 3 September 2023). By designat-
ing the center of each investigated D. latiflorus forest as a distribution point, we identified
41 occurrence points. Additionally, 262 valid, non-replicate occurrence points were sourced
from various web databases and previously published literature, including the Global
Biodiversity Information Facility (GBIF, https://www.gbif.org, accessed on 12 March 2024),
Chinese National Science and Technology Infrastructure (NSII, http://www.nsii.org.cn,
accessed on 12 March 2024), Plant Photo Bank of China (PPBC, https://ppbc.iplant.cn, ac-
cessed on 12 March 2024), Chinese Virtual Herbarium (CVH, https://www.cvh.ac.cn,
accessed on 12 March 2024), China National Knowledge Infrastructure (CNKI, https:

http://www.efloras.org
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https://www.cvh.ac.cn
https://www.cnki.net
https://www.cnki.net


Forests 2024, 15, 1321 4 of 22

//www.cnki.net, accessed on 12 March 2024), and Google Scholar. To minimize spa-
tial auto-correlation, a 10 × 10 km grid cell was used to exclude any occurrence points
within 10 km of another point using the Spatially Rarefy Occurrence Data tool in SDMtool-
box v2.6 [57,58]. We also excluded 18 occurrences where environmental variables were
missing. As a result, 165 occurrence points were finalized for use in the modeling process
(Figure 2; Table S1).
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Figure 1. Methodological approaches for comprehensive habitat suitability evaluation.
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Figure 2. Occurrence data (165 points) of D. latiflorus in China.

Predictions from SDMs that rely on presence-only data are significantly influenced by
the quality and quantity of pseudo-absence data [16,59]. To enhance the accuracy of SDMs,
this study generated three sets of 1000 pseudo-absence points each by randomly sampling
the background area [14,16].

https://www.cnki.net
https://www.cnki.net
https://www.cnki.net
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2.1.2. Climatic, Soil, and Landscape Variables

The relevance and completeness of predictors are critical components in constructing
SDMs [14,60,61]. Numerous biotic and abiotic factors, including climate, topography,
soil, vegetation, land use, and other environmental parameters, influence plant lifecycle
processes, thereby shaping their distribution. Therefore, we categorized the environmental
datasets into three types: climate, soil, and landscape variables, encompassing a total of
72 environmental variables (Table S2).

The climate variables included 19 bioclimatic layers obtained from the WorldClim
dataset (https://www.worldclim.org, accessed on 4 April 2024) for both current and future
periods, with a spatial resolution of 30′′ (approximately 1 km2) [62]. The current climate
data represent the average conditions from 1970 to 2000. Future climate data for the 2030s
(2021–2040), 2050s (2041–2060), and 2070s (2061–2080) were obtained from four SSPs (SSP1-
RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0, and SSP5-RCP8.5) and averaged from three global
climate models (GCMs) commonly used in China and Asia: ACCESS-CM2, MIROC6, and
BCC-CSM2-MR [63–65]. Additionally, the Global UV-B radiation dataset was obtained
from the gIUV database (https://www.ufz.de/gluv/, accessed on 4 April 2024) [66].

The soil data were obtained from the China soil property raster dataset available at
the National Cryosphere Desert Data Center (https://www.ncdc.ac.cn, accessed on 4 April
2024) [67]. This dataset is derived from the global-scale soil properties database WISE30sec,
produced by the International Soil Reference and Information Centre (ISRIC) [68]. It
contains 20 soil properties across seven depth layers (Table S2). Given that 80%–90% of
bamboo roots are located within the 0–40 cm depth range [69,70], the data for the 0–20 cm
and 20–40 cm layers were selected for this study, resulting in a total of 40 soil variables.

The landscape variables included topography, vegetation, and land use. The to-
pographic variables, such as elevation, slope, and aspect, were sourced from MERIT
DEM (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/, accessed on 16 January
2024) [71], with slope and aspect generated using the ArcGIS spatial analysis function
based on the elevation data. Vegetation data were obtained from the 1:1 million vegetation
dataset in China [72], and land-use data were acquired from the 1:1 million comprehensive
land cover dataset of China [73]. Both the vegetation and land-use datasets were accessed
from the National Cryosphere Desert Data Center (https://www.ncdc.ac.cn, accessed on 4
April 2024).

2.1.3. Data Processing and Variable Screening

The present study resampled all variable layers to a 30′′ spatial resolution, clipped to
the China boundary range and projected using the WGS_1984_Albers coordinate system.
To prevent overfitting and address multicollinearity within the three variable sets, we
implemented a two-step procedure [15,74].

