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Abstract: The effects of climate change in the forms of rising sea levels and increased frequency of
storms and storm surges are being noticed across many coastal communities around the United States.
These increases are impacting the timing and frequency of tidal and rainfall influenced compound
groundwater flooding events. These types of events can be exemplified by the recent and ongoing
occurrence of groundwater flooding within building basements at the historic Strawbery Banke
Museum (SBM) living history campus in Portsmouth, New Hampshire. Fresh water and saline
groundwater intrusion within basements of historic structures can be destructive to foundations,
mortar, joists, fasteners, and the overlaying wood structure. Although this is the case, there appears
to be a dearth of research that examines the use of wireless streaming sensor networks to monitor and
assess groundwater inundation within historic buildings in near-real time. Within the current study,
we designed and deployed a three-sensor latitudinal network at the SBM. This network includes the
deployment and remote monitoring of water level sensors in the basements of two historic structures
120 and 240 m from the river, as well as one sensor within the river itself. Groundwater salinity
levels were also monitored within the basements of the two historic buildings. Assessments and
model results from the recorded sensor data provided evidence of both terrestrial rainfall and tidal
influences on the flooding at SBM. Understanding the sources of compound flooding within historic
buildings can allow site managers to mitigate better and adapt to the effects of current and future
flooding events. Data and results of this work are available via the project’s interactive webpage and
through a public touchscreen kiosk interface developed for and deployed within the SBM Rowland
Gallery’s “Water Has a Memory” exhibit.

Keywords: cultural heritage; historic preservation; coastal flooding; climate change; groundwater;
water level monitoring; streaming data; wireless sensor networks; data dashboard

1. Introduction
1.1. Background

This research evaluated the use of an end-to-end water level sensor network (sensor
data collection to public consumption of data) to “remotely sense” the groundwater in-
trusion rates within historic building basements at the Strawbery Banke Museum (SBM)
coastal cultural heritage site in Portsmouth, New Hampshire. This work was completed
in order to measure, assess, and model the timing, quantities, and influences of contribut-
ing drivers of groundwater flooding and to promote more informed flood adaptation,
mitigation, and public engagement activities.

Cultural heritage sites are important assets to humanity because they can help define
a community’s identity, promote diversity, educate the public, contribute to a region’s
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economy, provide creative inspiration to the arts, and encourage tourism [1,2]. Low-
elevation coastal zones (LECZs), less than 10 m above sea level, have been the focus
of human settlement for thousands of years and are home to some of the world’s most
important cultural heritage sites [3,4]. However, ongoing increases in sea levels and coastal
flooding events driven by climate change are putting these sites at risk of accelerated
deterioration and destruction [5–7]. Along US coastlines alone, current 50-year extreme
water levels are expected to be exceeded annually by 2050 [8], and current 100-year extreme
water levels are expected to increase in frequency by 40-fold over the same time period [9].

Flooding events that are caused by multiple environmental drivers, such as rainfall,
king tides, and storm surges happening concurrently or in sequence, are known as com-
pound flooding events [10,11]. These events, due to their boosted ability to increase the
height of local water tables due to the combined effects of tidal forcing and rainwater
saturation of soils [12–15], put local buildings at risk due to the direct and indirect effects
of basement inundations [16,17]. Direct effects of basement inundation include damage
caused to a property through direct contact with waters during a flooding event [17],
such as damage to basement furnaces or water heaters. Indirect effects of basement in-
undations can include the warping of joists, panels, and flooring; rusting of fasteners;
deterioration of foundations and mortar; and mold growth within walls due to exposure to
dampness and increased humidity throughout affected structures [16–20]. Other indirect
effects of increased moisture due to groundwater inundation can include the potential
destabilization of buildings due to the growth of brown and white rot fungus in wooden
structural members that contact foundations, such as sills, plates, and posts [21–23]. These
moisture conditions can also promote infestations of invasive termites that have an increas-
ing potential for the destruction of historic buildings as they migrate northwards with
long-term regional temperature increases [24–27]. Furthermore, the accumulation of salts
in, on, and between materials, known as efflorescence, can result in the delamination of
finishes [28–30], surface marring, corrosion of materials [31], and the internal structural
degradation of bricks and mortars due to expansive forcing [32,33].

Recent studies involving locations with distinct hydrological and geological character-
istics have highlighted the importance of incorporating compound drivers into the design
of flood assessments [7,34]. For instance, Rahimi et al. (2020) [34] modeled local compound
flooding events in the coastal San Leandro watershed of Oakland Flatlands, California,
to assess the capacity of existing drainage infrastructure within constituent communities.
Results showed that the combined effects of sea-level-rise (SLR), groundwater inundation,
and precipitation could potentially flood up to 283 hectares (700 acres) of the area’s built in-
frastructure during compound flooding events, a substantial increase over model scenarios
that did not take into account compound flooding. Further, Wahl et al. (2017) [7] evaluated
literature about the uncertainties of extreme sea levels (ESLs) caused by the combination of
normal wave action, extreme tides, and storm surges beyond just projected sea levels to
understand coastal flood risks better globally. Results showed that both ESL estimates and
SLR projections were needed to estimate the future risk of coastal flooding better.

With regard to coastal cultural heritage buildings, assessments of compound flooding
may have implications with respect to those buildings’ future adaptation and mitigation
strategies. For instance, basements that are more inundated with freshwater from rainwater
saturation of surrounding soils might require the use of sump pumps and a dehumidifier
to help mitigate the effects of the flooding and its associated humidity [35]. However,
basements more inundated with salt water may also require the replacing of foundations
with materials like corrosion-resistant concrete that are less susceptible to salt water corro-
sion [36] or types of granite that are less susceptible to wicking than other materials such as
bricks [37].

