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Abstract: Liver fibrosis is an important step in the transformation of chronic liver disease into cirrhosis
and liver cancer, and structural changes and functional disorders of liver sinusoidal endothelial cells
(LSECs) are early events in the occurrence of liver fibrosis. Therefore, it is necessary to identify the
key regulatory genes of endothelial dysfunction in the process of liver fibrosis to provide a reference
for the diagnosis and treatment of liver fibrosis. In this study, we identified 230 common differentially
expressed genes (Co-DEGs) by analyzing transcriptomic data of primary LSECs from three different
liver fibrosis mouse models (carbon tetrachloride; choline-deficient, I-amino acid-defined diet; and
nonalcoholic steatohepatitis). Enrichment analysis revealed that the Co-DEGs were mainly involved
in regulating the inflammatory response, immune response, angiogenesis, formation and degradation
of the extracellular matrix, and mediating chemokine-related pathways. A Venn diagram analysis
was used to identify 17 key genes related to the progression of liver cirrhosis. Regression analysis
using the Lasso-Cox method identified genes related to prognosis among these key genes: SOX4,
LGALS3, SERPINE2, CD52, and LPXN. In mouse models of liver fibrosis (bile duct ligation and
carbon tetrachloride), all five key genes were upregulated in fibrotic livers. This study identified key
regulatory genes for endothelial dysfunction in liver fibrosis, namely SOX4, LGALS3, SERPINE2,
CD52, and LPXN, which will provide new targets for the development of therapeutic strategies
targeting endothelial dysfunction in LSECs and liver fibrosis.

Keywords: liver fibrosis; liver sinusoidal endothelial cells; endothelial dysfunction; transcriptomics;
SOX4; LGALS3

1. Introduction

Liver fibrosis is the diffuse overdeposition and abnormal distribution of extracellular
matrix in the liver, which is the pathological repair response of the liver to chronic injury
and is also a key step in the progression of various chronic liver diseases to cirrhosis and
an important link that affects the prognosis of chronic liver diseases. If left untreated,
it can progress to cirrhosis and liver cancer and induce various end-stage liver disease
complications. Liver fibrosis is caused by the repeated and long-term effects of one or more
etiologic factors on the liver, and its main causes include alcohol-associated liver disease,
nonalcoholic fatty liver disease, hepatitis B or C infection, autoimmune liver disease, and
cholestatic liver injury [1].

In clinicopathologic staging diagnosis, liver fibrosis can be divided into stages I to IV,
where 1V is the early stage of cirrhosis. And cirrhosis can be subdivided into compensated
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cirrhosis and decompensated cirrhosis. Cirrhosis is widely prevalent worldwide, with the
Global Burden of Disease statistics in 2017 showing that 1.5 billion people worldwide have
chronic liver disease or cirrhosis [2]. The number of patients with compensated cirrhosis
increased from 65.95 million in 1990 to 112 million in 2017, and the number of patients
with decompensated cirrhosis increased from 5.2 million in 1990 to 10.64 million in 2017 [3].
Liver cirrhosis causes a total of 1.32 million deaths worldwide (accounting for 2.4% of
total global deaths), two-thirds of which are men [3]. Compared with those in healthy
populations, patients with compensated and decompensated cirrhosis have a five-fold
and ten-fold increased risk of death, respectively [4]. The 1- and 5-year survival rates for
compensated cirrhosis patients were 87.3% and 66.5%, respectively, while the 1- and 5-year
survival rates for decompensated cirrhosis patients were 75.0% and 45.4%, respectively [4].
The median survival time for patients with compensated cirrhosis is 12 years, while it
decreases to 2—4 years after progression to decompensated cirrhosis [5]. Despite the severity
of the current disease situation, there are still no FDA-approved drugs that can effectively
treat liver fibrosis or cirrhosis.

The pathogenesis of liver fibrosis is complex and involves the coregulation of multiple
cell types, among which endothelial cells, as one of the major components of the hepatic
microvascular system, have an important influence on the development of liver fibrosis.
Liver sinusoidal endothelial cells (LSECs), the most abundant type of nonparenchymal cell
in the liver, have multiple functions, such as blood flow regulation, selective permeability,
endocytosis clearance, and immunomodulation, and play important roles in maintaining
normal physiological processes and immune homeostasis in the liver [6,7]. LSECs differ
from other endothelial cells in that they lack an organized basement membrane and have
many fenestrae. These characteristics endow LSECs with selective permeability, facilitating
the exchange of oxygen, nutrients, or metabolic waste between liver cells and blood [6,8].
Structural changes in LSECs and their dysfunction are early events in the development of
hepatic fibrosis, during which LSECs lose their protective properties and, instead, possess
vasoconstrictive, proinflammatory, and prothrombotic functions [9]. In addition, basement
membrane formation and loss of fenestrae impede hepatocyte-oxygen exchange, leading
to hepatocyte necrosis and apoptosis and the secretion of damage-associated molecular
patterns (DAMPs). DAMPs and cytokines secreted by LSECs further activate hepatic
stellate cells, leading to excessive production and deposition of extracellular matrix (ECM),
thereby promoting the development of liver fibrosis [10]. Therefore, the identification of
key genes involved in endothelial dysfunction in LSECs during liver fibrosis may provide
new targets for the treatment of liver fibrosis.