First, Principal Component Analysis (PCA) was conducted to identify subsets of
climatic, soil, and landscape variables [14,37]. The number of principal components was
determined based on cumulative variance, and a subset of variables was chosen according
to their contributions to these components. Next, Pearson correlation coefficients were
calculated for each pairwise comparison of the filtered variables. Only the most significant
variables were retained when strong correlations (|r| ≥ 0.8) were detected, based on their
contribution values and ecological significance (Figure S1).

Following these analyses, five climate variables were identified: annual mean temper-
ature (Bio1), mean temperature of warmest quarter (Bio10), annual precipitation (Bio12),
precipitation of driest quarter (Bio17), and annual mean UV-B (UVB1). Additionally, ten
soil variables were determined (TOTN 20–40 cm, PHAQ 0–20 cm, CECs 20–40 cm, ECEC
0–20 cm, CECc 20–40 cm, TAWC 0–20 cm, STPC 20–40 cm, ALSA 20–40 cm, ELCO 0–20 cm,
and CNrt 20–40 cm), along with three topographic variables, one vegetation variable, and
one land-use variable. In total, 20 environmental variables were retained to model the
distribution of D. latiflorus (Table S2).

https://www.worldclim.org
https://www.ufz.de/gluv/
https://www.ncdc.ac.cn
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
https://www.ncdc.ac.cn
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2.2. Development of Comprehensive Habitat Suitability Model

Following previous studies [14–16], we developed a CHS model to evaluate the
potential distribution of D. latiflorus, incorporating climatic, soil, and landscape limitations
(Figure 1). Initially, we constructed three individual sub-models: the climatic EM, the soil
EM, and the landscape MaxEnt model. These sub-models were then integrated to form the
CHS model, which accounts for the cumulative effects of each category. Each sub-model
is equally important, and the species is considered suitable for growth only when the
cumulative criteria are met.

2.2.1. Ensemble Model for Climate and Soil Suitability

The EM strategy was employed to separately analyze climate and soil suitability.
Twelve algorithms were selected for this purpose: ANN, CTA, FDA, GAM, GBM, GLM,
MARS, MaxEnt, MaxNet, RF, SRE, and XGBOOST. All model-building processes were
conducted using the BIOMOD2 package [20] in R software (version 4.3.2) [75].

First, we filtered algorithms for building the EM. The 165 occurrence points were
divided into 70% for model calibration and 30% for model validation. We constructed
a total of 360 single models, including three pseudo-absence sampling models, twelve
algorithms, and ten cross-validation runs for each of climate and soil suitability. Only
algorithms with a mean true skill statistic (TSS) of ≥0.7 and an area under the curve (AUC)
of ≥0.9 in both the calibration and validation steps were retained for the ensemble forecast.
For the climate EM, nine algorithms (ANN, FDA, GAM, GBM, GLM, MARS, MaxEnt,
MaxNet, and XGBOOST) met the criteria and exhibited high evaluation scores. For the soil
EM, only GBM met the standard (Figure S2).

Second, we generated the EM. To create the EM, we applied the weighted average
method to combine all single models that had TSS values of ≥0.7 and AUC ≥ 0.9. The weights
of each single model were determined using the TSS values, as shown in Equation (1):

wj =
rj

∑h
j=1 rj

(1)

where wj is the weight of model result j; rj is the TSS value of model result j; and h is the
number of model results. The normalized results of a single model were then multiplied by
the corresponding weight to obtain the summation.

Third, we calculated the suitability index for both climate and soil EMs as described
in Equation (2):

yi =
n

∑
j=1

wj × xij (2)

where yi is the potential habitat suitability index of the first grid i; wj is the weight of SDM
j; xij is the value of grid i in SDM j; and yi (range [0, 1]) is the evaluation index for the
distribution of potentially suitable D. latiflorus habitats.