In order to assess environmental phenomena, such as groundwater inundation levels
remotely at cultural heritage sites or any locations, it is first necessary to collect data associ-
ated with these phenomena at those locations. One way to do this is with the use of remote
wireless environmental sensors and their associated networks [38]. Wireless environmental
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sensor networks consist of (1) a series of sensor nodes that measure and collect data au-
tonomously, (2) a communications system that transmits the collected data, and (3) a cloud
and network server that stores the data [39]. Some networks also distribute and visualize
their collected data via public-facing web page interfaces, essentially completing an end-to-
end network from data collection to public consumption of measured environmental data.
Some such public interfaces within end-to-end environmental sensor networks include the
Southeast Coastal Ocean Observing Regional Association (SECOORA), Southeast Water
Level Network (SWLN) [40], and the USGS National Water Network [41]. The SWLN
utilizes over 100 water level sensor stations and a public web interface for live flood hazard
monitoring and flood alerts to help promote community resilience and preparedness [40].
The USGS National Water Network web interface provides real-time distributions and
visualizations of sensor water level data, weather data, and flood forecasts from more than
13,500 USGS observation stations across the country. The USGS National Water Network
interface supports local and national decision making, emergency management, and public
safety operations during important hydrological events such as droughts and floods [41].

An assessment of previous research literature reveals several studies that have used
remote wireless environmental sensors to collect and monitor surface water level flood-
ing data [42,43]. For instance, Loftis et al. (2018) [42] deployed a series of streaming
water level (pressure) monitoring sensors along the coast in Hampton Roads, Virginia,
to help establish a regional resilience monitoring network for the area. The data was
used to help drive a street-level flood model that was then validated with crowd-sourced
data and a USGS water level station in 2017 during Hurricanes Jose and Maria. Further,
Mendoza-Cano et al. (2021) [43] developed a wireless sensor network for the collection of
inland data for the city of Colima-Villa de Álvarez, Mexico. The Colima-Villa de Álvarez
network collected hydrometeorological, fluvial water-level, and soil moisture data that
were then used to create a hydrological model and flood inundation maps to help identify
at-risk infrastructure.

Other studies have used remote wireless environmental sensors to more specifi-
cally collect, monitor, and assess groundwater-level data [44,45]. For instance, Xue et al.
(2010) [44] demonstrated how to build an environmental sensor network for real-time
monitoring and distribution of current and historical groundwater data for the State of Ne-
braska. The data from the Nebraska network has since been utilized to create a state-wide
groundwater map and was to be added later into the National Drought Information System
(NIDIS) to support future regional and national decision making. Further, Knott et al.
(2019) [45] utilized water level data from nearly 3000 groundwater sites, in conjunction
with other hydrologic and landscape characteristic data, to model changes in sea-level-rise-
induced groundwater levels across seacoast New Hampshire. With the use of the seacoast
New Hampshire model, Knott et al. (2019) [45] projected how far inland sea-level rise was
affecting the rise of groundwater and discussed what the implications of this rise could be
over time.

Environmental sensors have also been used in research studies to monitor environmen-
tal phenomena at cultural heritage sites [46,47]. For instance, Grammalidis et al. (2011) [46]
created a wireless environmental sensor network for use in the Mediterranean region to
remotely monitor archaeological and cultural areas of interest at risk from wildfires. The
network utilized infrared cameras and temperature sensors as part of an early warning
system for the sites. While Klein et al. (2017) [47] utilized a network of 200 temperature,
humidity, and air pressure sensors at the medieval branch of the New York Metropolitan
Museum of Art to help maintain the ideal preservation conditions for the art on display.
This network monitored and assessed the overall climate of the museum to better under-
stand how changes in micro-climates may occur due to drivers, such as the arrival and
distribution of visitors throughout the facility.

However, despite the plethora of examples of environmental sensor networks being
used to monitor surface and groundwater flood levels along our coasts and in-land and
environmental hazards at cultural heritage sites, there appears to be a dearth of research
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studies that use environmental sensors to monitor and assess groundwater inundation flood
risks within the basements of coastal cultural heritage buildings. The only published journal
study that was found as an exception to this dearth collected and assessed groundwater
inundation data within the basements of the coastally situated Strawbery Banke Museum
(SBM) in Portsmouth, New Hampshire, in 2012 [48]. This 2012 SMB study, completed
by some of the same authors as the current study, showed that the compound drivers of
precipitation and tides influenced groundwater flood levels within some of the buildings
across the museum’s campus. As the 2012 SBM study utilized static water level sensors
whose data were downloaded in-person only once per month, the network was useful for
documenting previous flood events but lacked the data download cadence to also act as
a live-streaming system to monitor flood events in near-real time. Also, the 2012 study,
which only measured water levels with regard to its compound basement flood drivers,
lacked the ability to measure the concentrations of dissolved salts in the groundwater.
Furthermore, as the 2012 study did not implement a public-facing interface, it lacked the
ability to distribute and visualize live streaming data for public consumption and local
on-the-fly decision making. The limitations of the 2012 SBM static sensor study helped to
form the impetus and foundation for the implementation of the present SBM end-to-end
streaming wireless water level sensor network and its accompanying study.

1.2. Objectives

The objectives of this study were to:

(1) Build an end-to-end groundwater sensing network at the Strawbery Banke Museum
coastal cultural heritage site.

(2) Assess variations in the timing and amount of groundwater intrusion and salinity
levels within historic buildings at the Strawbery Banke Museum.

(3) Develop simple statistical models to understand better and parse the levels of influ-
ence that tidal forcing and rain event drivers have on groundwater basement flooding
at the Strawbery Banke Museum.

(4) Promote public engagement and community decision making about coastal flooding
and adaptation and mitigation strategies.

1.3. Hypotheses

Because of the importance of coastal cultural heritage sites, the ongoing and increasing
threats of climate change, and the proven abilities of previous environmental sensor surveys
to monitor flooding in other at-risk locations around the world, our research looks to
find new ways to utilize a sensor network to detect and assess basement groundwater
inundations at the Strawbery Banke Museum coastal cultural heritage site. To this end, we
hypothesize that:

Hypothesis 1 (H1). A wireless groundwater environmental sensor network can be built within the
complex hydrological environment of the Strawbery Banke Museum coastal cultural heritage site.

Hypothesis 2 (H2). Variations in the timing and amount of groundwater intrusion levels and
water salinity levels can be measured with a wireless latitudinal sensor network within the historic
building basements at the Strawbery Banke Museum.