Transcriptome analysis, a powerful high-throughput sequencing technology, provides
a powerful tool for revealing gene expression profiles and regulatory networks. In this
study, we used public datasets from the Gene Expression Omnibus (GEO) database to mine
the transcriptome data of primary LSECs in different liver fibrosis model mice, identify
common differentially expressed genes (Co-DEGs), and explore the biological functions
of these genes to further study the molecular mechanism of endothelial dysfunction in
LSECs during liver fibrosis. We then identified genes in the Co-DEGs that were associated
with the progression and prognosis of cirrhosis and verified the expression of these genes
in liver fibrosis model mice. This study, focusing on LSECs and the molecular bases of
endothelial dysfunction during liver fibrosis from different mice models, found that SOX4,
LGALS3, SERPINE2, CD52, and LPXN are potential key genes associated with endothelial
dysfunction in liver fibrosis.

2. Materials and Methods
2.1. Data Sources for the Microarray

Gene expression profiling datasets were downloaded from the GEO (http://www.
ncbi.nlm.nig.gov/geo/, accessed on 20 March 2024) database (Table 1), including tran-
scriptome data of primary LSECs induced by 3 different models of hepatic fibrosis in
mice, namely carbon tetrachloride (CCL4) (GSE120281), choline-deficient, l-amino acid-
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defined (CDAA) diet (GSE140994), and nonalcoholic steatohepatitis (NASH) (GSE119340).
The GSE84044 and GSE139602 datasets were used for different stages of human cirrhosis,
and GSE14520 was used for the prognosis of patients with HBV-associated cirrhosis and
hepatocellular carcinoma.

Table 1. Basic information about the GEO datasets.

Dataset Platform Etiology Number of Samples Ref.

. . N Fibrotic LSECs =3
GSE120281 GPL21493 CClA4 liver fibrosis mice Quiescent LSECs = 3 [11]

. . L Fibrotic LSECs =5
GSE140994  GPL24557 CDAA liver fibrosis mice Quiescent LSECs = 5 [12]

Fibrotic LSECs =3

GSE119340 GPL23479 NASH liver fibrosis mice Quiescent LSECs = 3 [13]
S0 =43
. . S1=20
GSE84044  GPL570 Eaf:sg HBV cirrhosis $2=33 [14]
S3=18
S4=10
Healthy = 6
Human chronic liver Fibrosis =5
GSE139602 GPL13667 . . Compensated cirrhosis = 8 [15]
disease patients D . .
ecompensated cirrhosis = 12
ACLF =8
GSE14520  GPL3g21 ~ 1iuman hepatocellular HCC =212 [16]

carcinoma patients

2.2. Identification of Differentially Expressed Genes

Differential analysis of the transcriptome datasets of LSECs induced by three different
models of liver fibrosis in mice was performed using the R package “limma”, and volcano
maps and heatmaps were generated using the online platform hiplot (https:/ /hiplot.org,
accessed on 25 March 2024) [17]. The screening criteria were a |log2-fold change (FC)| > 1
and an adjusted p-value < 0.05. On this basis, the above three groups of differentially
expressed genes and genes related to endothelial dysfunction of liver fibrosis-derived LSECs
were clustered, and a Venn diagram was drawn to visualize a collection of differentially
expressed genes related to liver fibrosis dysfunction in LSECs.

2.3. Functional Enrichment and GSEA

To gain a deeper understanding of the main biological functions of the Co-DEGs,
we used the Metascape (http://metascape.org, accessed on 25 March 2024) platform to
analyze the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Reactome pathways [18]. An adjusted p-value < 0.05 was considered significant. Moreover,
to gain a deeper understanding of the biological processes associated with endothelial
dysfunction in LSECs during liver fibrosis, we performed GSEA on the GSE120281 dataset
using the clusterProfiler (version 4.8.1) software package.

2.4. Selection and Analysis of PPI Network Core DEGs

PPI networks for Co-DEGs were constructed using STRING (http:/ /string-db.org,
accessed on 10 April 2024) (version 12.0). Combinatorial scores above 0.4 were used as a
selection threshold. The PPI networks were then visualized using Cytoscape (http:/ /www.
cytoscape.org, accessed on 10 April 2024) (version 3.10.2). Six common algorithms (EPC,
MCC, MNC, Radiality, Degree, and Closeness) of the Cytoscape plugin cytoHubba were
used to evaluate and filter the core Co-DEGs [19].
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2.5. Machine Learning of Lasso and Random Forest

We used the Sangerbox (http:/ /vip.sangerbox.com/, accessed on 12 April 2024) plat-
form to integrate survival time, survival status, and gene expression data and used the
Lasso—Cox method to perform regression analysis [20]. In addition, univariate logistic
regression was performed on the key genes.