2.2.2. MaxEnt Model for Landscape Suitability

Among the twelve algorithms, only the MaxEnt model can use categorical data as
environmental variable inputs [14]. Therefore, we employed the MaxEnt model with the
165 occurrence data (70% for training and 30% for testing) to determine the landscape
constraints of D. latiflorus. The kuenm package [19] was utilized to optimize the feature
class (FC) and regularization multiplier (RM) of the MaxEnt model. Initially, the RM was
set to range from 0.1 to 10 with intervals of 0.1, resulting in a total of 100 RM values.
Subsequently, the five FCs (linear (l), quadratic (q), product (p), threshold (t), and hinge (h))
in the MaxEnt model were combined to form 31 FC combinations (e.g., l, q, p, t, h, lq, lp, lt,
lh, qp, qt, qh, pt, ph, th, lqp, lqt, lqh, lpt, lph, lth, qpt, qph, qth, pth, lqpt, lqph, lqth, lpth,
qpth, and lqpth). Thus, a total of 3100 parameter combinations were tested by multiplying
the FCs and RMs.
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For optimal model determination, the model with a significant omission rate
(OR) of ≤0.05 and a delta AICc (∆AICc) of ≤2 was selected [76]. The optimal param-
eters indicated that the FC and RM were pth and 1.8, respectively (Figure S3).

2.2.3. Comprehensive Habitat Suitability Model

Based on the climatic and soil EMs, as well as the landscape MaxEnt model, we
constructed a CHS model to evaluate the suitability index of D. latiflorus habitats. The
suitability index of the CHS model for each evaluation grid is described by Equation (3):

CHSi = Ci × Si × Li (3)

where CHSi is the comprehensive habitat suitability index in each evaluation grid; Ci is
the occurrence probability of the climatic EM based on 4 bioclimatic variables and one
UV-B radiation variable; Si is the occurrence probability of the soil EM based on 10 soil
variables; and Li is the occurrence probability of the landscape MaxEnt model based
on three topographic, vegetation, and land-use variables. The cumulative occurrence
probability of CHSi ranges from 0 to 1.

Following previous studies [14–16], CHSi was classified into three categories for
potential suitability evaluation: unsuitable habitats (CHSi < 0.3), moderately suitable
habitats (0.3 ≤ CHSi < 0.5), and highly suitable habitats (CHSi ≥ 0.5).

2.3. Analysis of Species’ Spatial Pattern Changes

Spatial pattern changes refer to identifying and comparing the potential distribution
of species from the current period to future SSP scenarios [76–78]. This includes spatial
distribution shifts, area changes, core shifts, and Low-Impact Areas (LIAs).

2.3.1. Spatial Distribution Shifts and Area Changes

According to the modeled CHS raster, we identified suitable regions under four
SSPs for the current period and three future periods, resulting in a total of 13 spatial
distribution predictions. During the modeling process, only bioclimatic variables were
changed under future SSP scenarios due to data availability, while the the other variables
remained unchanged.

2.3.2. Core Shifts of Species Distributions

The core refers to the central points of species distributions, simplifying suitable
regions to a vector particle [76,77,79]. Changes in the centroid position were used to
reflect the overall directional shift of the suitable region. The Centroid Changes tool in
SDMToolbox V2.6 [57] was applied to track the centroid of the distribution of D. latiflorus.

2.3.3. Low-Impact Areas under Different SSPs

To identify the Low-Impact Areas (LIAs), we first overlaid the binary suitability regions
under each SSP for different periods [63,68]. The completely overlapping parts within each
SSP were identified as SSP-specific Low-Impact Areas (SSP-LIAs). Next, we overlaid the
SSP-LIAs from each SSP to determine the final LIAs. Higher overlaps indicated areas with
less impact, while lower overlaps indicated areas with greater exposure to climate change
impacts [76,80,81].

3. Results
3.1. Model Assessment

In this study, the climate EM achieved TSS and AUC values of 0.874 and 0.967, respec-
tively, indicating strong performance. The soil EM also showed high accuracy, with TSS
and AUC values of 0.761 and 0.917. For the landscape Maxent model, the average training
AUC across 10 replicate runs was 0.944 ± 0.004. These metrics collectively demonstrate the
models’ robust predictive accuracy.
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3.2. Responses of D. latiflorus Distribution to Climate, Soil, and Landscape Variables

The climate EM of variable importance showed that among five climate variables,
annual mean temperature (Bio1) was the primary factor determining the suitable habitats
of D. latiflorus (Figure 3a). To clarify the climate characteristics influencing the suitable
habitats of D. latiflorus, we established the optimal and threshold values for these variables
using response curves. When the response curves, adapted from the Evaluation Strip
method by Elith et al. [82], reached their maximum, the environmental variable values were
considered optimal. If the response curve is greater than 0.5, the environmental variable
range is within the threshold. According to our climate EM result, the suitable range
for Bio1 is approximately 16.3–25.7 ◦C, with an optimal value around 20.1 ◦C (Figure 3b,
Table 1, Figure S4). Bivariate response curves showed that the species had the highest
probability of occurrence when Bio1 was higher than 18.5 ◦C and Bio12 was greater than
1053 mm (Figures 3c and S5).