Hypothesis 3 (H3). Simple statistical models can be utilized to help parse the levels of influence
that tidal and rain event drivers have on compound groundwater basement flooding levels at the
Strawbery Banke Museum.

Hypothesis 4 (H4). An interactive public-facing web page interface can be built to support public
engagement and local decision making with regard to groundwater inundation at the Strawbery
Banke Museum.
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2. Materials and Methods
2.1. Study Area

This work was conducted at the Strawbery Banke Museum (SBM) in Portsmouth, New
Hampshire (USA) at approximately −77.75◦ W Longitude by 43.07◦ N Latitude (Figure 1).
This museum is a 4-hectare (10-acre) living history museum that contains 40 buildings from
the colonial and pre-colonial eras. The museum campus is situated within 366 m (1200 feet)
of the nearby Piscataqua River tidal estuary that drains into the Gulf of Maine and the
greater Atlantic Ocean. At the center of the SBM campus is a large 1-hectare (2.5-acre)
central green area that extends east through Portsmouth’s Prescott Park, lying adjacent
to the Piscataqua River. This green space in colonial and post-colonial times was open to
the river as a tidal inlet and dock area known as Puddle Dock. Starting in the early 1900s,
Puddle Dock was filled in with loose fill and debris from the surrounding community to
form the central green area that exists today. However, engineering surveys [49], previous
sensor deployments on-site [48], and empirical observations of puddled water in low-lying
areas on its surface during very high tide events suggest that tidally induced groundwater
flooding might still be occurring on the site.
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Figure 1. Aerial Image looking south over the central green and a portion of the historic houses on
the Strawbery Banke Museum campus in Portsmouth, New Hampshire. (Photo by: Taylor Goddard
© 2023).

2.2. The Network and Assessment

The methods employed within this study included (1) the design, deployment, and
use of an end-to-end environmental sensor network and (2) the assessment and modeling
of the network’s collected data.

2.2.1. The Network Design, Deployment, and Use

The network itself consists of hardware, software, and transmission protocols for a
series of sensors, data loggers, wireless transmitters, a cloud server, a local data and web
server, and two public-facing interfaces (Figure 2).

To date, three environmental sensor nodes consisting of one or two sensors each have
been deployed on-site at SBM (Figure 3). These include one in a sump pump pit in the
Jones house basement, located approximately 244 m (800 feet) from the tidally influenced
Piscataqua River, another in a sump pump pit in the Shapley, Drisco, Pridham (SDP) house
basement, approximately 122 m (400 feet) from the river, and a third off of the Prescott
Park Pier, sitting directly in the tidal river itself. These locations were chosen because
basement flooding had been regularly observed within these buildings during large tidal
or prolonged rain events prior to the installation of the network because the locations are
approximately parallel to the location of the old Puddle Dock Inlet, suspected to be the
conduit of tidal forces on local groundwater and because the locations mimic the sensor
deployment locations of a previous one-year 2012 static sensor network deployment. All
horizontal and vertical sensor positions in the new network were surveyed with the use of
a Trimble (Westminster, CO, USA) TSC7 data collector [50] and an R12i receiver [51] for
measurements made above grade and a conventional measuring tape for measurements
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made below grade. The survey utilized a NAD83 horizontal datum and a NAVD88 vertical
datum. The Trimble R12i receiver being used in Portsmouth, NH, 16 km away from its base
station in Durham, NH, is estimated to have a 16 mm horizontal accuracy and a 23 mm
vertical accuracy [51].
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The Jones house node consists of an MX2001-04-TI-S OnSet© (Bourne, MA, USA) wa-
ter level sensor [52] and a pHionics© (Antioch, CA, USA) STs series conductivity/salinity
sensor [53] located within a sump pump pit in the building’s basement (Figure 4) and
connected to an AC-powered OnSet© RX3004 data logger [54] above grade via a 9 m
transmission cable. The Shapley, Drisco, Pridham (SDP) house node consists of a similar
setup of an MX2001-04-TI-S OnSet© water level sensor and a pHionics© STs series con-
ductivity/salinity sensor located within a sump pump pit in the basement and connected
to an AC-powered OnSet© RX3004 data logger [54] above grade via transmission cables.
The Prescott Park pier node consists of a single OnSet© water level sensor [52] located
below grade at the base of one of the support pilings of the pier and is connected to a
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5w solar panel powered OnSet© Microstation data logger [55], located above grade via
a 9 m transmission cable. Sensors and cables in the Jones and SDP house nodes were
secured using zip ties to vertical sump pump drainage pipes extending upward from each
basement’s sump pits. The Prescott Park Pier sensor and its accompanying cable were
threaded through a 2.5 cm (1-inch) wide PVC conduit and secured to one of the pier’s
support pilings using a series of zip ties at 1 to 2 m increments upwards from the sensor.
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Figure 4. Installation of an MX2001-04-TI-S OnSet© water level sensor and a pHionics© STs series
conductivity/salinity sensor located along the side of a drain pipe within a sump pump pit in the
Jones house basement.

The OnSet© water level sensors [52] measure water temperature, water pressure,
and water level. The pHionics salinity sensors [53] measure water conductivity, water
temperature, and water salinity. All of the OnSet© water level sensors [52] used on the
project each hold 3-point National Institute of Standards and Technology (NIST) traceable
calibration certificates from when purchased and have a reported accuracy of ±0.3 to 0.6 cm
of water level accuracy. The pHionics© salinity sensors [53] were calibrated on-site prior
to operation using a standard seawater 35 ppt salinity solution as recommended by the
manufacture and have an estimated accuracy of 1 to 1.5% of the measured salinity.

The Jones and SDP house data loggers were placed above grade on the first floor of
each house and hidden from direct public view in a closet and behind a historical display,
respectively. The Prescott Park Pier data logger was placed beyond arm’s reach in a locked
stainless steel box, secured to a plywood panel, facing outward from the wood railings of
the pier. The data logger’s solar panel was mounted flush next to the stainless steel box
on the plywood panel, also beyond arm’s reach. These placements were chosen to help
dissuade vandalism or tampering with the box, data logger, and solar panel, as the pier is
frequented by many guests annually.