2.6. Liver Fibrosis Mouse Model

Mouse liver fibrosis models were generated using BDL and carbon tetrachloride
(CCL4). Six-week-old C57BL/6 male mice were subjected to BDL for 18 days after BDL,
while control mice had their wounds sutured after laparotomy. The CCL4 liver fibrosis
model was induced by intraperitoneal injection of 1 pL/g body weight CCL4 (Sigma-
Aldrich #3319961, Saint Louis, MO, USA) into 6-week-old C57BL/6 male mice. The control
mice were injected with the same dose of olive oil twice a week for 6 weeks. Four mice
were used for each of the above groups. No more than 5 mice were kept in each cage. All
operations were performed in accordance with the “GIBH Experimental Animal Breed-
ing, Management and Use Manual” and reported to the Experimental Animal Center of
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences.

2.7. Histology and Immunohistochemistry

Immediately after sacrifice, mouse livers were fixed with 4% paraformaldehyde, and
after tissue processing and paraffin embedding, 4 um-thick sections were cut for further
staining. After deparaffinization, the paraffin sections were stained with H&E or Sirius red,
followed by dehydration and mounting. For immunohistochemistry, after deparaffinization
of the sections, heat-induced antigen retrieval was conducted using citrate-EDTA buffer
for 15 min, followed by blocking at room temperature for 1 h. Subsequently, the sections
were incubated overnight with a primary antibody against x-SMA (abcam, Cambridge,
UK, ab124964, 1:1000) or LYVEL1 (abcam, ab281587, 1:1000) and with an HRP-labeled goat
anti-rabbit antibody (KC-RB-035; Aksomics, Shanghai, China) utilized as the secondary
antibody. Dako AEC substrate chromogen (K3468, Agilent Technologies, Santa Clara, CA,
USA) was added for 1 min, and counterstaining with hematoxylin was performed to stain
the nuclei, followed by dehydration and mounting.

2.8. Quantitative Reverse Transcription-PCR (qRT-PCR)

RNA was extracted using TRIzol (15596-018, Life Technologies, Carlsbad, CA, USA)
and reverse transcribed to cDNA using ReverTraAce qPCR RT Master Mix (FSQ-301,
Toyobo, Tokyo, Japan). cDNA was subsequently subjected to qRT-PCR using ChamQ SYBR
qPCR Master Mix (Vazyme, Nanjing, China, Q311-02). Using 18s as an endogenous control,
the results were calculated using the 244t method. The sequences of primers used are
listed in Table 2.

Table 2. Primer sequences for qRT-PCR.

Gene Forward (5' > 3') Reverse (5' > 3')

Sox4 CCTCGCTCTCCTCGTCCT TCGTCTTCGAACTCGTCGT

Lgals3 CACTGACGGTGCCCTATGAC TTGGGTTTCACTGTGCCCAT
Serpine2 CAGATCATCAAGTCACGGCCT ACCGTGGAGAGCTGCTTCTTT
Lpxn GCTGCTCCCATCACAGATAAAGTG TCGGCAGTATGGCTTCTTGTCCTTC
Cd52 CTCTTCCTCACTATCATTCTTCTGG CTTTAGCCTCCTTGGATATCTGCTA
Acta? TCGGATACTTCAGCGTCAGGA GTCCCAGACATCAGGGAGTAA

18s GTCTGTGATGCCCTTAGATG AGCTTATGACCCGCACTTAC

2.9. Statistical Analysis

Differences between two groups were compared using an unpaired Student’s ¢ test.
The correlation between two groups was calculated using Pearson’s correlation anal-
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ysis. The data are presented as the means + SDs. A p-value less than 0.05 indicated
statistical significance.

3. Results
3.1. Identification of Co-DEGs Associated with Endothelial Dysfunction in Liver Fibrosis LSECs

To identify differentially expressed overlapping dysfunction-related genes in liver
fibrosis-derived LSECs, we first performed differential expression analysis of liver fibro-
sis LSECs induced by different models. The results showed that 1498 upregulated and
434 downregulated genes were differentially expressed in LSECs during liver fibrosis
induced by CCL4 in the GSE120281 dataset (Figure 1A). In the GSE140994 dataset, 657 up-
regulated genes and 263 downregulated genes were differentially expressed in LSECs asso-
ciated with liver fibrosis induced by CDAA diet (Figure 1A). A total of 1198 genes, whose
expression was differentially expressed in LSECs from mice with diet-induced NASH-
related liver fibrosis, were upregulated, and 191 genes were downregulated (Figure 1A).
Supplementary Table S1 provides detailed information on the above differentially ex-
pressed genes. Cluster analysis of the above differentially expressed genes revealed a
total of 230 Co-DEGs, including 198 upregulated genes and 32 downregulated genes
(Figure 1B and Supplementary Table S2). A heatmap of the expression of these Co-DEGs in
the dataset of LSECs from mice with liver fibrosis induced by different models is shown in
Figure 1C.
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Figure 1. Identification of Co-DEGs in LSECs from mice with liver fibrosis (CCL4, CDAA, and
NASH). (A) Volcano plot showing DEGs in the GSE120281, GSE140994, and GSE119340 datasets.
(B) Venn diagram showing Co-DEGs in LSECs from different liver fibrosis models. (C) Heatmap
showing the expression of Co-DEGs in the dataset.
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3.2. Functional Enrichment and GSEA of Co-DEGs