In the soil EM, among the ten soil variables, cation exchange capacity in the 20–40 cm
soil layer (CECc 20–40 cm) was identified as the primary factor determining suitable
habitats for D. latiflorus, followed by soil pH in the 0–20 cm soil layer (PHAQ 0–20 cm)
(Figure 3d). The suitable range of CECc 20–40 cm was found to be 7.4 to 40.8 cmolc/kg,
with an optimal value of approximately 12.4 cmolc/kg (Figure 3e, Table 1, Figure S6).
The bivariate response curves showed that the highest probability of occurrence for the
species was when CECc 20–40 cm was below 40 cmolc/kg and the effective cation exchange
capacity in the 0–20 cm soil layer (ECEC 0–20 cm) was under 10 cmolc/kg (Figure 3f).
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Figure 3. Variable importance and response curves of key climate and soil variables in the modeled
distribution of D. latiflorus based on ensemble models. (a) Single variable importance of climate
EM; (b) response curve of Bio1; (c) bivariate response curves of Bio1 and Bio12; (d) single variable
importance of soil EM; (e) response curve of CECc 20–40 cm; (f) bivariate response curves of CECc
20–40 cm and ECEC 0–20 cm.

Regarding the landscape suitability requirements, vegetation (70.74 ± 9.67%) and
elevation (21.87 ± 9.02%) were the most influential factors, cumulatively accounting for
92.61% of the variation. The response curves revealed that the optimal vegetation types for
D. latiflorus included tri-annual food crop fields, evergreen fruit orchards, and economic
forests. Other vegetation types that were also deemed suitable comprised biannual or
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ternary food crop fields, evergreen fruit tree orchards, subtropical economic forests, sub-
tropical coniferous forest, and subtropical broad-leaved evergreen forest (Figure 4a, Table 1).
Elevation suitability ranged from approximately 20 to 625 m, with the optimal elevation
being around 198 m (Figure 4b, Table 1).

Figure 4. Response curves of key environmental variables for the modeled distribution of D. latiflorus
using the MaxEnt algorithm. (a) Vegetation; (b) elevation.

Table 1. Range, units, and optimal and threshold values for key environmental variables.

Category Environmental
Variables Range Optimal Value Suitable Ranges

Climate Bio1 8.5–25.7 20.1 16.3–25.7
Bio12 814–3307 2516 1053–2732

Soil CECc 20–40 cm 6–69 12.4 7.4–40.8

Landscape Vegetation
12 vegetation groups,
54 vegetation types

Tri-annual food crop fields,
evergreen fruit orchards, and
economic forests

1. Tri-annual food crop fields, evergreen
fruit orchards, and economic forests;
2. Biannual or ternary food crop fields
and evergreen fruit tree orchards, and
subtropical economic forests;
3. Subtropical coniferous forest;
4. Subtropical broad-leaved evergreen
forest

Elevation 5–2161 198 20–625

3.3. Current and Future Potential Suitable Habitats under Climate Change Scenarios

The CHS model revealed that the current suitable habitats for D. latiflorus cover a total
area of 28.95 × 104 km2, primarily located in two regions: Southeast China (Guangdong
21.53%, Fujian 11.66%) and Southwestern China (Guangxi 20.09%, Sichuan 13.24%, Yunnan
11.13%, Chongqing 7.90%). Additionally, significant populations are found on China’s two
largest islands, Taiwan (5.55%) and Hainan (3.13%) (Figure 5, Tables 2 and S3). The habitats
classified as moderately and highly suitable are 26.71 × 104 km2 and 2.24 × 104 km2, re-
spectively. Moderately suitable habitats are found predominantly in Guangdong (21.16%),
Guangxi (19.88%), Sichuan (14.19%), Fujian (12.08%), and Yunnan (11.28%). Highly suitable
habitats are concentrated in Guangdong (26.00%), Guangxi (22.61%), and Taiwan’s Central
Mountain Range (22.17%) (Table S3). Notably, the suitable habitats of D. latiflorus are
fragmented into numerous small, non-contiguous patches. This fragmentation results from
the incorporation of high-precision landscape and soil data into the CHS model.