Sensor measurements at each data logger are collected and stored with a typically
5 min cadence but varied between 1 and 5 min during the early installation of the sensors.
The wireless transmission of stored data is regularly pushed to a cloud server database
every 10 min from the data logger, using an onboard cellular node and an AT&T 4G
network [56]. Data stored on the cloud drive is collected regularly using a remote API
request and processed on a local data and web server equipped with Intel(R) Xeon(R) CPU
E5-2643 0 @ 3.30 GHz 128 GB RAM and a Matrox Electronics Systems Ltd. (Maxtrox Video,
Dorval, QC, Canada) G200eR2 GPU running an Ubuntu operating system (Canonical,
London, England) [57] and a PostgreSQL database (Global Development Group, Brisbane,
Australia) [58]. Data as parsed from the database are then used to populate a project-created
web-mapping interface that utilizes a Django framework [59] and an Open Layers web-
mapping library [60]. This interface was created for the remote presentation of the data over
the Internet to engage the public about the risks of groundwater flooding and to help in
community engagement and decision making. The interface features a dashboard panel for
the browsing, mapping, and graphing of current two-day water level conditions across the
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SBM sensor network, as well as examples of historical storm surge and king tide scenarios
that can be displayed as if in accelerated historical time with a time-slider tool. To further
facilitate public engagement with the data, a special version of the web interface was also
created to function on a touchscreen kiosk located in the Rowland Gallery at the SBM. This
special interface contains larger icons, graphics, buttons, and controls to help facilitate
the use of the touchscreen. The kiosk itself is created with an AC-powered ELO (Suzhou,
China) 0.69 m (27-inch) touchscreen [61] attached to a 1.5 m (60-inch) tall free-standing
base. The touchscreen is driven by an ELO Backpack 4 computer system [62] attached to
the back of the display and runs an Android 10 operating system (Google, Mountain View,
CA, USA) [63] (Figure 5). Both the ELO touchscreen and the ELO Backpack 4 are powered
via a standard AC power outlet and are connected to the Internet via the Rowland Gallery’s
Wi-Fi network.
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Figure 5. Image of Rodney Rowland, Director of Environmental Sustainability, and Dr. Alix Martin,
Archeologist of the Strawbery Banke Museum, utilizing its Sensor Network Touch Screen Kiosk
found in the Rowland Gallery, “Water Has a Memory” exhibit.

In addition to the data we collected with our network, we also utilized NOAA weather
station hourly precipitation data. The Pease Air Force Base, Portsmouth, NH, station
(Station Name: PORTSMOUTH PEASE AFB, NH US; Network ID: WBAN:04743) [64]
was selected as the closest, most complete data set for the time period. The rain gauge is
approximately 5.1 km (3.2 miles) from the Strawbery Banke campus.

2.2.2. Data Assessment

Data Preparation:

The raw data were first checked and cleaned to ensure that they were consistent within
sensors and across sensors. Examples of issues observed with the sensors include change in
datum between initial installation and final surveyed location, temporary loss of signal due
to prolonged power outages beyond the charge of the data logger batteries, and change
in cadence of data collection (i.e., one minute vs. five minutes). As our data set was not
prohibitively large, manual cleaning, recognized as the most accurate cleaning method [65],
was possible. Erroneous data, due to factors such as network outages, were discarded, and
irregular time steps were averaged to result in standard 5 min and daily time steps.

Timing and Quantities:

Next, in order to better understand the behavior of the project’s collected water level
and groundwater salinity sensor data, we assessed it for variations in time and quantities
over the collection periods at both the SDP and Jones houses. Time lags and quantities
were estimated where possible between peak tides in the nearby Piscataqua River and peak
water level inundations at each of the houses.
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Modeling Component Flooding:

Next, a series of simple linear models for basement flooding were created under varied
compound rainfall and tide scenarios to assess the influences of individual and compound
drivers. These included water level data versus:

• All high tides;
• High tides > 1.2 m (4 feet);
• Precipitation alone;
• Precipitation and all high tides;
• Precipitation and high tides > 1.2 m (4 feet).

For each model, the following statistics were calculated at both the SDP and the Jones houses.

1. R2 to estimate the influence of each flood driver.
2. p-value to measure the likelihood that any observed correlation between water level,

seepage, tidal levels, and precipitation are occurring by random chance.
3. Slope to enable prediction of future water levels at each house.
4. BP value and associated p-value to measure the skew/heteroscedasticity of the

model’s error term residuals.

We currently opted to use this simple linear model within our study instead of machine
learning or more complex modeling techniques for two primary reasons. First, the simple
model effectively captures the relationships present in the data. Second, for the model to
be practical for managers of historic buildings, it must remain accessible without requiring
specialized software or advanced expertise.

3. Results
3.1. Time and Quantity Results
3.1.1. Piscataqua River Time and Quantity Results

Figure 6 shows the water level at the Piscataqua River meter from 3 March 2024 to
13 March 2024. The location experiences approximately two tides daily, with high tides
generally over 0.5 m above mean sea level and some higher high tides of over 2 m. Note
that during March of 2024, the start of the month shows relatively low high tides, and the
highest monthly higher high tide occurred in the late evening of March 10. This period,
therefore, is helpful to illustrate the influence of tidal forcing at the historic properties.
While statistical analysis is based on our whole period of record (12 December 2023–31
July 2024), this period at the beginning of March 2024 was used to visualize the influence
and results.
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Figure 6. Graph portraying typical tidal variation in water level at the Piscataqua River sensor node.
High tides vary from approximately 0.5 m above mean water to over 2 m above mean water.

3.1.2. Shapley Drisco Pridham (SDP) House Time and Quantity Results

The SDP house, approximately 122 m (400 feet) from the tidal Piscataqua River, showed
a strong relationship between flooding and higher tide levels. Figure 7a shows the water
level measured in the SDP house basement for the same time period as shown in Figure 6.
Note that there is very little indication of water entering the SDP basement from 3 March
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to 7 March, after which there is approximately a 0.3 m (1-foot) increase in basement water
level once daily. Starting on 9 March, there is a small tidal response for the morning high
tide, which resolves to two responses daily, one for each high tide, from 10 March to
12 March. The flooding response is apparently occurring for tides greater than 1.2 m
(4 feet), while very little response is seen for lower high tides.
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Figure 7. Graphs portraying Shapley Drisco Pridham (SDP) house. (a) Basement water levels from
3 March to 13 March 2024. (b) Daily average basement water levels vs. daily sum of precipitation.
(c) Daily average basement water levels vs. daily high tide. (d) Daily average basement water levels
vs. daily high tides > 1.2 m.