To investigate the role of Co-DEGs in the endothelial dysfunction process of liver
fibrotic LSECs, GO, Reactome, and KEGG functional enrichment analyses were conducted.
GO enrichment analysis revealed that the main molecular functions of these genes included
chemokine activity, collagen binding, chemokine receptor binding, cytokine binding, extra-
cellular matrix structural constituents, growth factor binding, integrin binding, cytokine
activity, metallopeptidase activity, and glycosaminoglycan binding (Figure 2A). The func-
tions of Co-DEGs in cellular components included integrin complex, collagen-containing
extracellular matrix, external side of the plasma membrane, extracellular matrix, external
encapsulating structure, receptor complex, focal adhesion, membrane raft, plasma mem-
brane protein complex, and vacuole. At the same time, the biological processes in which
the Co-DEGs participate mainly included the regulation of vascular-associated smooth
muscle cell proliferation, the regulation of tumor necrosis factor production, inflamma-
tory response, extracellular matrix organization, chemotaxis, positive regulation of cell
migration, positive regulation of response to external stimulus, negative regulation of
immune system process, regulation of cell activation, and tube morphogenesis (Figure 2A).
Reactome pathway analysis revealed that Co-DEGs are involved mainly in the formation
and degradation of the extracellular matrix and collagen (Figure 2A).
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Figure 2. Functional enrichment analysis of Co-DEGs. (A) GO and Reactome functional annotation.

(B) KEGG pathway enrichment analysis. (C) GSEA validation of selected signaling pathways in the
GSE120281 dataset.
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KEGG pathway analysis revealed that the signaling pathways associated with the
Co-DEGs included ECM-receptor interaction, phagosome, focal adhesion, antigen pro-
cessing and presentation, cell adhesion molecules, cytokine—cytokine receptor interaction,
chemokine signaling pathways, TGF-beta signaling pathway, NF-kappa B signaling path-
way, and PI3K-Akt signaling pathway (Figure 2B). The above functional enrichment analy-
sis revealed that Co-DEGs from LSECs during liver fibrosis mainly regulate inflammation,
immunity, extracellular matrix formation, and degradation and mediate chemokine-related
pathways. Furthermore, we performed gene set enrichment analysis (GSEA) on these major
pathways in the CCL4-induced liver fibrosis dataset GSE120281. The results showed that
the chemokine-mediated signaling pathway, extracellular matrix organization, inflamma-
tory response, and immune response were activated (Figure 2C).

3.3. Screening of the Hub Genes via the Protein—Protein Interaction Network

In order to explore the hub genes in these 230 Co-DEGs and their related biologi-
cal functions, by using the STRING analyses, protein—protein interaction (PPI) of these
230 Co-DEGs was obtained, followed with cytoHubba/Cytoscape and six algorithms anal-
yses, and the 20 hub genes were generated (Table 3). The 15 overlapping hub genes were
identified via Venn diagram analysis (Figure 3A). These hub genes included numerous
chemokines and receptors (Ccl2, Ccl3, Ccl4, and Cxcr4) and form a complex interaction
network (Figure 3B). Enrichment analysis revealed that these genes are involved in regu-
lating biological processes, including the inflammatory response, eosinophil chemotaxis,
angiogenesis regulation, integrin cell surface interactions, ECM, and cytokine production
(Figure 3C).
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Figure 3. Screening and functional analysis of the hub genes for the Co-DEGs. (A) Six algorithms
for screening overlapping regulatory genes. (B) PPI network of the overlapping regulatory genes.
(C) Functional enrichment analysis of overlapping regulatory genes.
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Table 3. The top 20 Co-DEGs rank in cytoHubba.
EPC MCC MNC Degree Radiality Closeness
Itgax Itgax Mmp13 Itgax Itgax Itgax
Igfl Cybb Itgax Igfl Cybb Cybb
Cd68 Cd6s Igfl Cde8 Igfl Igfl
Cxcr4 Cd74 Cdes8 Cd74 Cdes Cde8
Ctss Cxcr4 Cxcr4 Cxcr4 Cxcr4 Cxcr4
Tyrobp Ctss Ctss Ctss Ctss Ctss
Ccl4 Tyrobp Tyrobp Tyrobp Tyrobp Tyrobp
Cd14 Ccl4 Ccl4 Ccl4 Ccl4 Ccl4
Cd44 Cd14 Cd44 Cd44 Cd44 Cd44
Ccl2 Cd44 Ccl2 Ccl2 Ccl2 Ccl2
Cx3crl Ccl2 Fnl Fnl Cx3crl Cx3crl
Fnl Cx3Berl Cd34 Cd34 Fnl Fnl
Cd34 Fnl Lgals3 Lgals3 Cd34 Cd34
Lgals3 Cd34 Cd163 Cd163 Lgals3 Lgals3
Cd163 Trem?2 Src Src Cd1e3 Cd163
Ccl3 Lgals3 Ccl3 Ccl3 Src Src
Timp1 Cd163 Timp1 Timp1 Ccl3 Ccl3
Itgb2 Ccl3 Itgb2 Itgb2 Timpl1 Timp1
Collal Itgb2 Collal Collal Itgb2 Itgb2
Fegrl Fcgrl Fcgrl Fegrl Fegrl Fegrl