Under future scenarios, the projected suitable habitats for D. latiflorus are 29.21× 104 km2

in the 2030s, 29.21 × 104 km2 in the 2050s, and 28.76 × 104 km2 in the 2070s, based on the
average of four SSP scenarios (Table 2). Moderately suitable habitats remain stable, while
highly suitable habitats decrease significantly (Figures 6 and 7a, Table 2). A northward
habitat expansion is observed, extending to Guizhou and Hunan by the 2050s and 2070s.
Concurrently, habitat contraction in Fujian, Guangdong, and Guangxi increases from the
current period to the 2070s (Figures 7b and 8). In summary, suitable habitats increase by
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the 2050s and then decrease by the 2070s, with a northward expansion and a concurrent
contraction in the southern regions.
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Figure 5. Comprehensive habitat suitability area of D. latiflorus in the current period.
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Figure 6. Areas of unsuitable, moderately suitable, and highly suitable regions for D. latiflorus under
different scenarios.

Climate change exerts a more significant impact on suitable habitats than temporal
factors (Figure 7c,d, Table 2). As climate change intensifies, a significant portion of highly
suitable habitats will shift to moderately suitable or even unsuitable regions. Low-emission
scenarios (SSP1-RCP2.6 and SSP2-RCP4.5) show a general trend of habitat expansion.
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Conversely, high-emission scenarios (SSP3-RCP7.0 and SSP5-RCP8.5) result in habitat
contraction. By the 2070s, Guangdong and Guangxi will experience the most substantial
reductions, exceeding 50%, under high emission scenarios.

Figure 7. Changes in areas and patterns of D. latiflorus from current to future scenarios. (a) Percentage
of habitats with different suitability under future scenarios; (b) percentage of pattern changes under
future scenarios; (c) area changes under different GHG emission scenarios; (d) area changes across
different periods.

      Current-2030s Current-2050s Current-2070s

SSP1-RCP2.6

SSP2-RCP4.5

SSP3-RCP7.0

SSP5-RCP8.5

Expansion Unchange Contraction

Figure 8. Areas of expansion and contraction and unchanged regions for D. latiflorus under different
scenarios.



Forests 2024, 15, 1321 12 of 22

Table 2. Areas and percentages of suitable habitats for D. latiflorus under climate change scenarios.

Scenarios
Areas and Percentages of Suitable Habitats

Moderate
Suitable

% Highly
Suitable

% Total
Suitable

%

Current 26.71 - 2.24 - 28.95 -
SSP1-RCP2.6 (2030s) 30.32 113.51 1.81 80.66 32.13 110.97
SSP1-RCP2.6 (2050s) 28.26 105.82 1.19 52.97 29.45 101.73
SSP1-RCP2.6 (2070s) 28.47 106.61 1.13 50.36 29.60 102.25
SSP2-RCP4.5 (2030s) 27.64 103.49 1.30 58.04 28.94 99.98
SSP2-RCP4.5 (2050s) 29.07 108.86 1.11 49.73 30.19 104.28
SSP2-RCP4.5 (2070s) 28.61 107.10 0.96 42.84 29.57 102.12
SSP3-RCP7.0 (2030s) 26.05 97.55 1.23 54.94 27.29 94.25
SSP3-RCP7.0 (2050s) 27.12 101.55 1.02 45.67 28.15 97.23
SSP3-RCP7.0 (2070s) 27.37 102.48 0.75 33.67 28.13 97.15
SSP5-RCP8.5 (2030s) 28.02 104.92 1.25 55.94 29.28 101.13
SSP5-RCP8.5 (2050s) 28.13 105.31 0.93 41.71 29.06 100.39
SSP5-RCP8.5 (2070s) 27.10 101.46 0.62 27.51 27.72 95.73