Figure 7b compares the basement water level in the SDP house to the recent daily
total precipitation from 12 December 2024 to 31 July 2024. There is little to no apparent
relationship. This, in contrast to the apparent clear impact of the tidal forcing, leads us to
conclude that the SDP house flooding is largely driven by tides.

Figure 7c shows the relationship between the SDP basement water level and tides
more clearly. This figure shows, for each day from 14 December 2023 through 31 July
2024, the daily highest water level plotted against the daily highest tide. At a higher high
tide level, above approximately 1.2 m (4 feet), the water level in the SDP house is nearly
linear (Figure 7d, R2 = 0.94), while at lower tide heights, the basement does not exhibit
as much flooding response. This may be an artifact of the pump being able to maintain
a lower water level for lower tides or that the lower tides do not force as much water
into the groundwater as do the higher tides. Note that the highest daily higher high tide
(2.4 m, 8.71 feet) paired with the highest basement water level (1.92 m, 6.38 feet) occurred
on 13 January 2024, the storm with record flooding at SBM. The lag time between the higher
high tide in the Piscataqua River and the peak of water level in the SDP house basement is
approximately one hour.

Figure 8 shows the salinity measured in the SDP house basement (black, left y-axis)
over time and the precipitation (blue, right y-axis) for the same time period, as shown in
Figure 6, 3 March to 13 March 2024. The salinity does not vary widely with tide, remaining
largely between 34 ppt and 35 ppt—which is typical for pure ocean water. Note that when
the salinity in the basement of the SDP house falls, it generally coincides with a precipitation
event; however, there are precipitation events that do not seem to cause a change in the
salinity in the SDP house. The lag time between precipitation and reduction in salinity is
approximately 10 h. Thus, apparently, both tide and precipitation influence the water in
the basement of the SDP house.
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Figure 8. Graph portraying Shapley Drisco Pridham (SDP) house salinity levels (black, left axis)
in basement water and precipitation (blue, right axis) measured at the Pease Air Force Base,
Portsmouth, NH.

3.1.3. Jones House Time and Quantity Results

The Jones house, approximately 240 m (800 feet) from the tidal Piscataqua River and
set back 122 m (400 feet) from the SDP house, has an active sump pump. Therefore, “water
level” in the basement is not sufficient to determine the level of flooding. On January 13,
the sensor recorded the highest tide in our data record, where the water level exceeded the
pump-on set level of approximately 0.77 m (2.5 feet) above MSL. Throughout the rest of
the period of record, the sump pump reliably maintained basement water levels between
0.77 m and 0.64 m (2.53 feet and 2.09 feet) in elevation (Figure 9a). Thus, water levels do
not correlate to groundwater intrusion. While we certainly can assert that the January 13
event was unusual, the data also imply that a metric other than simply maximum water
level is needed to understand general flooding at the Jones house.
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Daily water pumped (in meters and feet) was calculated for the Jones house basement
by summing the depth by which water level was reduced per time step during a given
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day. The resulting value represents the hypothetical depth of water that would have arisen
in the basement if the pump had not been present (Figure 9b). In the water level data,
shown in Figure 9a, on the morning of 4 March, the lines are farther apart, indicating that
less water is being pumped, and in the evening of 12 March, the lines are closer together,
indicating that more water is being pumped. Translating that data to volume pumped
Figure 9b demonstrates higher depth, and therefore higher volume pumped, on March 12.
Note that the elevations recorded in the SDP and Jones houses are reported at the same
datum (NAVD88). Thus, the water levels in the Jones house basement are consistently
lower than those in the SDP house overall.

Figure 9c shows the depth of water pumped out of the Jones house basement as a
function of the rainfall in the previous 24 h (R2 = 0.11). Dry periods, with rainfall less than
3.8 cm (1.5 inches) in the previous week, tend to have less than average water pumped.
Wet periods, with rain above 5.1 cm (2 inches) in the previous week, tend to result in more
water being pumped out of the Jones house basement. While the high tide impacts do not
seem to help describe the scatter in the data, it is interesting that many of the wetter weeks,
with 8 to 10 cm or 3 to 4 inches of rainfall for the past seven days, also had higher high
tides than usual.

Figure 9d shows the depth of water pumped out of the Jones house basement as a
function of tides higher than 1.2 m (4 feet). The Jones house basement water level does
not show the strong linear relationship that the SDP house basement water level does
(Figure 7d) for the tidal level driver.

To further investigate the tidal influence on flooding in the Jones house basement,
salinity levels were measured. Figure 10 shows the salinity in the Jones basement water for
the same period as shown above in Figure 8 for the SDP house. The salinity in the Jones
house tends to be 4 to 5 ppt lower than in the SDP house, lower than typical ocean water,
and much more variable than the SDP house. The lag time between the precipitation and
the reduction in salinity at the Jones house is approximately 5 h, much quicker than in
the SDP house at approximately 10 h. Figure 10 also shows a downward trend in salinity
throughout the period from 3 March to 14 March 2024, even though the high tides were
generally increasing throughout this period (Figure 6).
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Both rain and tides appear to impact the flooding in the Jones house, but in a less direct
manner than seen in the SDP house. The lag time between higher high tide in the Piscataqua
River and the peak of water seepage in the Jones house basement is approximately four
hours, much greater than the approximate one-hour lag time to the SDP house.
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3.2. Compound Flooding Model Results
3.2.1. Shapley Drisco Pridham (SDP) House Model Results

The height of the tides in the nearby Piscataqua River influenced basement flooding
in the SDP house in two ways. First, significant flooding does not occur until the height
of the high tide is over 1.2 m (4 feet) above mean tide. Lower high tides of less than 1.2 m
above mean tide, for instance, do not seem to trigger significant flooding in the basement.
Second, when tides are above 1.2 m mean tide, there is a roughly linear increase in flooding
in the SDP house basement. Table 1 shows results for both flooding vs. “all high tides” and
flooding vs. “only high tides greater than 1.2 m”. Using the high tides only greater than
1.2 m results in a higher correlation coefficient (0.895 vs. 0.9406).