EPC, edge percolated component; MCC, maximum clique centrality; MNC, maximum neighborhood component.

3.4. Correlations of Co-DEGs with the Progression of Human Liver Cirrhosis

To further screen the genes among the Co-DEGs correlated with the progression of cir-
rhosis, we performed pseudotemporal analysis of the expression of these genes at different
stages of liver fibrosis. GSE84044 contains data on 124 patients with liver fibrosis grades
ranging from S0 to S4. The expression profiles of Co-DEGs in GSE84044 were extracted,
and the mean value was taken for each set of data. Trend analysis was performed, and an
expression heatmap was generated. The results showed that the expression of Co-DEGs
in the GSE84044 dataset could be categorized into six groups (Figure 4A), which included
a continuously upregulated C6 cluster (50 genes) and a continuously downregulated C4
cluster (20 genes). The GSE139602 dataset contains six groups: healthy controls, patients
with fibrosis, patients with compensated cirrhosis, patients with decompensated cirrhosis,
and patients with acute-on-chronic liver failure (ACLF). The expression of Co-DEGs in the
GSE139602 dataset can be categorized into nine classes (Figure 4B), including the continu-
ously upregulated H8 cluster (34 genes) and the continuously downregulated H9 cluster
(24 genes). Venn diagram analysis of the above differentially expressed genes revealed
twelve genes whose expression was serially upregulated and five genes whose expression
was serially downregulated during the progression of liver fibrosis (Figure 4C). The biolog-
ical processes associated with these genes included mainly cell population proliferation,
transforming growth factor beta production, regulation of cell population proliferation,
blood vessel development, vasculature development, the transforming growth factor beta
receptor signaling pathway, cell adhesion, tissue development, multicellular organismal
processes, and cell adhesion mediated by integrins (Figure 4D). Among them, ITGAV,
ITGAX, SOX4, CCL2, SERPINE2, LPXN, LGALS3, HPGDS, and CNTFR can regulate multi-
ple biological processes, while MPP6, CD52, and SLC16A10 are not involved in the above
biological processes.
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Figure 4. Pseudotemporal analysis of Co-DEGs involved in the progression of human cirrhosis.
(A) Expression clustering of Co-DEGs in different grades of liver fibrosis. (B) Expression clustering of
Co-DEGs in different stages of liver cirrhosis. (C) Common key genes associated with the progression
of liver cirrhosis among the Co-DEGs. (D) Functional enrichment analysis of key genes.

3.5. Co-DEGs and Survival Status of Patients with Liver Cirrhosis

Due to the small proportion of biopsies from cirrhotic patients, it is difficult to obtain a
large sample size for transcriptome analysis and prognostic tracking; therefore, we used the
GSE14520 hepatocellular carcinoma patient transcriptome dataset. This dataset contains
transcriptomic data and prognostic information on 386 patients with resected hepatocel-
lular carcinoma, and after excluding non-HBV-positive patients and some missing data,
a total of 212 samples were included in the present analysis, 195 of which had comorbid
cirrhosis. We performed Lasso regression on the above 17 Co-DEGs that correlated with
cirrhosis progression in the GSE14520 dataset to further screen for characterized genes
associated with prognosis. Lasso regression is a machine-learning algorithm involving the
assumption of a linear relationship and an L1 regularization penalty. First, Lasso regression
with the minimized binomial deviation was performed through 10-fold cross-validation.
Then, genes with nonzero regression coefficients were selected for the feature genes of the
Co-DEGs. Seven Co-DEGs (COL1A2, MPP6, SOX4, LGALS3, SERPINE2, LPXN, and CD52)
were included in the simplified Lasso regularization model from GSE14520 (Figure 5A).
Moreover, the prognostic significance of each gene was assessed by integrating survival
time, survival status, and gene expression data using univariate logistic regression analysis
(Figure 5B). The results showed that the above genes, SOX4, SERPINE2, LPXN, LGALS3,