3.4. Core Shift and Low-Impact Areas under Climate Change Scenarios

The current suitable habitat centroid for D. latiflorus, as indicated by a black dot in
Figure 9, was predicted to be in northern Guangxi (25.0601° N, 108.9484° E). Under future
scenarios, the centroid shifts northeastward to the border of Guangxi, Hunan, and Guizhou.
Although the predicted centroid locations for the 2070s are similar, the paths show diverse
movement patterns influenced by different climate scenarios and environmental factors.
Under low-emission scenarios, the elevation of the centroid show an upward trend, with
the SSP2-RCP4.5 scenario projecting an increase up to 1000 m. Conversely, under high-
emission scenarios, the elevation peaks in the 2050s before declining. Overall, the centroid
of suitable habitats for D. latiflorus shifts northeastward and upward in future scenarios
(Figure 9, Table S4).
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Figure 9. Core shift of potential suitable habitats for D. latiflorus from current to future scenarios.
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The projected SSP-specific Low-Impact Areas (SSP-LIAs) varied across the four SSPs.
Under the SSP1-RCP2.6 scenario, there was a slight increase in SSP-LIAs. However, as
climatic severity increased (from SSP1-RCP2.6 to SSP5-RCP8.5), the SSP-LIAs consistently
decreased from 29.28 × 104 km2 to 25.02 × 104 km2 (Table 3). The LIAs, derived from the
overlapping SSP-LIAs, indicated that the Sichuan Basin and the western side of Taiwan’s
Central Mountain Range will be less impacted by climate change, serving as continuous
refuges for D. latiflorus growth (Figure 10a,c). Additionally, climate change exacerbated the
fragmentation of LIAs, causing the LIAs in Guangxi, Guangdong, Fujian, and Yunnan to
retreat and concentrate at higher elevations (Figure 10b,c).

Figure 10. Low-Impact Areas of D. latiflorus from current to future scenarios. (a) Primary Low-Impact
Areas in the Sichuan basin (Sichuan and Chongqing); (b) Primary Low-Impact Areas in southwestern
and southern China (Yunnan, Guizhou, Guangxi, and Hainan); (c) Primary Low-Impact Areas in
southeastern China (Guangdong, Fujian, and Taiwan).
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Table 3. Low-Impact Areas of D. latiflorus under four shared socio-economic pathways.

Shared
Socio-Economic

Pathways

Low-Impact Areas

Geographic Area
(×104 km2)

Percentage of Current
Suitable Area (%)

Percentage of
SSP1-RCP2.6 Area (%)

SSP1-RCP2.6 29.28 101.14 100
SSP2-RCP4.5 27.36 94.51 93.40
SSP3-RCP7.0 24.70 85.32 84.40
SSP5-RCP8.5 25.02 86.42 85.50

4. Discussion
4.1. Key Climate, Soil, and Landscape Factors Shaping Suitable Habitats

Species distribution is influenced by a combination of abiotic factors such as climate,
topography, soil properties, and human activities, as well as biotic factors [15]. Among these
abiotic factors, the hydro-thermal environment is critical in determining spatial distribu-
tion [65,83]. The present study identified annual mean temperature (Bio1) as the primary
climatic variable influencing species spatial distribution (Figure 3b). The joint effect of an-
nual precipitation (Bio12) with Bio1 has the greatest impact on the spatial distribution of Ma
bamboo (Figure 3c).

Temperature regulates bamboo shoot germination and emergence [4,84]. Elevated
temperatures, specifically those surpassing a potential warming threshold of 3 ◦C above
present-day conditions, may substantially decrease the survival rates of bamboo [85].
This reduction is likely due to the adverse impact on shoot bud differentiation [86]. Our
findings indicate that the moderately and highly suitable habitats for D. latiflorus are mainly
concentrated in the southern subtropical zone (20–25° N) under current climate conditions
(Figure 5), at a lower latitude than previously reported [4]. This discrepancy is attributed to
the optimal mean annual temperature for D. latiflorus, which is 20–25◦C, higher than that for
other bamboo species (Figure 3c). Furthermore, the high mean annual temperature in the
Sichuan Basin supports dense and continuous bamboo forests despite its higher latitude.

Likewise, precipitation is essential for bamboo forest growth, particularly consider-
ing its joint effect with temperature constraints [4,87]. The amount of rainfall during the
sprouting period of bamboo shoots in autumn directly impacts the number of shoots that
will emerge in the following year. Once germination occurs in the spring, significant water
is required to support the meristematic growth of internode tissues. Our study found
that annual precipitation exceeding 1053 mm greatly enhances the survival probability of
D. latiflorus, given that the temperature conditions are suitable for growth. The precipi-
tation gradient from the subtropical monsoon climate results in a gradual decline in the
moderately and highly suitable habitats from the southeast coast to the southwest. The
rainfall brought by the southwest monsoon designates the Sichuan Basin as a primary
distribution area for D. latiflorus.

Soil provides essential space and nutrients for plants’ survival while also impos-
ing constraints on their distribution [46]. Our soil EM analysis identified the cation
exchange capacity in the 20–40 cm soil layer (CECc 20–40 cm) as the key factor influ-
encing the distribution of D. latiflorus (Figure 3a). The optimal CECc 20–40 cm, less than
40 cmolc/kg (Figure 3b), is relatively high and aligns with field observations that D. lat-
iflorus thrives in soils with high cation exchange capacity. This high CEC indicates a
soil’s ability to retain essential nutrients, providing a stable supply crucial for D. latiflorus
growth. Therefore, high CEC is a key determinant of the optimal growth and distribution of
D. latiflorus, highlighting the importance of soil nutrient retention capacity in supporting
its physiological needs.