Table 1. Linear model results for Shapley Drisco Pridham (SDP) house, basement water level.

Schema R2 p-Value Slope BP Value BP p-Value Results

All high tides 0.895 2.2 × 10−16 0.751 27.88 1.28 × 10−7 Heteroscedastic
High tides > 1.2 m 0.9406 2.2 × 10−16 0.884 1.0174 0.3131 Homoscedastic
Weekly rain along 0.1173 9.31 × 10−16 0.239 3.554 0.0594 Homoscedastic

Rain and all
high tides 0.8998 2.2 × 10−16 Rain: 0.050

Tide: 0.735 23.563 7.65 × 10−6 Heteroscedastic

Rain and high
tides > 1.2 m 0.9408 2.2 × 10−16 Rain: −0.009

Tide:0.890 1.3809 0.5013 Homoscedastic

The Breusch–Pagan test describes the homoscedasticity vs. heteroscedasticity of the
residuals. Homoscedasticity refers to the condition in which the variance of the residuals, or
errors remaining once independent variables have been included, remains constant across
all levels of the independent variables. This uniformity of errors suggests that the model’s
predictive accuracy is consistent, regardless of the value of the predictors. In other words,
the model is equally good at predicting the dependent variable throughout the range of
the independent variables. In contrast, heteroscedasticity occurs when the variance of the
residuals varies with the level of the independent variables, indicating that the model’s
predictive accuracy may be less reliable for certain ranges of the independent variables.
Identifying and addressing heteroscedasticity helps to ensure the robustness of statistical
inferences drawn from the model.

Looking at only the days where the tides were greater than 1.2 m also results in a
higher Breusch–Pagan p-value (1.29 × 10−7 vs. 0.3131). The relationship between flooding
and high tides greater than 1.2 m is, therefore, homoscedastic. This means that the model’s
residuals are consistent throughout the tidal range above 1.2 m. In other words, eliminating
the lower high tides from the model also eliminated the range for which the model errors
are not consistent.

The impact of rain on the flooding in the SDP house is more subtle than the impact of
the tides, as Table 1 shows. Including rain only slightly increases the correlation coefficient
of the model (from 0.895 to 0.8998 for all high tides, and from 0.9406 to 0.9408 for days with
a high tide greater than 1.2 m). Including precipitation also does not seem to impact the
homo/heteroscedasticity of the model at the Jones house. While including consideration
of precipitation in the model can increase the R-squared value slightly, the change to the
accuracy of the relationship is minimal.

3.2.2. Jones House Model Results

Table 2 summarizes the model results for the basement flooding in the Jones house.
Both tides and precipitation are significantly related to flooding but with low R-squared
values for all values. The additional complication of the active pump in the basement of
the Jones house may influence the model results. Perhaps the groundwater is higher or
more apt to enter the Jones house for some structural reason, making the rain and tides
seem less important, but we cannot conclude this within the current study.
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Table 2. Linear model results for Jones house, basement water levels.

Schema R2 p-Value Slope BP Value BP p-Value Results

All high tides 0.0863 5.62 × 10−6 0.0809 18.555 1.65 × 10−5 Heteroscedastic
High tides > 1.2 m 0.168 3.36 × 10−7 0.1811 25.386 4.69 × 10−7 Heteroscedastic
Weekly rain along 0.0247 0.01688 0.038 10.2 1.41 × 10−3 Heteroscedastic

Rain and all
high tides 0.0918 1.71 × 10−5 Tide: 0.075

Rain: 0.019 22.81 1.11 × 10−5 Heteroscedastic

Rain and high
tides > 1.2 m 0.172 1.66 × 10−6 Tide: 0.169

Rain: 0.019 26.393 1.86 × 10−6 Heteroscedastic

4. Discussion
4.1. Potential Benefits of Sensor Networks to Cultural Heritage and Preservation

Interest in monitoring and preserving cultural heritage is at the core of organizations
such as UNESCO, the United States Department of Interior, state and private offices of
culture and preservation, and public and private museums. The diversity, geographic
distribution, and fragility of some cultural heritage sites can pose challenges for managers
to monitor these locations regularly. However, the rise of smart sensors and wireless
streaming sensor networks over the last decade can help to mitigate the challenges of
monitoring these sites. Wireless streaming sensor networks, in particular, can be helpful
to inform and allow managers to respond and preserve these locations in near-real time.
Wireless sensor networks, once deployed, can reduce labor costs due to a decreased need
for in-person inspections, with particular advantages for locations composed of multiple
or geographically dispersed sites. Furthermore, wireless sensor networks, by reducing
the number of needed in-person inspections, also have the potential to reduce damage to
fragile sites by decreasing visits and treading. The addition of public-facing interfaces to
such networks also have the potential for near-real-time data and easier dispersion of data
for education and engagement purposes.