Curr. Issues Mol. Biol. 2024, 46

8006

COL1A2, CD52, and MPP6, which were screened by Lasso regression, were correlated with
prognosis. Furthermore, we grouped all patients according to noncirrhotic and cirrhotic
low expression and cirrhotic high expression and generated survival curves for the seven
key genes (Figure 5C). The log-rank test was conducted to analyze the difference of survival
curves among those three clusters of the seven genes, and the p-values for each cluster pair
were listed in Figure 5C. Higher expressions of SOX4, SERPINE2, LGALS3, and COL1A2
were associated with poor prognosis; however, the lower expressions of LPXN and CD52
were also associated with poor prognosis, but either higher or lower expressions of MPP6
had no significant association with prognosis. In more detail, the p-values of the survival
curves with high expression vs. the counterpart of low expression are as follows: SOX4
(pMigh vs-low = 0,00018), SERPINE2 (phighvs-low — 0.029), CD52 (phigh vs-low = (0,028), and
COL1A2 (phighvs-low = 0,031). The p-values of LGALS3"igh vs-1ow and [ pXNhigh vs- low yere
close to 0.05; however, MPP6M8" vs- 1oW reached a p-value of 0.28 (Figure 5C).
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Figure 5. Machine analysis and prognostic results of key genes in the HBV-associated cirrhosis
hepatocellular carcinoma patient dataset GSE14520. (A) Lasso analysis of key genes in GSE14520.
(B) Univariate logistic regression analysis of key genes in GSE14520. (C) Prognostic analysis of key
genes in cirrhotic HCC patients; p-values for cluster-pair comparisons at the top and multivariate
p-values at the bottom.

Considering that COL1A2 is a collagen, we performed a correlation analysis between
SOX4, LGALS3, SERPINE2, CD52, LPXN, and MPP6 and the progression of cirrhosis. The
Pearson correlation coefficient was |R| > 0.3, and a p-value < 0.05 indicated a correlation.
SOX4, LGALS3, and SERPINE2? were strongly correlated with liver fibrosis grade and liver
disease progression, with correlation coefficients (R) as high as 0.62 and 0.84 for SOX4
and 0.54 and 0.73 for LGALS3, respectively (Figure 6A,B). The correlation coefficients
(R values) of SERPINE? with liver fibrosis grade and liver disease progression were 0.61
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and 0.63, respectively. CD52 and LPXN were moderately correlated with both liver fibrosis
grade and liver disease progression, while MPP6 was weakly correlated with liver fibrosis
grade and liver disease progression (Figure 6A,B). However, the prognostic value of MPP6
did not differ between the high- and low-expression groups with cirrhosis (Figure 5C).
Therefore, we analyzed the coexpression network and related functions of five key genes,
SOX4, LGALS3, SERPINE2, CD52, and LPXN, using GeneMANIA. These genes exhibited
a complex PPI network with 77.64% physical interactions, 8.01% coexpression, 5.37%
predicted interactions, 3.63% colocalization, 2.87% genetic interactions, and 1.88% pathways
(Figure 6C). Figure 6D shows the full names and related functions of these key genes.
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Figure 6. Correlation and interaction analysis of key genes associated with liver fibrosis and liver
disease progression. (A) Correlations between SOX4, LGALS3, SERPINE2, CD52, LPXN, and MPP6
expression and liver fibrosis grade. (B) Correlations of SOX4, LGALS3, SERPINE2, CD52, LPXN,
and MPP6 expression and liver disease progression. (C) GeneMANIA was used to analyze the
coexpression network and related functions of key genes. (D) Full name and function of key genes.

3.6. Verification of the Expression of Key DEGs in Mice with Liver Fibrosis

To verify the expression of the above key DEGs in the livers of mice with fibrosis,
we generated bile duct ligation (BDL) and CCL4 liver fibrosis models in C57BL/6 mice.
Hematoxylin—eosin (H&E) staining revealed that the hepatocytes in the BDL and CCL4
groups were disordered, the liver lobule structure was blurred, the liver sinusoids were
expanded, and obvious fibrotic areas were apparent (Figure 7A,B). Sirius red is a strongly
acidic dye that binds to collagen fibers and appears red in color. Compared with those
in the control group, intrahepatic collagen deposition was greater in the BDL and CCL4
model groups (Figure 7A,B).
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Figure 7. Verification of the expression of key genes in mice with BDL- and CCL4-induced liver
fibrosis. (A) H&E, Sirius red, a-SMA, and LYVEL staining of BDL model mice. (B) H&E, Sirius red,
«-SMA, and LYVE1 staining of CCL4 model mice. (C) qRT-PCR was used to detect the expression of
Acta2, Sox4, Lgals3, Sepine2, Cd52, and LPXN in the liver tissue of BDL model mice. (D) gRT-PCR was
used to detect the expression of Acta2, Sox4, Lgals3, Sepine2, Cd52, and Lpxn in the liver tissue of CCL4
model mice. The data are presented as the means £ SDs. ** p < 0.01, *** p < 0.001, *** p < 0.0001.
Scale bar: 200 um (H&E, Sirius red, and «x-SMA); 100 um (LYVEL1).