Landscape factors, including topography (e.g., elevation, slope, aspect) and surface
texture (e.g., vegetation and land use), significantly influence plant species distributions
by affecting the redistribution of hydro-thermal environments [15,16,88]. The response
curve for vegetation indicated four suitable vegetation types for D. latiflorus. The optimal
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vegetation types were tri-annual crop fields, evergreen fruit orchards, and economic forests.
The response curve for elevation showed that D. latiflorus thrives at elevations between 20
and 625 m, with the highest probability of presence at around 198 m (Figure 4, Table 1).
However, the contribution of slope and aspect to the model was minimal, at only 2.4% and
1.9%, respectively. This aligns with field observations, where D. latiflorus grows without
significant limitations from slope and aspect exposure.

4.2. Climate Change Driving Species Migration Trends

The spatial distribution of species is influenced by various biotic and abiotic factors,
with climate change being a major determinant of large-scale distribution patterns [89].
Our analysis revealed that over three future periods, the suitable habitats of D. latiflorus
showed a pattern of expansion followed by contraction compared to the current situation
(Figure 7d). The contraction in suitable habitats for D. latiflorus is attributed to hydro-
thermal variations due to climate change. These changes enhance drought stress and
reduce soil moisture, thereby inhibiting plant survival, growth, and reproduction [65].

In response to climate change, species may adapt through phenological changes
(timing-related, such as changes in flowering or breeding times) and/or physiological
changes (acclimation, such as altering photosynthetic rates or water retention) [15,90], or
migrate to higher latitudes or elevations to avoid warming temperatures and reduced
precipitation [91]. By extracting the latitude and elevation information of each grid in
the projected suitable habitats, the mean of each future scenario indicates that climate
change will cause a shift in the suitable habitats for D. latiflorus in both latitude and
elevation. This migration to higher latitudes and elevations becomes more pronounced with
increased emissions across three future periods (Figure 11). This aligns with the findings of
Li et al. [4], who projected that global warming would drive the northward migration of
potential distribution areas for bamboo forests in China.

Increasing temperatures and decreasing precipitation tend to drive species to higher
elevations rather than higher latitudes due to habitat fragmentation, which limits lateral
migration [65]. Additionally, high elevations and high altitudes are predicted to experience
the most rapid climate change, posing further threats to species’ suitable habitats [92]. As
elevation increases, the available habitats for species migration decrease sharply, eventu-
ally leading to large-scale habitat contraction [93,94]. Consequently, populations in these
habitats may become isolated to scattered stands. This isolation reduces gene flow be-
tween populations, resulting in genetic bottlenecks and decreased genetic diversity. Such
genetic isolation compromises the adaptive potential of species to changing environmental
conditions, elevating the risk of regional extinction as populations become less resilient
to climatic and other environmental stresses. However, isolated small populations may
also evolve rapidly and independently, potentially increasing genetic diversity through
different selective pressures and genetic drift, which can lead to unique adaptations.

Fortunately, the significant impact of human activities on ecosystems has facilitated the
widespread practice of human-mediated species migration. This phenomenon is especially
prevalent among plants with high ornamental and economic value. Such interventions
play a crucial role in overcoming the challenges associated with lateral migration [95]. By
intentionally relocating these species to more favorable environments, humans can mitigate
the adverse effects of climate change and habitat fragmentation. This proactive approach
not only aids in the conservation of biodiversity but also ensures the continued ecological
and economic benefits provided by these valuable plant species.
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Figure 11. Latitude and elevation variations of suitable habitats for D. latiflorus under different
scenarios compared to current condition.

4.3. Development and Conservation Management of Germplasm Resources

D. latiflorus, a fast-growing woody grass with significant ecological and economic
value, is suitable for cultivation in southern China [45,51]. Our study predicts that regions
such as eastern Sichuan, western Chongqing, Fujian, Guangdong, Guangxi, western Taiwan,
Hainan, and southern Yunnan will be less impacted by climate change (Figures 5 and 7),
making them ideal for increased D. latiflorus planting. Future planting efforts should focus
on northern Sichuan and Chongqing to mitigate the effects of climate change (Figure 10).