4.2. The Network

Within this research, we fashioned and utilized a functioning end-to-end, wireless,
streaming, environmental sensor network to better measure and understand compound
drivers related to groundwater basement flooding at the Strawbery Banke Museum (SBM).
To this end, our work supports Hypothesis H1 of this research, which states that “A
wireless groundwater environmental sensor network can be built within the complex
hydrological environment of the Strawbery Banke Museum coastal cultural heritage site”.
However, we needed to take into account several important factors throughout the design
and construction process of this network. These factors included the process of building
a collaborative relationship with SBM and the City of Portsmouth to acquire permission
to place sensor nodes on their properties. Permissions were granted through a series of
meetings, demonstrations, and other communications with museum and city officials.
Other factors that we needed to consider during the design and construction of the network
included the costs of the equipment, choices of wireless transmission protocols, and power
options for the network. The cost for equipment per sensor node ran between USD 3500
and USD 4500 each, and the kiosk equipment cost about USD 2000 in total. These and
other labor and construction costs were balanced over two years as the project progressed
and when the equipment was ready to be ordered and deployed. Wireless sensor data
transmission protocol options available included cellular or Wi-Fi protocols because the
Onset© data loggers used on the project could be purchased with either option. Although
the SBM buildings do have a Wi-Fi network, we chose to transmit data to our cloud server
via a cellular connection. We did this because the Wi-Fi connection also relied on a local
AC-powered router that ran the risk of losing power immediately during power outages
caused by storms or other events, but the cellular connection helped to mitigate this risk
because the cellular equipment was powered by both an AC-power and an internal battery
backup power source. This internal backup power source also helped to run the data
loggers and sensors during power outages. This was an important consideration because
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storm events that may cause power outages also likely correspond in time with storm event
related flooding when the sensor network can be of most useful to collect, transmit, and
visualize data to keep museum and city officials aware of pending flood threats. This ability
to maintain near-real-time data collection, transmission, and reporting of live flood data is a
major advantage over older static, non-streaming sensor networks and is a major upgrade
from the previous static sensor network that was deployed and utilized at SBM in 2012 [48].
Furthermore, the data collection cadence of 5 min in our current study is a considerable
improvement over the 30 min data collection cadence utilized at SBM in 2012 [48]. This
new cadence provides greater temporal precision to our current assessment results.

4.3. Time and Quantities

Assessment of our collected network data showed distinct variations in timing and
amounts of groundwater inundation levels and salinity levels at the Shapley Drisco Prid-
ham (SDP) and Jones houses. Thus, our data supports Hypothesis H2 of our research
that states, “Variations in the timing and quantities of groundwater intrusion levels and
water salinity levels can be measured with a wireless latitudinal sensor network within the
historic building basements at the Strawbery Banke Museum coastal cultural heritage site”.

The SDP house, located 122 m (400 feet) from the nearby Piscataqua River tidal estuary,
showed no inundation during times of low tide and low high tides but saw higher peaks
during higher high tide conditions, especially during times of storm surge and king tides,
implying a strong tidal influence on the inundation. Peaks in inundation at the SDP house
began approximately one-hour after the peak occurrences of the higher diurnal high tides
over 1.2 m above mean sea level in the nearby tidal Piscataqua River. The Jones house,
located 244 m (800 feet) from the nearby Piscataqua River tidal estuary, showed a pattern
of low peaks and troughs of inundation within its basement as regular inundation was
pumped out by the on-site sump pump over and over again. However, one spike in water
inundation levels occurred at the Jones house during a concurrent king tide and rainfall
event in mid-January of 2024, displaying a 4 h lag time from the peak of the king tide in the
river, implying a tidal influence on inundation levels at the Jones house was strong enough
to overwhelm the sump pump under extreme tide conditions. Other research studies have
observed similar increases in groundwater levels with increases in tidal forcing [44,66] and
decreases in tidal influence with increases in distance from the tidal source [67].

The SDP house, located closer to the river than the Jones house, exhibited regular
salinity levels of 35 ppt, similar to typical saltwater salinities of 35 ppt [68]. The Jones
house, located further from the river, was shown to have regularly lower salinity levels of
31 ppt (Figures 8 and 10), indicating that the Jones house, though likely influenced by tidal
forcing, may also be influenced more by fresh, terrestrial water sources than the SDP house.
However, large drops in water salinity levels at both houses during storm events imply the
presence of rainfall impacts in the flood waters for each. There was an approximately 10 h
lag between peak rainfall and peak drops in salinity in the SDP house and an approximately
5 h lag between peak rainfall and peak drops in salinity in the Jones house, indicating that
the Jones house may be more closely connected to the groundwater table or to surface
water flooding. Other research studies have observed similar decreases in the salinity of
groundwater with increases in distance to the tidal source [69]. However, as our sensor
node in the Piscataqua River does not currently measure salinity, we cannot yet compare
tidal river salinity directly with the salinity measured in the SBM houses.

Observed variations in the timing and amounts of groundwater inundation within
our current study show similar patterns as those detected and reported as part of our 2012
static sensor study at SBM [48]. However, the additional collection and assessment of flood
water salinity data in our current study helps to reinforce the influence that rain events play
in the groundwater inundation levels and timing at both houses and implies the impor-
tance that compound flood drivers have within the complex hydrological environment at
the SBM.



Sensors 2024, 24, 6591 16 of 21

4.4. Compound Flood Models

The data that we have collected to date are already sufficient to show the strong
influence of tides on SDP basement flooding and to make conjectures about the impact
of tides on the Jones house, even though the salinity data are not completely under-
stood. Water inundation model results for the SDP house show the strongest correlation
(R2 = 0.9408) when using rainfall amounts and high tide levels greater than 1.2 m as input
variables together. However, correlations varied from R2 = 0.1173 for rainfall alone and
R2 = 0.9406 for high tide levels greater than 1.2 m when variables were modeled indi-
vidually. These results support the idea that a simple model can help parse the levels
of influence that tidal and rain event drivers have on compound groundwater basement
flooding in the SDB house. The water inundation model results for the Jones house showed
a stronger influence when using rainfall and tides greater than 1.2 m as input variables
taken together (R2 = 0.172) than when rainfall (R2 = 0.2247) and tide levels greater than
1.2 m (R2 = 0.168) were used as variables individually. However, the low R-squared values
of all model results provide us with less confidence in the model results. Therefore, our
Hypothesis H3, which states, “Simple statistical models can be utilized to help parse levels
of influence that tidal and rain event drivers have on compound groundwater basement
flooding levels at the Strawbery Banke Museum”, is only partially supported. The inclusion
of this kind of compound flooding model analysis in our current study is a complementary
improvement to the analysis methods from our 2012 study [48]. Other research literature
expounds on the benefits of compound flood models over univariate assessments [70]. Also,
though larger-scale analyses, such as the Compound Flood Risk Assessments (CFRAs), can
be useful for understanding flood risks at regional or watershed scales [71,72], we believe
that analyzing the impacts on single buildings or campuses of interest may provide a more
localized and focused assessment. However, the use of CFRA may be important for better
prioritization of historic preservation sites across watersheds, cities, counties, states, or
regions and could help play an important role in the designing of mutual aid programs
between preservationists.