Immunohistochemical staining revealed obvious x-SMA-positive staining in hepatic
stellate cells around liver sinusoids and in fibrotic areas, indicating that these cells had
been activated and transformed into fibrosis-related fibroblasts. Immunohistochemical
staining for LYVE1, a marker of LSECs, showed that LYVE1 expression was downregulated
during liver fibrosis and was accompanied by disorganization of LSECs (Figure 7A,B). In
addition, quantitative reverse transcription-PCR (qRT-PCR) was performed on liver tissue
samples, and the RNA levels of Acta2 were significantly increased in the BDL and CCL4
groups (Figure 7C,D). These results indicate that the liver fibrosis model was successfully
established. Subsequently, we conducted gRT-PCR analysis to examine the expression of
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five key genes (SOX4, LGALS3, SERPINE2, CD52, and LPXN) in the liver tissues of mice
with liver fibrosis. The results showed a significant increase in the expression of all key
genes during liver fibrosis (Figure 7C,D). Among these genes, SOX4, LGALS3, SERPINE2,
and CD52 were upregulated more strongly in fibrotic livers, while LPXN was upregulated
less strongly. Therefore, SOX4, LGALS3, SERPINE2, CD52, and LPXN may serve as key
regulatory genes for endothelial dysfunction in liver fibrosis LSECs.

4. Discussion

Liver fibrosis is an important stage in the transformation of chronic liver disease to cir-
rhosis and hepatocellular carcinoma and is mainly characterized by the massive production
of ECM and its deposition in the sinusoidal space, leading to structural destruction of the
hepatic lobules and revascularization. The pathological process underlying the occurrence
and development of liver fibrosis is very complex and involves liver parenchymal cells,
nonparenchymal cells, a variety of cytokines, and noncellular components. Among these,
hepatic microenvironmental changes caused by dysfunction of LSECs are the initial events
in the development of hepatic fibrosis and an important part of disease progression. The
hepatic sinusoids are the main site of substance exchange between hepatocytes and blood,
and LSECs play an important role as a major component of the hepatic sinusoids. LSECs
play a crucial role in mediating complex physiological functions, such as energy and ma-
terial exchange, phagocytosis, and immune regulation, between hepatic sinusoidal blood
flow and hepatic parenchymal cells, utilizing selective permeability of the cell membrane,
expression of various endocytic clearance receptors, and secretion of cytokines and inflam-
matory mediators [21-23]. Under physiological conditions, LSECs have antifibrotic and
anti-inflammatory properties, but dysfunctional LSECs can induce pathological vascular
proliferation and collagen deposition in liver sinusoids, promote liver tissue inflamma-
tion, and lead to the progression of liver fibrosis [24]. Therefore, maintaining or restoring
the healthy phenotype of LSECs is an important strategy for preventing or alleviating
liver diseases.

Our study identified 230 Co-DEGs by analyzing transcriptomic data of primary
LSECs from three different liver fibrosis mouse models (CCL4, CDAA, and NASH). These
Co-DEGs are mainly involved in regulating inflammation, immunity, extracellular matrix
formation, and degradation and mediating chemokine-related pathways. The Co-DEGs
included numerous upregulated chemokines or their receptors (Ccl2, Cxcl5, Cxcr4, etc.)
(Supplementary Tables S1 and S2), which signifies that LSECs have the ability to activate
inflammatory cells to participate in the inflammatory response of hepatic tissues and to
activate hepatic stellate cells and induce the secretion of the latter into the ECM [25-28].
Moreover, GO enrichment analysis of the Co-DEGs and hub genes also revealed that LSECs
participate in angiogenesis during the occurrence of liver fibrosis. The terminal differ-
entiation marker Cd209b of LSECs was significantly downregulated in all three groups
of liver fibrosis models [29], whereas the capillarization marker gene Cd34 and the Edn1
receptor Ednrb of LSECs were significantly upregulated in all three groups of liver fibrosis
models (Supplementary Table S1) [30,31]. Fibrinogen, collagen, nidogen, and laminins
are basement membrane components of endothelial cells [32], and genes corresponding
to the expression of these proteins are all significantly upregulated during liver fibrosis
(Supplementary Table S1), which is consistent with the synthesis of numerous ECM and
collagen proteins according to enrichment analysis (Figure 2).

By analyzing the Co-DEGs associated with the progression and prognosis of liver
cirrhosis, we identified five key genes: SOX4, LGALS3, SERPINE2, CD52, and LPXN. These
genes are all gradually upregulated during the disease progression of patients with liver cir-
rhosis. Additionally, we verified the upregulation of these genes in liver fibrosis in the BDL-
and CCL4-induced mouse models. Interestingly, among these key genes, LGALS3 is the
hub gene in the PPI interaction network and is the only key gene that has been reported to
regulate cirrhosis progression. LGALS3 encodes the galectin-3 protein, which has multiple
functions, including regulation of cell adhesion, apoptosis, immunity, and angiogenesis. Its
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expression is upregulated in numerous fibrotic diseases, such as lung, myocardial, and renal
diseases [33-35]. Galectin-3 is also upregulated in patients with cirrhosis and hepatocellular
carcinoma, and its high expression correlates with immune infiltration, invasion, metastasis,
and poor prognosis in hepatocellular carcinoma patients [36-39]. In liver fibrosis, galectin-3
is required for TGF-3-mediated fibroblast activation and ECM production [40]. Currently,
several inhibitors targeting Galectin-3 have been developed for disease therapy [41-43].
Clinical trials of the galectin-3 inhibitors GB1211 and Belapectin for the treatment of liver
cirrhosis are currently in phase II clinical trials (ClinicalTrials.gov Identifier: NCT05009680,
NCT02462967). The galectin-3 inhibitor GB0139, which targets idiopathic pulmonary
fibrosis, is also in clinical phase IIb (ClinicTrials.gov Identifier: NCT03832946).