To address climate change challenges, conservation strategies should include establish-
ing botanical gardens and core germplasm through seedling transplantation and cultivation
to preserve genetic diversity and ensure resource availability. These botanical gardens can
serve as refuges for endangered species, providing controlled environments that mimic
natural habitats and supporting ongoing research and education efforts.

Identifying suitable areas for these conservation efforts is crucial for effective manage-
ment. This involves comprehensive site assessments to determine the optimal conditions
for growth and survival, considering factors such as climate stability, soil quality, and
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accessibility. Collaboration with local communities and stakeholders is essential to ensure
the sustainability and success of development and conservation initiatives. Furthermore,
integrating advanced technologies such as Geographic Information Systems (GIS) and
remote sensing can enhance the precision of habitat mapping and monitoring, allowing for
adaptive management practices that respond to changing environmental conditions. This
proactive approach not only aids in the conservation of D. latiflorus, but also contributes to
the broader goal of preserving biodiversity and ecosystem services.

This comprehensive strategy ensures the long-term viability and ecological contribu-
tions of D. latiflorus, securing its benefits for future generations. Through these efforts, we
can safeguard the ecological integrity of D. latiflorus forests and the diverse species they
support, maintaining their critical role in global carbon sequestration and environmen-
tal health.

4.4. Model Rationality and Limitations

Species’ suitable habitats are shaped by a variety of biotic and abiotic factors [65]. To
enhance the realism of our predictions, we built a CHS model by integrating climate, soil,
and landscape variables, following established methodologies [14–16,46,47]. Additionally,
to minimize model selection bias, we applied an ensemble model (EM) strategy for each
variable category. After filtering for algorithmic and single-model performance (TSS ≥ 0.7,
AUC ≥ 0.9), our EMs demonstrated excellent performance. Therefore, the species dis-
tribution models (SDMs) and CHS model results are considered adequate for predicting
potential suitable habitats for D. latiflorus.

This study focused solely on the influence of abiotic factors such as climate, soil, to-
pography, vegetation, and land use on species distribution. However, in reality, species dis-
tribution is also influenced by biotic factors like competition, parasitism, and predation [96].
Addressing these factors requires more complex and integrated SDMs, highlighting a
critical direction for future model development [97]. Moreover, variables such as UV-B
radiation, soil, vegetation, and land use were assumed to be constant in all future scenarios
due to data limitations. These variables may not remain unchanged over the extended
period from the present to the 2070s.

Another limitation of this study is that it did not account for migration rates, assuming
instead that species have unlimited dispersal capabilities to move to any projected suitable
habitats. This assumption introduces a degree of uncertainty in our predictions. Future
research should aim to determine the migration rates of D. latiflorus to enhance prediction
accuracy [98,99]. Despite these limitations, our study can provide a valuable insight into
how climate, soil, and landscape factors influence the suitable habitats of D. latiflorus in
China and the future changes in distribution patterns under climate change.

5. Conclusions

The present study developed a comprehensive habitat suitability (CHS) model in-
tegrating bioclimatic, UV-B radiation, soil attribute, topographical, vegetation, and land-
use factors to project the suitable habitats and distribution dynamics of D. latiflorus in
response to climate change. The projected current suitable habitats of D. latiflorus cover
28.95× 104 km2, primarily located in South China and the Sichuan Basin, including Sichuan,
Chongqing, Fujian, Guangdong, Guangxi, Taiwan, Hainan, and Yunnan. The most influen-
tial factors were the joint effect of annual mean temperature (Bio1) and annual precipitation
(Bio12), cation exchange capacity in the 20–40 cm soil layer (CECc 20–40 cm), vegetation
type, and elevation.

Future scenarios show an initial slight expansion of suitable habitats followed by
a contraction trend, along with a northward shift in latitude and migration to higher
elevations compared to the current distribution. The Sichuan Basin (Sichuan–Chongqing
border) was identified as a climatically stable area that could serve as a focal point for
germplasm development and conservation.
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Our findings underscore the critical impact of climate change on D. latiflorus distri-
bution, highlighting the need for proactive development and conservation strategies. The
stability of the Sichuan Basin offers a key opportunity for germplasm development and
conservation, ensuring the species’ long-term survival and its ecological and economic
contributions. Decision makers should prioritize these stable regions and consider habitat
shifts to mitigate climate change effects, thereby preserving the biodiversity, ecological
benefits, and industrial uses of D. latiflorus forests.
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