4.5. Public-Facing Interfaces

In order to complete our end-to-end wireless sensor network, we constructed a public-
facing web interface to disseminate and visualize our collected data, engage the public, and
support community decision making. This interface is similar to other project water-level
flood data interfaces such as the Southeast Coastal Ocean Observing Regional Association
(SECOORA), Southeast Water Level Network (SWLN) interface [40], and the USGS National
Water interface [41], which all allow plotting of their data site locations on a web-map and
dissemination and graphing of their current and historical data. However, the new SBM
interface also provides a time-slider tool and animated water-level graphics within our
web-mapping interface for stronger visualizations of how water levels change over time
and space relative to each other. This interface is now used regularly by museum officials
to review the quantity and frequency of groundwater inundation events within the SDP
and Jones houses to help inform and improve their future preservation efforts. Museum
officials also used this tool to monitor groundwater inundation in near-real time during
the 15 January king tide/rainfall compound flooding event. Furthermore, different from
other water level sensor interfaces, the SBM interface was ported for additional use as an
outreach and education tool on a public touchscreen kiosk as part of the SBM’s Water Has a
Memory exhibit. This is an important use of this technology with great potential for public
outreach because SBM welcomes over 100,000 visitors to its campus annually. These efforts
that support engagement and community decision making support Hypothesis H4 of our
research, which states, “An interactive public facing interface can be built to support public
engagement and local decision making with regards to groundwater inundation at the
Strawbery Banke Museum”.
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4.6. Recommendations for Strawbery Banke Museum

Now that the Strawbery Banke Museum (SBM) end-to-end wireless sensor network
is up and running and our initial model assessment is complete, we have compiled the
following list of recommendations for the current site assessment. These, in no particular
order, include (1) monitoring meteorological forecasts of both tides and precipitation due to
their potential as groundwater inundation drivers at the SBM, (2) monitoring groundwater
intrusion in near-real time within the SDP and Jones houses with the use of the new SBM
sensor network and its web interface while keeping in mind the potential that occasional
power outages have on the collection and distribution of the data, (3) maintaining basement
sump pumps regularly to keep them in working order for use during times of groundwater
inundation, (4) mitigating impacts of future sea level rise and other compound flood
drivers by ensuring that sensitive collections, artifacts, and materials are out of reach of
flood waters where possible, (5) utilizing humidity sensors within groundwater affected
historic buildings to better measure the potential effects of humidity on the buildings and
their collections, and (6) employing additional sensors to better understand the depth and
variation of the local water table relative to the Jones house to better understand the regular
groundwater seepage within its basement.

4.7. Future Work

Future efforts to improve this research can include the expansion of the SBM environ-
mental sensor network to a larger study area, an increased collection cadence of sensor
measurements, the collection and assessment of a more varied set of environmental vari-
ables, improvements to the environmental model, and upgrades in functionality to the
public-facing interfaces.

The expansion of our network can include placing sensors in other buildings on the
SBM campus and across the south end of the City of Portsmouth to better understand
the directionality and flow of surrounding groundwater. This expansion will allow for
better engagement with local homeowners and others interested in preserving local historic
properties. The expansion of the network can also include the placement of new salinity
and water level sensors up and downstream on the Piscataqua River to better capture data
about flood drivers. Increasing the collection cadence of sensor data to 1 min time steps
may provide a better understanding of how groundwater inundation is occurring at a
finer temporal precision. This may be particularly important at the Jones house, where
there is a continuous seepage that keeps its sump pump regularly active. Additionally,
the incorporation of new sensor types to our network also can help us to collect, report,
and assess sump pump usage cycles and building humidity’s relative to groundwater
inundation levels. Furthermore, the placement of a weather station on-site at Strawbery
Banke can help us collect more localized measurements of rainfall, wind speed, and wind
direction. These new sensor placements, cadences, and sensor types will play an important
role in increasing the geographic distribution, temporal precision, and variable depth of our
future model analysis. We are also interested in the potential of utilizing more advanced
groundwater models and AI modeling techniques trained from our collected data and
generated results in the future. Future enhancements to our public-facing interface can
include the addition of data distributions and visualizations for the expanded set of sensor
nodes, as well as the collection of usage statistics for the web and kiosk dashboards. The
addition of an e-mail or text message inundation alert system to our network will also
allow SBM managers to react better to groundwater flood events as they are happening.

5. Conclusions

With the ongoing and increasing threats of climate change-driven storms, storm surges,
and rising sea levels, scientists, property managers, preservationists, and policymakers are
looking for new ways to monitor, assess, and model surface and groundwater flood events
to better protect our coastlines, infrastructure, and coastal cultural heritage sites. Within
our research, we expanded the design of a previous static groundwater level environmental
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sensor network at the Strawbery Banke Museum (SBM) in Portsmouth, NH, to collect and
now “stream” both groundwater and salinity levels in basements on-site for this purpose.
With the use of the data, we also explored the use of assessment methods and simple
compound flooding models to understand better the component drivers of coastal flooding.
Furthermore, our use of a new public-facing interface allowed us to better disseminate the
results of our work for more informed local decision making.

This study was designed as a case study to better understand how to adapt to and
mitigate the effects of ongoing groundwater flooding on-site. The study has met these
goals and provided the site managers at the museum with important findings to support
their real-world adaptation and mitigation strategies. For instance, knowing adjacent river
tidal levels and lag times that propagate to basement flooding allows site managers time
to ensure that local house sump pumps are in working order before the flooding occurs,
thus avoiding potentially more flood damage than what would occur if the pump was not
working. Additionally, knowing the levels of salinity of basement flood waters provides
site managers with important information about what building materials to incorporate in
their future maintenance strategies.

Further, the findings of our work provide strong justification for (1) the expansion
of the current network and a more complex data model for use across a larger area of the
city and (2) the deployment of similar sensor networks on other historic campuses. Case
study or prototype pilot projects are often used in this way before laying down larger
expenditures of time, money, and effort for larger projects. It is our hope that the methods,
assessments, and results laid out here can help provide others with new knowledge to
build similar networks for the preservation of, and the community engagement for, other
cultural heritage sites around the world.
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