Based on our analyses on a publicly available transcriptome database, we found that
SOX4 was upregulated in LSECs from different liver fibrosis models. SOX4 is a member of
the SOX transcription factor family and plays an important role in cell fate determination
and tissue morphogenesis [44,45]. SOX4 expression is not only associated with biliary
reprogramming and steatohepatitis but also with hepatocellular carcinoma progression [46].
During liver development, SOX4 is involved in the development of primary cilia and
in the normal formation, elongation, and branching of the biliary tree [47]. whereas
cholestatic liver injury can upregulate the expression of SOX4 and induce changes in the
chromatin structure of hepatocytes, thereby promoting biliary reprogramming [48]. SOX4
in the liver binds to the proximal promoter region of SREBP-1c and upregulates SREBP-1c
expression, promoting hepatic steatosis [49]. High expression of the proto-oncogene SOX4
in hepatocellular carcinoma tends to be associated with increased epithelial mesenchymal
transformation, proliferation, metastasis, multidrug resistance, and decreased apoptosis
and is correlated with a poorer prognosis in patients with hepatocellular carcinoma [50-52].
However, until now, there has been no report indicating a linkage of SOX4 with liver
fibrosis. Whether the upregulated expression of SOX4 in liver fibrosis LSECs is related
to LSEC capillarization or the disappearance of fenestrae and the formation of basement
membrane as well as its specific regulatory mechanisms still need further investigations.

SERPINE? encodes the protease nexin-1 protein, a member of the serine protease
inhibitor (SERPIN) superfamily, which is synthesized mainly by endothelial cells, smooth
muscle cells, and fibroblasts, among others [53]. It can participate in physiological processes,
such as blood coagulation, thrombosis, and vascular remodeling, and can also promote
fibrosis and tumor development [53-55]. SERPINE?2 inhibits EGFR protein degradation
through c-Cbl-mediated ubiquitination in hepatocellular carcinoma and activates the EGFR
signaling pathway to promote hepatocellular carcinoma metastasis, whereas inhibition of
the SERPINE2-EGEFR axis both combats distant metastasis and sensitizes cells to therapeu-
tic agents such as sorafenib [56]. CD52 is a glycoprotein composed of 12 amino acids and
anchored to the cell membrane by glycosylphosphatidylinositol, which is predominantly
expressed in lymphocytes and monocytes. The main role of CD52 is to regulate immune re-
sponses, especially by regulating the activation and proliferation of lymphocytes to regulate
the degree and nature of immune cell-mediated immune responses [57,58]. Alemtuzumab,
a polyclonal antibody targeting CD52 on T and B cells, has been approved by the FDA for
the treatment of leukemia and multiple sclerosis. Alemtuzumab selectively binds to CD52
molecules on the surface of B cells and T cells, inhibits abnormal activation of lymphocytes,
and, thereby, delays the occurrence of multiple sclerosis [59]. Other than the discovery that
CD52 is a key gene for angiogenesis in endothelial cells in Hashimoto’s thyroiditis [60],
no additional in-depth studies involving the mechanism of CD52-regulated angiogenesis
have been conducted, and the role of CD52-regulated angiogenesis in hepatic fibrosis needs
to be further explored. LPXN encodes the leupaxin protein, which functions mainly in
the extracellular matrix—intracellular junction structure and has roles in regulating cell
morphology, migration, adhesion, and signaling [61-63].
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5. Conclusions

In our study, we identified endothelial dysfunction in LSECs during liver fibrosis using
bioinformatics analysis and found that the dysfunction mainly involves the inflammatory
response, immune response, angiogenesis, the formation and degradation of the extracellu-
lar matrix, and the mediation of chemokine-related pathways. Moreover, we identified five
key regulatory genes for endothelial dysfunction in liver fibrosis LSECs: SOX4, LGALS3,
SERPINE2?, CD52, and LPXN. We verified that the expression of these genes was upregu-
lated in a mouse model of liver fibrosis. This study not only enhances our understanding
of endothelial dysfunction during liver fibrosis but also provides potential biomarkers and
therapeutic targets for the prevention, diagnosis, and treatment of liver fibrosis.
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www.mdpi.com/article/10.3390/cimb46080473/s1, Table S1: The details of the DEGs; Table S2: The
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